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Master 1 Logique et théorie des ensembles

I. Soit T une théorie compléte. Montrer que si T a un modéle fini alors tous les modéles de T sont isomorphes.
Le résultat est-il encore vrai si I’on ne suppose pas que 1" est compléte ?

Correction.

L’énoncé "la structure M a au plus n éléments" est un énoncé du premier ordre :

V.Iil,...,.fcn \/ T; =Ty

1<i<j<n

Par conséquent, si cet énoncé est vrai dans un modeéle de 7" alors il est vrai dans tout modeéle de T' (puisque
T est compléte). Autrement dit, si 7" est une théorie compléte qui a un modéle fini alors tous les modéles de
T sont finis. Vous avez vu en cours que deux structures finies élémentairement équivalentes sont isomorphes ;
comme par définition tous les modéles d’'une méme théorie compléte sont élémentairement équivalents, on en
déduit que tous les modeéles de T' sont isomorphes.

I1. Montrer que la théorie des corps infinis n’est pas compléte.

Correction.

Rappelons que le langage des corps contient les constantes 0 et 1; I’énoncé "Vz z? + 1 # 0" est vrai dans R
mais faux dans C, ce qui prouve que ni cet énoncé ni sa négation n’appartiennent & la théorie des corps infinis,
par conséquent, celle-ci n’est pas compléte.

III. Donner un exemple de stuctures M et N telles que M soit une sous-structure de A mais ne soit pas
élémentairement équivalente & N

Correction.

Considérons par exemple le langage £ = {=} et les deux L-structures M = {0}, A/ = N. Alors M est bien str
une sous-structure de N ; mais M et N ne sont pas élémentairement équivalentes, puisque 1’énoncé "il existe
deux éléments distincts" est vrai dans N et faux dans M.

Peut-étre plus intéressant : on peut aussi fournir un exemple de structures M, A telles que M soit une sous-
structure de N, M et N soient élémentairement équivalentes (et méme isomorphes!) mais M ne soit pas une
sous-structure élémentaire de N. Par exemple, considérons le langage £ avec une relation binaire < et les deux
L structures M = (QN] — 00,0],<) et N = (QN] — 00, 1], <), ot < désigne 'ordre usuel de R. Il est bien
clair que ces deux structures sont isomorphes, et que M est une sous-structure de N. Considérons maintenant
lélément 0; dans M il satisfait la formule Yy (y < z Vy = z), tandis qu’il ne satisfait pas cette formule dans

N.

IV. Montrer qu’une théorie T' qui a des modéles finis arbitrairement grands a un modéle infini.
Correction.
Pour tout n € N* considérons I’énoncé FE,, suivant :

35517---73771 /\ CEZ‘#J]J‘

1<i<j<n

Maintenant, appelons £ la famille d’énoncés {E,,: n € N*}. Par hypothése, tout fragment fini de £ est réalisé
dans un modéle de T ; par conséquent, le théoréme de compacité assure qu’il existe un modéle de T' dans lequel
tous les énoncés de £ sont réalisés, et donc il existe un modéle infini de 7.

V. Soit T la théorie de N = (N,0,1,+). Montrer qu'’il existe un modéle de T' qui étend élémentairement
(N,0,1,+) ayant un élément @ non nul et divisible par tous les entiers standard non nuls.

Correction.

Il s’agit encore 1a d’une application directe du théoréme de compacité et de la méthode des diagrammes :



notons L7 le langage {0, 1,4+, {¢in }m>2,d} ot les ¢, et d sont des symboles de constante. Nous définissons

T+ = Th(N, m)ms2) U{3z(z + ... +z = d) | m e N} U{d # 0} .

m fois

Par compacité, T est un ensemble consistant d’énoncés. Exercez-vous & écrire les détails du raisonnement. Un
modéle de TF, aprés réduction au langage £ sera alors une extension élémentaire de A contenant un élément
divisible par tous les entiers naturels non nuls.

VI. Soit £ = {P;: i < w}, ot les P; sont des relations unaires. On note T la théorie qui dit que les P; sont deux
a deux disjoints et que chaque P; est infini. Montrer que 71" n’est x-catégorique pour aucun cardinal K > R, et
que T est compléte.

Correction.

Un modéle de T' de cardinal s est exactement la donnée d’une partition d’un ensemble de cardinal s en R,
parties infinies. Un isomorphisme entre deux modéles de T" M7, M5 est exactement une bijection de M; sur
Ms qui envoie chaque membre de la partition de M; sur un membre de la partition de Ms. Si x est non
dénombrable, alors on peut partitionner x en Ny parties de cardinal k, et on peut aussi partitionner x en Ny
parties dont l'une est de cardinal Xy. Comme une bijection préserve le cardinal (!) ceci montre qu’il existe des
modéles de T' de cardinal « et non isomorphes.

Par contre, deux modéles de T' de cardinal Ry sont isomorphes (& une partition de N en Ry ensembles infinis
disjoints), ce qui prouve que T est Wo-catégorique et donc compléte (le corollaire 6.2.2 des notes de cours)
(puisque notre langage est dénombrable).

Le corrigé de Dexercice suivant sera un peu rapide ; n’hésitez pas & me poser des questions st certains points
restent obscurs!

VII. Nous considérons un langage £ comprenant une infinité dénombrable de symboles de relations binaires :
L=A{Ei <w}.

1. Ecrire les énoncés qui disent que pour tout ¢ < w, F; est une relation d’équivalence, que Ey n’a qu’une seule
classe et que les classes de E; 1 sont obtenues en divisant chaque F;-classe en exactement deux classes infinies.
Réponse.

Dire que F; est une relation d’équivalence se fait (par exemple) avec les trois énoncés suivants :

- Vo Ei(z,x);

- Vx,y (El(m7y) - Ei(y’w)) )

- Va,y,z (Fi(x,y) A Ei(y,z) — Ei(z,2)).

(On a successivement écrit que E; est réflexive, symétrique, et transitive)

Dire que Ep n’a qu’une seule classe s’écrit :

- Vl’7y Eo(x,y) .

Enfin, la derniére condition s’obtient en combinant les trois familles d’énoncés suivants (qu’on pourrait bien
stir condenser en une seule en mettant des "et"!), paramétrées par i € N :

- vxay (Ei+1(xvy) - Et('Tvy)) )

= Vz Jy,z (Ei(z,y) A Ei(2,2) A Eiv1(y,2)) ;

— Vi, x0, 3 (Algi)j§3 Ei(zi,25) = Vicizj<s Ei-i-l(xhxj)) :

(On a dit successivement que toutes les classes de E;y; sont contenues dans les classes de E;, que chaque E;-
classe contient au moins deux E; -classes distinctes, et qu'une Ej;-classe ne peut pas contenir trois E;-classes
distinctes).

2. Montrer que la structure suivante est un modéle dénombrable des énoncés du premier point :
Mo = ({f € 2¥]il existe i < w tel que pour tout j >4, f(i) = f(j). } ; Ei(x1,22) (i <w)),

ol pour tout i € w, (01,09) € E;-M“ si et seulement si o1 [i = o3l



Le point 2 montre que les énoncés du premier point forment un ensemble consistant. Ces énoncés et leurs
conséquences seront notés T

Réponse.
C’est une vérification directe qui ne devrait poser aucune difficulté.

3. Nous dirons qu’on modéle M de T est riche si pour tout ¢ € M il existe une infinité de 0 € M tel
que M = E;(0,0) pour tout ¢ < w. Nous montrerons que deuz modéles riches de T sont élémentairement
équivalents.

Comme vous connaissez la notion d’extension élémentaire et que vous aurez vu la preuve du théoréme de
Léwenheim-Skolem ascendant avant d’aborder cet exercice, démontrez ’énoncé suivant :

tout modeéle de T" a une extension élémentaire riche de méme cardinal que lui.

Réponse.

Soit M un modeéle de T'; comme d’habitude, pour construire une extension élémentaire de M on commence
par rajouter a notre langage un symbole de constante ¢, pour chaque élément de M. On veut ensuite assurer
que pour tout élément il existe une infinité d’éléments qui lui soient F;-équivalents pour tout ¢ < w; rajoutons
encore & notre langage des constantes a,, r (m € M, k < w) et considérons les énoncés suivants (paramétrés
par m € M, ik, k' <w avec k #k') :

Ei(a’m,,kw Cm) A (a’m,,k 7é am,k') .

Les fragments finis de cette famille d’énoncés sont tous consistants avec la théorie T(M™) de notre structure
M dans ce langage augmenté ; par compacité on en déduit qu’il existe un modéle Nt de cette théorie. Quand
on considére le réduit de N'* & notre langage de départ, on obtient une extension élémentaire A" de M dans
laquelle pour chaque élément m de M il existe une infinité d’éléments de N qui soient E;-équivalents & m
pour tout ¢ < w. On peut poser N' = My, et appliquer la méme construction & M, pour obtenir une nouvelle
extension élémentaire Mo, et ainsi de suite; en bout de chaine, en posant My = |JM;, on obtient une
extension élémentaire riche de M.

4. Cette étape est une illustration de la méthode de va-et-vient en utilisant un modéle riche. Plus précisément
nous effectuerons un “va”, le “vient” étant symétrique. Soient M et A deux modéles dont A est riche. Fixons
k € N, supposons que (a1, ...,ax) et (by,...,b) soient deux k-uplets extraits de M et A respectivement et
soumis aux conditions suivantes : pour toute paire (ki,ks) avec 1 < k1, ko < k , pour tout i < w,

1. M E E;(ak,,ax,) si et seulement si N |= F;(bx, , bi, ) ;

2. ap, = ag, si et seulement si by, = by, .

Montrer que si @ € M est arbitrairement choisi alors il existe 8 € N tel que (ay,...,ak,«) et (by,..., bk, )
satisfassent les mémes conditions.

Réponse.

Ici, ce serait une bonne idée de faire un dessin pour comprendre ce qui se passe. Fixons deux k-uplets (a1, . .., ax)
et (b1,...,br) comme ci-dessus, puis prenons a € M. Pour simplifier la rédaction, supposons que les a; (et

donc les b;) sont deux a deux disctincts, notons a ~ b si F;(a,b) pour tout ¢ < w, et posons I = {i: a; ~ a}, et
traitons tout d’abord le cas ot I est non vide. Puisque AV est riche, il existe un élément 3 qui soit ~ & chacun
des b; (i € I) et distinct des b; ; un tel 3 satisfait les conditions recherchées.

Si maintenant I est vide, alors pour tout j € {1,...,k} il existe un plus petit i; tel que —(a;E;;a); il est
facile (mais un peu fastidieux!) de se convaincre que ’on peut trouver 8 comme dans ’énoncé (raisonnez par
exemple par récurrence sur k).

5. Déduire du point (4) par une récurrence sur la complexité des formules que deux modéles riches de cardinaux
arbitraires sont élémentairement équivalents. Conclure que T' est une théorie compléte.
Réponse.



Soit M, N deux modéles riches. On va commencer par montrer que si (ai,...,ax), (b1,...,b;) sont comme
au point 4 et ¢(x1,...,x) est une formule, alors

(M= ¢lay,...,ax)) & N = by, ..., br)) -

Si ¢ est atomique, alors I’équivalence est claire ; elle donc aussi vraie pour toute formule sans quantificateurs.
L’équivalence est aussi clairement vraie si ¢ est de la forme —), ol ¥ satisfait 1’équivalence que ’on cherche &
établir.

Supposons maintenant que ¢ est de la forme 3xv(z1, ..., z,, ), ot ¢ satisfait ’équivalence que ’on cherche
a établir pour ¢. Alors, dire que M | ¢(aq,...,ar) signifie qu’il existe o € M tel que 'on ait M |
@(ay,...,ax,a). On peut alors trouver 5 € N tel que (ay,...,ar, ) et (by, ..., by, 3) satisfassent aux conditions

du point 4, et donc par récurrence
MEY(al,...,ap,a) SN EP(b, ..., b0, 0) .

On en déduit bien I’équivalence annoncée ; en particulier, si ¢ est sans variables libres (c’est-a-dire si ¢ est un
énonceé) alors on voit que

ME¢) e NE9) .

Ceci prouve que deux modéles riches sont élémentairement équivalents; notez que pour prouver ¢a on a di
raisonner sur les formules, et pas seulement sur les énoncés (la raison étant que par exemple un énoncé peut
étre de la forme Jzé(z), o ¢ est une formule, et qu’on a besoin d’avoir étudié ¢ pour pouvoir conclure).

On a vu précédemment que tout modéle de T a une extension élémentaire riche; par conséquent, tous les
modeéles de T' sont élémentairement équivalents, et donc T est une théorie compléte.

6. Montrer qu’il n’y a & isomorphisme prés qu’un seul modéle riche dénombrable.

Réponse.

Sans surprise, on va utiliser la méthode de va-et-vient, en utilisant le résultat établi au point 4. Soit M, N
deux modéles riches dénombrables, et soit (myg), (ng) des énumérationsde M, N.

En utilisant le résultat du point 4, on peut construire deux suites finies (ax) € MY, (by) € NN telles que

- Vkmy € {a1,...,a}

— Vkng € {bl, . ,b2k+1}

- Vk (a1,...,a) et (by,...,by) satisfont les conditions du point 4.

Le premier point assure que M = {a;} tandis que le deuxiéme garantit que N = {b;}; on peut maintenant
considérer Papplication f: M — N définie par f(ax) = b. D’aprés ce qui a été prouvé au point 5, pour toute
formule ¢(x1,...,x) et tout iy,...,i; on a

M ':¢(ai1,...,a,»k)@./\/):gb(bil,...,bik) .

En particulier, f est un isomorphisme de M sur N.

7. Montrer que T élimine les quantificateurs : pour toute formule ¢(x1,...,x;) (I € N*) du premier ordre a
exactement | variables dans le langage L, il existe une formule ¥ (z1,...,x;) avec les mémes variables libres
telle que T' + (V;L‘l cexpp(e, . m) o o, .., @)

Réponse.

En termes savants, on a montré dans les points précédents qu’un type est complétement déterminé par ses
formules sans quantificateurs ; moralement, cela doit permettre de démontrer que la théorie élimine les quan-
tificateurs.

On va suivre un schéma général de preuve qu’une théorie élimine les quantificateurs. Soit ¢(x1,...,x;) une
formule (I > 1) & exactement [ variables dans le langage £ ; posons

D(xz1,...,2) = {¢¥(x1,...,2;): ¥ est sans quantificateurs et T+ Vaq, ..., 21 d(x1,...,21) — ¥(x1,...,21)} .

Ajoutons [ symboles de constante dy, . .., d; & notre langage ; on va montrer que TUI'(dy, ..., d;) = ¢(dy, ..., dy).
Par compacité ceci impliquera qu’il existe ¥1(d), ..., ¥, (d) € T'(d) telles que

TU{1(d), ..., ¥m(d)} - o(d) .



Alors il est facile de vérifier que

T vz N\ () < ¢() -
i=1
Pour conclure, on doit donc montrer que T UT'(d) F ¢(d). B B
Raisonnons par I’absurde : si ce n’est pas le cas, il existe un modele M de T'UT'(d) U {=¢(d)}. Appelons
¥(d) ensemble des formules sans quantificateurs 1 (d) telles que M |= 1(d); si T'U X(d) U {¢(d)} n’est pas
satisfaisable, il existe ¢ (d), ..., ¥, (d) sans quantificateurs telles que

Tt vz (/\ bi(@) — wb(x)) -

i=1

Autrement dit,
T+vz ((b(:(;) —\/ ﬁzbi(x)) .
=1

Ceci signifie que \/[_; =9;(d) € I'(d), et cela est impossible puisque cette formule n’est pas réalisée dans M
qui est censé étre un modeéle de I'(d).

Par conséquent, il doit exister aussi un modéle N de T'U X(d) U {¢(d}; pour simplifier la notation, posons
(a1, a;) = (@M, ..., dM) et (by,...,b) = (dY,...,dV). Alors (a1,...,a;) et (by,...,b) satisfont exacte-
ment les mémes formules sans quantificateurs (& savoir les formules de ¥(d), qui est un ensemble consistant
maximal de formules sans quantificateurs). Mais alors on sait que (a1,...,a;) et (b1,...,b;) devraient satisfaire
exactement les mémes formules (en utilisant le point 5 et le fait que tout modéle a une extension élémentaire

riche), et ce n’est bien sir pas le cas, ce qui est une contradiction.

8. Montrer qu’un modéle de T est riche si et seulement s’il est w-saturé.
Répomnse : Sera donnée par vous...



