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I. Soit T une théorie complète. Montrer que si T a un modèle �ni alors tous les modèles de T sont isomorphes.
Le résultat est-il encore vrai si l'on ne suppose pas que T est complète ?
Correction.
L'énoncé "la structure M a au plus n éléments" est un énoncé du premier ordre :

∀x1, . . . , xn


 ∨

1≤i<j≤n

xi = xj




Par conséquent, si cet énoncé est vrai dans un modèle de T alors il est vrai dans tout modèle de T (puisque
T est complète). Autrement dit, si T est une théorie complète qui a un modèle �ni alors tous les modèles de
T sont �nis. Vous avez vu en cours que deux structures �nies élémentairement équivalentes sont isomorphes ;
comme par dé�nition tous les modèles d'une même théorie complète sont élémentairement équivalents, on en
déduit que tous les modèles de T sont isomorphes.

II. Montrer que la théorie des corps in�nis n'est pas complète.
Correction.
Rappelons que le langage des corps contient les constantes 0 et 1 ; l'énoncé "∀xx2 + 1 6= 0" est vrai dans R
mais faux dans C, ce qui prouve que ni cet énoncé ni sa négation n'appartiennent à la théorie des corps in�nis,
par conséquent celle-ci n'est pas complète.

III. Donner un exemple de stuctures M et N telles que M soit une sous-structure de N mais ne soit pas
élémentairement équivalente à N .
Correction.
Considérons par exemple le langage L = {=} et les deux L-structuresM = {0}, N = N. Alors M est bien sûr
une sous-structure de N ; mais M et N ne sont pas élémentairement équivalentes, puisque l'énoncé "il existe
deux éléments distincts" est vrai dans N et faux dans M.
Peut-être plus intéressant : on peut aussi fournir un exemple de structures M, N telles que M soit une sous-
structure de N , M et N soient élémentairement équivalentes (et même isomorphes !) mais M ne soit pas une
sous-structure élémentaire de N . Par exemple, considérons le langage L avec une relation binaire < et les deux
L structures M = (Q∩] − ∞, 0], <) et N = (Q∩] − ∞, 1], <), où < désigne l'ordre usuel de R. Il est bien
clair que ces deux structures sont isomorphes, et queM est une sous-structure de N . Considérons maintenant
l'élément 0 ; dans M il satisfait la formule ∀y (y < x ∨ y = x), tandis qu'il ne satisfait pas cette formule dans
N .

IV. Montrer qu'une théorie T qui a des modèles �nis arbitrairement grands a un modèle in�ni.
Correction.
Pour tout n ∈ N∗ considérons l'énoncé En suivant :

∃x1, . . . , xn


 ∧

1≤i<j≤n

xi 6= xj


 .

Maintenant, appelons E la famille d'énoncés {En : n ∈ N∗}. Par hypothèse, tout fragment �ni de E est réalisé
dans un modèle de T ; par conséquent, le théorème de compacité assure qu'il existe un modèle de T dans lequel
tous les énoncés de E sont réalisés, et donc il existe un modèle in�ni de T .

V. Soit T la théorie de N = (N, 0, 1, +). Montrer qu'il existe un modèle de T qui étend élémentairement
(N, 0, 1, +) ayant un élément a non nul et divisible par tous les entiers standard non nuls.
Correction.
Il s'agit encore là d'une application directe du théorème de compacité et de la méthode des diagrammes :



notons L+ le langage {0, 1,+, {cm}m≥2, d} où les cm et d sont des symboles de constante. Nous dé�nissons

T+ = Th((N ,m)m≥2) ∪ {∃x(x + . . . + x︸ ︷︷ ︸
m fois

= d) | m ∈ N∗} ∪ {d 6= 0} .

Par compacité, T+ est un ensemble consistant d'énoncés. Exercez-vous à écrire les détails du raisonnement. Un
modèle de T+, après réduction au langage L sera alors une extension élémentaire de N contenant un élément
divisible par tous les entiers naturels non nuls.

VI. Soit L = {Pi : i < ω}, où les Pi sont des relations unaires. On note T la théorie qui dit que les Pi sont deux
à deux disjoints et que chaque Pi est in�ni. Montrer que T n'est κ-catégorique pour aucun cardinal κ > ℵ0 et
que T est complète.

Correction.
Un modèle de T de cardinal κ est exactement la donnée d'une partition d'un ensemble de cardinal κ en ℵ0

parties in�nies. Un isomorphisme entre deux modèles de T M1, M2 est exactement une bijection de M1 sur
M2 qui envoie chaque membre de la partition de M1 sur un membre de la partition de M2. Si κ est non
dénombrable, alors on peut partitionner κ en ℵ0 parties de cardinal κ, et on peut aussi partitionner κ en ℵ0

parties dont l'une est de cardinal ℵ0. Comme une bijection préserve le cardinal ( !) ceci montre qu'il existe des
modèles de T de cardinal κ et non isomorphes.
Par contre, deux modèles de T de cardinal ℵ0 sont isomorphes (à une partition de N en ℵ0 ensembles in�nis
disjoints), ce qui prouve que T est ℵ0-catégorique et donc complète (le corollaire 6.2.2 des notes de cours)
(puisque notre langage est dénombrable).

Le corrigé de l'exercice suivant sera un peu rapide ; n'hésitez pas à me poser des questions si certains points
restent obscurs !

VII. Nous considérons un langage L comprenant une in�nité dénombrable de symboles de relations binaires :
L = {Ei|i < ω}.
1. Ecrire les énoncés qui disent que pour tout i < ω, Ei est une relation d'équivalence, que E0 n'a qu'une seule
classe et que les classes de Ei+1 sont obtenues en divisant chaque Ei-classe en exactement deux classes in�nies.
Réponse.
Dire que Ei est une relation d'équivalence se fait (par exemple) avec les trois énoncés suivants :
� ∀x Ei(x, x) ;
� ∀x, y (Ei(x, y) → Ei(y, x)) ;
� ∀x, y, z (Ei(x, y) ∧ Ei(y, z) → Ei(x, z)).
(On a successivement écrit que Ei est ré�exive, symétrique, et transitive)
Dire que E0 n'a qu'une seule classe s'écrit :
� ∀x, y E0(x, y) .
En�n, la dernière condition s'obtient en combinant les trois familles d'énoncés suivants (qu'on pourrait bien
sûr condenser en une seule en mettant des "et" !), paramétrées par i ∈ N :
� ∀x, y (Ei+1(x, y) → Ei(x, y)) ;
� ∀x ∃y, z (Ei(x, y) ∧ Ei(x, z) ∧ ¬Ei+1(y, z)) ;
� ∀x1, x2, x3

(∧
1≤i,j≤3 Ei(xi, xj) →

∨
1≤i 6=j≤3 Ei+1(xi, xj)

)
.

(On a dit successivement que toutes les classes de Ei+1 sont contenues dans les classes de Ei, que chaque Ei-
classe contient au moins deux Ei+1-classes distinctes, et qu'une Ei-classe ne peut pas contenir trois Ei+1-classes
distinctes).

2. Montrer que la structure suivante est un modèle dénombrable des énoncés du premier point :

M0 = ({f ∈ 2ω|il existe i < ω tel que pour tout j ≥ i, f(i) = f(j). } ;Ei(x1, x2) (i < ω)) ,

où pour tout i ∈ ω, (σ1, σ2) ∈ EM0
i si et seulement si σ1di = σ2di.



Le point 2 montre que les énoncés du premier point forment un ensemble consistant. Ces énoncés et leurs
conséquences seront notés T .

Réponse.
C'est une véri�cation directe qui ne devrait poser aucune di�culté.

3. Nous dirons qu'on modèle M de T est riche si pour tout σ ∈ M il existe une in�nité de θ ∈ M tel
que M |= Ei(σ, θ) pour tout i < ω. Nous montrerons que deux modèles riches de T sont élémentairement
équivalents.
Comme vous connaissez la notion d'extension élémentaire et que vous aurez vu la preuve du théorème de
Löwenheim-Skolem ascendant avant d'aborder cet exercice, démontrez l'énoncé suivant :

tout modèle de T a une extension élémentaire riche de même cardinal que lui.

Réponse.
Soit M un modèle de T ; comme d'habitude, pour construire une extension élémentaire de M on commence
par rajouter à notre langage un symbole de constante cm pour chaque élément de M . On veut ensuite assurer
que pour tout élément il existe une in�nité d'éléments qui lui soient Ei-équivalents pour tout i < ω ; rajoutons
encore à notre langage des constantes am,k (m ∈ M , k < ω) et considérons les énoncés suivants (paramétrés
par m ∈ M , i, k, k′ < ω avec k 6= k′) :

Ei(am,k, cm) ∧ (am,k 6= am,k′) .

Les fragments �nis de cette famille d'énoncés sont tous consistants avec la théorie T (M+) de notre structure
M dans ce langage augmenté ; par compacité on en déduit qu'il existe un modèle N+ de cette théorie. Quand
on considère le réduit de N+ à notre langage de départ, on obtient une extension élémentaire N de M dans
laquelle pour chaque élément m de M il existe une in�nité d'éléments de N qui soient Ei-équivalents à m
pour tout i < ω. On peut poser N = M1, et appliquer la même construction à M1 pour obtenir une nouvelle
extension élémentaire M2, et ainsi de suite ; en bout de chaîne, en posant M∞ =

⋃Mi, on obtient une
extension élémentaire riche de M.

4. Cette étape est une illustration de la méthode de va-et-vient en utilisant un modèle riche. Plus précisément
nous e�ectuerons un �va�, le �vient� étant symétrique. Soient M et N deux modèles dont N est riche. Fixons
k ∈ N, supposons que (a1, . . . , ak) et (b1, . . . , bk) soient deux k-uplets extraits de M et N respectivement et
soumis aux conditions suivantes : pour toute paire (k1, k2) avec 1 ≤ k1, k2 ≤ k , pour tout i < ω,

1. M |= Ei(ak1 , ak2) si et seulement si N |= Ei(bk1 , bk2) ;
2. ak1 = ak2 si et seulement si bk1 = bk2 .

Montrer que si α ∈ M est arbitrairement choisi alors il existe β ∈ N tel que (a1, . . . , ak, α) et (b1, . . . , bk, β)
satisfassent les mêmes conditions.
Réponse.
Ici, ce serait une bonne idée de faire un dessin pour comprendre ce qui se passe. Fixons deux k-uplets (a1, . . . , ak)
et (b1, . . . , bk) comme ci-dessus, puis prenons α ∈ M . Pour simpli�er la rédaction, supposons que les ai (et
donc les bi) sont deux à deux disctincts, notons a ∼ b si Ei(a, b) pour tout i < ω, et posons I = {i : ai ∼ α}, et
traitons tout d'abord le cas où I est non vide. Puisque N est riche, il existe un élément β qui soit ∼ à chacun
des bi (i ∈ I) et distinct des bi ; un tel β satisfait les conditions recherchées.
Si maintenant I est vide, alors pour tout j ∈ {1, . . . , k} il existe un plus petit ij tel que ¬(ajEij α) ; il est
facile (mais un peu fastidieux !) de se convaincre que l'on peut trouver β comme dans l'énoncé (raisonnez par
exemple par récurrence sur k).

5. Déduire du point (4) par une récurrence sur la complexité des formules que deux modèles riches de cardinaux
arbitraires sont élémentairement équivalents. Conclure que T est une théorie complète.
Réponse.



Soit M, N deux modèles riches. On va commencer par montrer que si (a1, . . . , ak), (b1, . . . , bk) sont comme
au point 4 et φ(x1, . . . , xk) est une formule, alors

(M |= φ(a1, . . . , ak)) ⇔ (N |= φ(b1, . . . , bk)) .

Si φ est atomique, alors l'équivalence est claire ; elle donc aussi vraie pour toute formule sans quanti�cateurs.
L'équivalence est aussi clairement vraie si φ est de la forme ¬ψ, où ψ satisfait l'équivalence que l'on cherche à
établir.
Supposons maintenant que φ est de la forme ∃xψ(x1, . . . , xn, x), où ψ satisfait l'équivalence que l'on cherche
à établir pour φ. Alors, dire que M |= φ(a1, . . . , ak) signi�e qu'il existe α ∈ M tel que l'on ait M |=
φ(a1, . . . , ak, α). On peut alors trouver β ∈ N tel que (a1, . . . , ak, α) et (b1, . . . , bk, β) satisfassent aux conditions
du point 4, et donc par récurrence

M |= ψ(a1, . . . , ak, α) ⇔ N |= ψ(b1, . . . , bk, β) .

On en déduit bien l'équivalence annoncée ; en particulier, si φ est sans variables libres (c'est-à-dire si φ est un
énoncé) alors on voit que

(M |= φ) ⇔ (N |= φ) .

Ceci prouve que deux modèles riches sont élémentairement équivalents ; notez que pour prouver ça on a dû
raisonner sur les formules, et pas seulement sur les énoncés (la raison étant que par exemple un énoncé peut
être de la forme ∃xφ(x), où φ est une formule, et qu'on a besoin d'avoir étudié φ pour pouvoir conclure).
On a vu précédemment que tout modèle de T a une extension élémentaire riche ; par conséquent, tous les
modèles de T sont élémentairement équivalents, et donc T est une théorie complète.

6. Montrer qu'il n'y a à isomorphisme près qu'un seul modèle riche dénombrable.
Réponse.
Sans surprise, on va utiliser la méthode de va-et-vient, en utilisant le résultat établi au point 4. Soit M, N
deux modèles riches dénombrables, et soit (mk), (nk) des énumérationsde M , N .
En utilisant le résultat du point 4, on peut construire deux suites �nies (ak) ∈ MN, (bk) ∈ NN telles que
� ∀k mk ∈ {a1, . . . , a2k}
� ∀k nk ∈ {b1, . . . , b2k+1}
� ∀k (a1, . . . , ak) et (b1, . . . , bk) satisfont les conditions du point 4.
Le premier point assure que M = {ak} tandis que le deuxième garantit que N = {bk} ; on peut maintenant
considérer l'application f : M → N dé�nie par f(ak) = bk. D'après ce qui a été prouvé au point 5, pour toute
formule φ(x1, . . . , xk) et tout i1, . . . , ik on a

M |= φ(ai1 , . . . , aik
) ⇔ N |= φ(bi1 , . . . , bik

) .

En particulier, f est un isomorphisme de M sur N .

7. Montrer que T élimine les quanti�cateurs : pour toute formule φ(x1, . . . , xl) (l ∈ N∗) du premier ordre à
exactement l variables dans le langage L, il existe une formule ψ(x1, . . . , xl) avec les mêmes variables libres
telle que T ` (∀x1 . . . xl ψ(x1, . . . , xl) ↔ φ(x1, . . . , xl)).
Réponse.
En termes savants, on a montré dans les points précédents qu'un type est complètement déterminé par ses
formules sans quanti�cateurs ; moralement, cela doit permettre de démontrer que la théorie élimine les quan-
ti�cateurs.
On va suivre un schéma général de preuve qu'une théorie élimine les quanti�cateurs. Soit φ(x1, . . . , xl) une
formule (l ≥ 1) à exactement l variables dans le langage L ; posons

Γ(x1, . . . , xl) = {ψ(x1, . . . , xl) : ψ est sans quanti�cateurs et T ` ∀x1, . . . , xl φ(x1, . . . , xl) → ψ(x1, . . . , xl)} .

Ajoutons l symboles de constante d1, . . . , dl à notre langage ; on va montrer que T∪Γ(d1, . . . , dl) ` φ(d1, . . . , dl).
Par compacité ceci impliquera qu'il existe ψ1(d), . . . , ψm(d) ∈ Γ(d) telles que

T ∪ {ψ1(d), . . . , ψm(d)} ` φ(d) .



Alors il est facile de véri�er que

T ` ∀x
n∧

i=1

ψi(x) ↔ φ(x) .

Pour conclure, on doit donc montrer que T ∪ Γ(d) ` φ(d).
Raisonnons par l'absurde : si ce n'est pas le cas, il existe un modèle M de T ∪ Γ(d) ∪ {¬φ(d)}. Appelons
Σ(d) l'ensemble des formules sans quanti�cateurs ψ(d) telles que M |= ψ(d) ; si T ∪ Σ(d) ∪ {φ(d)} n'est pas
satisfaisable, il existe ψ1(d), . . . , ψn(d) sans quanti�cateurs telles que

T ` ∀x
(

n∧

i=1

ψi(x) → ¬φ(x)

)
.

Autrement dit,

T ` ∀x
(

φ(x) →
n∨

i=1

¬ψi(x)

)
.

Ceci signi�e que
∨n

i=1 ¬ψi(d) ∈ Γ(d), et cela est impossible puisque cette formule n'est pas réalisée dans M
qui est censé être un modèle de Γ(d).
Par conséquent, il doit exister aussi un modèle N de T ∪ Σ(d) ∪ {ϕ(d} ; pour simpli�er la notation, posons
(a1, . . . , al) = (dM1 , . . . , dMl ) et (b1, . . . , bl) = (dN1 , . . . , dNl ). Alors (a1, . . . , al) et (b1, . . . , bl) satisfont exacte-
ment les mêmes formules sans quanti�cateurs (à savoir les formules de Σ(d), qui est un ensemble consistant
maximal de formules sans quanti�cateurs). Mais alors on sait que (a1, . . . , al) et (b1, . . . , bl) devraient satisfaire
exactement les mêmes formules (en utilisant le point 5 et le fait que tout modèle a une extension élémentaire
riche), et ce n'est bien sûr pas le cas, ce qui est une contradiction.

8. Montrer qu'un modèle de T est riche si et seulement s'il est ω-saturé.
Réponse : Sera donnée par vous...


