Théorie des ensembles

Feuille 4.

I.Introduction aux filtres.

Soit X un ensemble infini. Un filtre sur X est une famille $\mathcal{F} \subset \mathcal{P}(X)$ vérifiant les propriétés suivantes :

- 1. $A \in \mathcal{F}$ et $B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$;
- 2. $A \in \mathcal{F}$ et $B \supset A \Rightarrow B \in \mathcal{F}$;
- 3. $\emptyset \notin \mathcal{F}$.
- 1. Montrer que pour tout $x \in X$ l'ensemble $\mathcal{F}_x = \{A : x \in A\}$ est un filtre.
- 2. On dit qu'une famille \mathcal{A} est une base de filtre si toutes les intersections finies d'éléments de \mathcal{A} sont non vides. Montrer que pour toute base de filtre \mathcal{A} il existe un filtre contenant \mathcal{A} .
- 3. On dit qu'un filtre \mathcal{F} est un *ultrafiltre* si pour tout filtre \mathcal{G} on a

$$\mathcal{F} \subset \mathcal{G} \Rightarrow \mathcal{F} = \mathcal{G}$$
.

Prouver qu'un filtre \mathcal{F} est un ultrafiltre si, et seulement si, pour tout $A \in X$ on a $A \in \mathcal{F}$ ou $X \setminus A \in \mathcal{F}$.

- 4. Montrer que \mathcal{F}_x est un ultrafiltre pour tout x.
- 5. Montrer, en utilisant l'axiome du choix, que tout filtre est contenu dans un ultrafiltre. En déduire l'existence d'un ultrafiltre non principal, c'est-à-dire qui ne soit pas égal à un \mathcal{F}_x .

II. Limites suivant un ultrafiltre.

- 1. Montrer qu'un ultrafiltre sur un ensemble X correspond à la donnée d'une mesure finiment additive $\mu \colon \mathcal{P}(X) \to \{0,1\}$. Dans la suite de cet exercice le mot ultrafiltre désignera une telle mesure.
- 2. On suppose maintenant que X est un espace topologique. On dit qu'un ultrafiltre μ sur X converge vers $x \in X$ si on a $\mu(V) = 1$ pour tout voisinage V de x. Montrer que si X est séparé alors un ultrafiltre a au plus une limite.
- 3. Montrer qu'un ultrafiltre \mathcal{U} converge vers $x \in X$ si, et seulement si,

$$x \in \bigcap \mathcal{A}$$
, avec $\mathcal{A} = \{A \subset X \colon \mu(A) = 1 \text{ et } A \text{ est ferm\'e}\}$.

4. Si X, Y sont deux ensembles, μ est un ultrafiltre sur X et $f \colon X \to Y$ est une fonction alors on peut définir l'ultrafiltre image $\nu = f(\mu)$ en posant

$$\nu(A) = \mu(f^{-1}(A))$$
.

Montrer que ν est un ultrafiltre. Si ν converge vers $y \in Y$, on dit que y est la limite de f selon l'ultrafiltre μ . La suite de l'exercice est destinée à ceux qui connaissent un peu de topologie; on suppose que l'axiome du choix est vrai.

- 5. Soit $(X_i)_{i\in I}$ une famille d'espaces topologiques et $Y=\prod X_i$, muni de la topologie produit. Pour tout i on considère la projection sur la i-ième coordonnée $\pi_i\colon Y\to F$. Montrer qu'un ultrafiltre μ sur Y est convergent si, et seulement si, $\pi_i(\mu)$ est convergent pour tout $i\in I$.
- 6. Soit X un un espace topologique et $(O_i)_{i \in I}$ un recouvrement de X par des ouverts qui ne contienne aucun sous-recouvrement fini. Montrer que la famille des complémentaires des O_i est une base de filtre, et en déduire qu'il existe un ultrafiltre μ sur X tel que $\mu(O_i) = 0$ pour tout $i \in I$. Prouver que μ n'est pas convergent.
- 7. Soit maintenant X un espace topologique compact. Montrer que tout ultrafiltre sur X est convergent.
- 8. En déduire qu'un espace topologique X est compact si, et seulement si, tout ultrafiltre sur X est convergent; puis obtenir une preuve du théorème de Tychonoff : un produit d'espaces topologiques compacts est compact.

III. Introduction aux ultraproduits.

1. Soit I un ensemble, μ un ultrafiltre sur I, et G_i une famille de groupes, d'élément neutre e_i . On définit $H \subseteq \prod G_i$ par

$$H = \{(g_i) : \mu(\{i \in I : g_i = e_i\}) = 1\}$$

Montrer que H est un sous-groupe distingué du groupe produit $\prod G_i$. On appelle *ultraproduit* des groupes G_i selon l'ultrafiltre μ le groupe quotient $G_{/H}$.

2. On suppose cette fois-ci que les G_i sont des groupes munis d'une distance bornée et bi-invariante d_i (c'est-à-dire que $d_i(gkg',ghg')=d(k,h)$ pour tous g,g',h,k) et on considère l'ensemble

$$H' = \{(g_i): \lim_{\mu} d_i(g_i, e_i) = 0\}$$
.

 $(\lim_{\mu} d\acute{e}signe la limite selon l'ultrafiltre <math>\mu$).

Montrer que H' est un sous-groupe distingué de $\prod G_i$; par conséquent $\prod G_{i/H'}$ est naturellement un groupe, quotient de l'ultraproduit des G_i selon μ ; on dit que ce groupe est l'ultraproduit des (G_i, d_i) selon μ (et si d_i est la distance discrète on retrouve l'ultraproduit du point 1).

3. Un cas particulier : on peut munir le groupe de permutation S_n de la distance de Hamming d_n défine par

$$d_n(\sigma,\tau) = \frac{|\{i\colon \sigma(i) \neq \tau(i)\}|}{n} \ .$$

On dit qu'un groupe G est sofique s'il existe un ensemble I, un ultrafiltre μ et des entiers n_i tels que G est isomorphe à un sous-groupe de l'ultraproduit des (S_{n_i}, d_i) selon μ .

Montrer que S_n est sofique pour tout n; prouver que tout groupe fini est sofique.

4. Pour tout $i \in \mathbb{Z}$ et tout $n \in \mathbb{N}$ on considère la permutation $\tau_{n,i}$ de $\{1,\ldots,n\}$ définie par

$$\tau_{n,i}(k) = k + i [n] .$$

L'application $i \mapsto \tau_i$ est un morphisme de \mathbb{Z} dans \mathcal{S}_n . En supposant qu'il existe un ultrafiltre non principal sur \mathbb{N} , montrer que \mathbb{Z} est sofique.

Avertissement : La question suivante est un problème ouvert...

5. Montrer que tout groupe est sofique.