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1. Introduction

In this course we will discuss applications of the Model theory to
Algebraic geometry and Analysis. There is long list of examples and I
mention only some of applications:

1) Tarski (see [T]) proved the elimination of quantifiers in the theory
of real closed fields. The following statement used by Hormander in
his works on differential equations is a corollary of the Tarski’s result

For any polynomial P (x) ∈ R[x1, ..., xn] there are positive constants
c, r such that

|P (x)| ≥ c|x− Z(P )|r, ∀x ∈ Rn, |x| ≤ 1

where Z(P ) ⊂ Rn is the set of zeros of P and |x| =
√
x2

1 + ... + x2
n.

2) Ax (see [A]) used the Model theory for the proof of the following
result:

Let X be a complex algebraic variety, f : X → X a regular map
which is an imbedding. Then f is onto .

3) Ax and Kochen (see [AK]) have shown that for any n ∈ N there
exists s(n) ∈ N such that for any prime number p > s(n) any homoge-
neous polynomial equation
P (x0, ..., xn2) = 0, where P ∈ Qp[x0, ..., xn2] is a polynomial of degree

n, has a non-zero solution.

d) In works of Denef ([D1]), Loeser and Cluckers [CL]) the Model
theory is used to obtain new results about p-adic integrals and their
”motivic” generalizations.

In spite of it successes, the Model theory did not enter into a ”tool
box” of mathematicians and even many of mathematicians working on
”Motivic integrations” are content to use the results logicians without
understanding the details of the proofs.

I don’t know any mathematician who did not start as a logician and
for whom it was ”easy and natural ” to learn the Model theory. Often
the experience of learning of the Model theory is similar to the one of
learning of Physics: for a [short] while everything is so simple and so
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easily reformulated in familiar terms that ”there is nothing to learn”
but suddenly one find himself in a place when Model theoreticians
”jump from a tussock to a hummock” while we mathematicians don’t
see where to ”put a foot” and are at a complete loss.

So we have two questions:
a) Why is the Model theory so useful in different areas of Mathe-

matics?
b) Why is it so difficult for mathematicians to learn it ?

But really these two questions are almost the same- it is difficult
to learn the Model theory since it appeals to different intuition. But
exactly this new outlook leads to the successes of the Model theory.

One difficultly facing one who is trying to learn Model theory is
disappearance of the ”natural” distinction between the formalism and
the substance. For example the fundamental existence theorem says
that the syntactic analysis of a theory [ the existence or non- existence
of a contradiction] is equivalent to the semantic analysis of a theory [
the existence or non- existence of a model].

The other novelty is related to a very general phenomena. A math-
ematical object never comes in a pure form but always on a definite
background. Finding a new way of constructions usually lead to sub-
stantial achievements.

For example, a differential manifold is ”something” which is locally
like a ball. But we almost never construct a differential manifold X
by gluing it from balls. For a long time the usual way to construct
a differential manifold X was to realize it at a subvariety of a simple
manifold M [ a sphere, a projective space e.t.c].

A substantial progress in topology in the last 20 years comes from
a ”simple observation” due to physicists one can realize a differential
manifold X as quotient of an ”infinite-dimensional submanifold” Y
of a ”simple” infinite-dimensional manifold M . For example Donald-
son’s works on the invariants of differential 4-manifolds are based on
the consideration of the moduli space of self-dual connections which
is the quotient of the ”infinite-dimensional submanifold” self-dual con-
nections by the gauge group.

This tension between an abstract definition and a concrete construc-
tion is addressed in both the Category theory and the Model theory.
The Category theory is directed to a removal of the importance of a
concrete construction. It provides a language to compare different con-
crete construction and in addition provides a very new way to construct
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objects as ”representable functors” which allows to construct objects
internally. This construction is based on the Yoneda’s lemma which I
consider to be most important result of the Category theory.

On the other hand, the Model theory is concentrated on gap between
an abstract definition and a concrete construction. Let T be a complete
theory. On the first glance one should not distinguish between different
models of T , since all the results which are true in one model of T are
true in any other model. One of main observations of the Model the-
ory says that our decision to ignore the existence of differences between
models is too hasty. Different models of complete theories are of differ-
ent flavors and support different intuitions. So an attack on a problem
often starts which a choice of an appropriate model. Such an approach
lead to many non-trivial techniques for constructions of models which
all are based on the compactness theorem which is almost the same as
the fundamental existence theorem.

On the other hand the novelty creates difficulties for an outsider who
is trying to reformulate the concepts in familiar terms and to ignore
the differences between models.

In addition to these general consideration there are concrete reasons
to use Model theory for the ”Motivic integration”. What is an inte-
gration? Let C be the category of pairs (X,µ) where X is an oriented
n-manifold, µ is a smooth absolutely integrable R-valued measure on
X. If (X ′, µ′) is another such pair we write

(X,µ) ∼ (X ′, µ′)

if there exists disjoint open subsets Ui ⊂ X,U ′
i ⊂ X ′, 1 ≤ r such that

a) for any i, 1 ≤ r there exists a diffeomorphism fi : Ui → U ′
i such

that f ∗
i (µ

′) = µi and
b) the complements X−∪iUi, X

′−∪iU
′
i are contained in subvarieties

of dimension n− 1 .

Let K(C) the quotient of the free abelian group generated by equiv-
alence classes [(X,µ)] of pairs (X,µ) by the relation

[(X,µ)] + [(X,µ′)] = [(X,µ+ µ′)]

The theory of integration says that the natural map

(X,µ) →

∫

X

µ

defines an isomorphism K(C) → R. In other words one can say that a
construction of the theory of integration is equivalent to the computa-
tion of the group K(C).
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Let F be a valued field with a valuation v : F ∗ → Γ. [For example we
can take F = C((t)) be the field of formal Laurent series over C,Γ = Z
and v(f), f ∈ F ∗ to be the order of f at 0.] One consider the category
CF (n) of v-varieties subsetsX of F n which are defined by a finite system
of polynomial inequalities v(P (x1, ..., xn)) > γ, γ ∈ Γ. Let K(CF )(n)
be the quotient of the free abelian group generated by isomorphism
classes [X] of objects CF (n) of by the relation [X] + [Y ] = [X ∪ Y ]
where [X ∪ Y ] is the isomorphism class of the disjoint union of X and
Y . One of the questions in the theory of ”Motivic integration” is the
computation of the group K(CF )n.

Why is Model theory useful for the study of the group K(CF )n?
It is very convenient reduce the study of the groupK(CF )n to the case

of curves when n = 1. For such a reduction one has to consider fibers
of the restriction to X ⊂ F n of the natural projection p : F n → F n−1

over different ”points” of F n−1.
In the familiar case of Algebraic geometry when one studies n-dimensional

algebraic varieties through the projections p onto n−1-dimensional va-
rieties, it is important to consider fibers of p not only over geometric
points of the base Y but also over the generic point of Y .

In the case when the valuation is not trivial we have to consider
fibers of p over an wider set of ”points”. And one needs the Model
theory to define such points and to be able to talk about fibers of these
points.

Now I’ll start the second part of my introduction to the course and
present the basic concepts of the Model theory. One of many problems
one faces while learning this theory is the necessity to remember a
number of definitions. I wrote a relatively short list of them and also
a couple of problems to play with these definitions. If these concepts
are unfamiliar then it takes an effort to remember the definitions and
it is almost impossible to grasp them on the first attempt. Please put
efforts into playing with the definitions.

2. Basic definitions

Similarity types of Structure .

Definition 2.1. D:structure a) A similarity type τ is a 5-tuple

< I, J,K, n,m >

where I, J,K are sets and n : I → N, m : J → N are maps.
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b) A structure M of similarity type τ consists of
(i) A non-empty set U called the universe of M ,
(ii) A family of n(i)-relations {RM

i ⊂ Un(i), i ∈ I},
(iii) A family of m(j)-functions {fMj : Um(j) → U}, j ∈ J and

(iv) A subset of distinguished elements {cMk ∈ U, k ∈ K}.

We will write R(a1, ..., an) instead of < a1, ..., an >∈ R.

c) We denote by U0(M) for the minimal substructure of M . So U0

consists of constants, evaluations of functions fMj on the constants,
evaluations of these functions on the previously constructed subset of
M and so on. In particular U0 is empty if K = ∅.

d) We will always assume that our types contain a 2-placed relation
= and will not mention this symbol explicitely when defining a type.

e) For the simplicity of the exposition we will assume that our struc-
tures are infinite.

f) We denote by U⋆(M) the union ∪∞
n=1U

n(M)

Example 2.2. E:f Consider a similarity type τ when

I = ∅, J = {+,−,×}, K = {0, 1}, m(+) = m(×) = 2, m(−) = 1

Then a τ -structure has form

M =< U,+,−,×, 0, 1 >

where U is a set, +,× are 2-place functions on U , − is a 1-place function
on U , and 0, 1 are distinguished elements of U . The concept of field
can be formulated in terms of M but U need not be a field since the the
functions and distinguished elements of M need not satisfy the axioms
of fields.

First order languages.
To any similarity type τ one associates a language Lτ .

Definition 2.3. D:language a) The primitive symbols of Lτ are
(i) variables x1, ..., xn
(ii) logical symbols ∧ (and),¬(negation), ∃
(iii) n(i)-place relation symbol Ri, i ∈ I
(iv) m(j)-place functional symbol fj , j ∈ J
(v) constants ck, k ∈ K.

b) The terms of Lτ are generated by two rules:
(i) all variables and constants are terms,
(ii) if fj is an m-place functional symbol and t1, ..., tm are terms then

f(t1, ..., tm) is a term.
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c) The atomic formulas of Lτ are defined by the following inductive
rules-

(i) if t1, t2 are terms then t1 = t2 is an atomic formula,
(ii) if Ri is an n-place relation symbol and t1, ..., tm are terms then

then R(a1, ..., an) is an atomic formula.

d) The formulas of Lτ are generated by three rules:
(i) every atomic formula is a formula,
(ii) if ψ, φ are formulas then ¬ψ and ψ ∧ φ are formulas,
(iii) if ψ is a formula, xs a variable then ∃xsψ is a formula.

e) The notion of free variables in a formula is defined by the induction
on the number of steps needed to generate the formula:

(i) if ψ is atomic and xs occurs in ψ then xi is a free variable,
(ii) if xs is a free variable of ψ and t 6= s then xs is a free variable of

∃xtψ,
(iii) if xs is a free variable of ψ then it is a free variable of ¬ψ and

ψ ∧ φ.

In other words the only way to kill a free variable xs of ψ is to prefix
ψ by ∃xs.

f) If t is a term such that all it’s free variables are from x1, ..., xr
then for any u1, ..., ur ∈ U the value tM [u1, ..., ur] ∈ U of a term t at
(u1, ..., ur) is defined as follows

(i) if tM = xi then tM [u1, ..., ur] = ui,
(ii) if t is a constant symbol ck, k ∈ K then tM [u1, ..., ur] = cMk ,
(iii) if t = f(t1, ..., tm) where f is an m-placed function symbol then
tM [u1, ..., ur] = fM(tM1 [u1, ..., ur], ..., t

M
m [u1, ..., ur]).

g) A sentence is a formula without free variables.

h) A formula is open if it contains no expression of the form ∃x.

i) The cardinality of Lτ is the cardinality of the set of all formulas
of Lτ .

Remark 2.4. a) We will often use abbreviations
ψ ∨ φ := ¬(¬ψ ∧ ¬φ) (or ),ψ → φ := ¬ψ ∨ φ (follows), and
∀xiψ := ¬∃xi¬ψ

b) if x is not a free variable in a formula ψ we will identify ψ with
the formula obtained by the replacement of x by any other variable. In
particular we can assume that names of non-free variables are different
from names of free variables. �.
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Let M be a structure of the similarity type τ with the universe U
and φ be a formula of Lτ with free variables x1, ..., xr. For a sequence
u1, ..., ur ∈ U we will now define the predicate

φ is satisfied by (u1, ..., ur) in M

which we denote M |= φ(u1, ..., ur).

The definition this predicate is also by the induction on the length
of a formula.

Definition 2.5. D:model (i) if φ is an atomic formula t1 = t2 where
t1, t2 are terms then
M |= φ(u1, ..., ur) iff tM1 [u1, ..., ur] = tM2 [u1, ..., ur],
(ii) if φ is an atomic formula R(t1, ..., tn) where R is an n-place rela-

tion and ti(x1, ..., xr), 1 ≤ i ≤ n are terms then
M |= φ(u1, ..., ur) iff RM(tM1 (u1, ..., ur), ..., t

M
n (u1, ..., ur)).

(iii) if φ = θ1 ∧ θ2 then
M |= φ(u1, ..., ur) iff both M |= θ1(u1, ..., ur) and M |= θ2(u1, ..., ur),
(iv) if φ = ¬θ then
M |= φ(u1, ..., ur) iff θ is not satisfied by u1, ..., ur in M ,
(v) if ψ is a formula and xi is a free variable of ψ, φ := ∃xi

ψ then
M |= φ(u1, ..., ur) iff there exists u ∈ U such that

M |= ψ(u1, ..., ui−1, u, ui+1, ..., ur)�

Definition 2.6. D:model1 (a) If ψ is a formula with free variables
x1, ..., xr then for any τ - structure M we define

ψ(M) = {(u1, ..., ur) ∈ U r|M |= ψ(u1, ..., ur)}

(b) if ψ is a formula, x1, ..., xr be variables and t1, ..., tr are terms of L
we denote by ψx1,...,xr

[t1, ...tr] the formula obtained by the substitution
of ti for xi, 1 ≤ i ≤ r.

(c) we say that two sentences φ, φ′ of Lτ are equivalent if for any
τstructure M we have M |= φ↔ M |= φ′.

(d) we say that two structures M,M ′ of the same type τ are ele-
mentary equivalent iff for any sentence ψ of Lτ we have M |= ψ iff
M ′ |= ψ.�

Remark 2.7. a) Since by our assumptions = is a part of the relations
of τ the atomic formula φ = [x1 = x2] is a part of L and M |= φ(u1, u2)
iff u1 = u2.

b) We will not distinguish equivalent sentences.
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c) all sentences ψ ∧ ¬ψ where ψ is a sentence of Lτ are equivalent.
We denote this equivalence class ”false” of sentences by ⊥.

Problem 2.8. P:min The universe U0(M) of minimal substructure
U0 ⊂ M consists of elements tM where t runs through terms of Lτ
without free variables.

Theories and Models. If S is a set of sentences of a language Lτ
we can deduce new sentences of Lτ using the logical axioms

Definition 2.9. D:la (i) the propositional axioms: ψ ∨ ¬ψ for all
sentences ψ of Lτ ,

(ii) the substitutional axioms: ψx[t] → ∃xψ where t is any term and
ψ is a formula of Lτ for which x is a free variable,

(iii) the identity axiom [x = x]

(iv) the equality axioms

x = y → [t(x1, ..., xi−1, x, xi+1, ..., xn) = t(x1, ..., xi−1, y, xi+1, ..., xn)]

and

x = y → [φ((x1, ..., xi−1, x, xi+1, ..., xn)) → φ((x1, ..., xi−1, y, xi+1, ..., xn))]

Definition 2.10. D:theory Let S be a set of formulas of a language
L.

a) We say that a formula ψ of L is a logical consequence of S and
write S ⊢ ψ or ⊢S ψ if ψ is among the formulas generated from S by
the following rules

(i) if ψ ∈ S then S ⊢ ψ,

(ii) if S ⊢ ψ and S ⊢ [ψ → φ] then S ⊢ φ

(iii) if x is not free in ψ and S ⊢ [∀xφ→ ψ] then ⊢ [∃xφ→ ψ].

(iv) if S ⊢ ψi, 1 ≤ i ≤ r and ψ is a result of applying some logical
rules of inference to the sequence ψ1, ..., ψr.

b) We say that S is consistent if ⊥ is not a logical consequence of S.

c) A theory T is a consistent set of sentences of a language which
contains all it’s logical consequence.

d) If T consists of logical consequences of a set S of sentences we say
that S is a system of axioms of T and write T = T (S). If T is a theory
in the language L and R a set of sentences of L we denote by T (R) the
theory which consists of logical consequences of T ∪R.
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e) A model of a theory T is a structure M of the similarity type τ
such that every sentence in T is true in M ,

f) A theory T is complete if for every sentence φ of L, either φ or its
negation ¬φ belongs to T.�

Definition 2.11. D:const Let T be a theory of a type τ =< I, J,K, n,m >.
if k1, .., kr are constants which did not appear in τ we denote by

T [k1, ...kr] the theory of the type < I, J,K ∪ k1 . . .∪ kr, n,m > with T
as a set of axioms.

Remark 2.12. Even if a theory T is complete the theory T [k1, ...kr]
does not have to be complete.

Problem 2.13. P:const a) [ The Theorem on Constants]. For any
formula ψ of Lτ such that x1, . . . , xr are all the free variables of ψ.

⊢T ψ ↔⊢T [k1,..,kr] ψx1,...,xr
[k1, ...kr]

(see Definition 2.6 b)

b) If ψ, φ, ν are sentences such that T [ψ] ⊢ φ, then T ⊢ [ψ → φ].

c) If ψ, φ, ν are sentences such that S ⊢ [ψ → φ] →⊥ then S ⊢ ψ →
¬φ.

d) A theory T is complete iff all the models of T are elementary
equivalent.

Definition 2.14. D:sorts Sometimes we will consider similarity types
which consists of a family of “sorts” parameterized by a set Λ. Let
S(Λ) be the set of finite sequences of elements of Λ. For any λ̄ =
(λ0, ..., λn) ∈ S(Λ) we write [λ̄] = λ0, λ̄

′ = (λ1, ..., λn)

a) a Λ-similarity type is a 5-tuple

< I, J,K, n,m >

where I, J,K = ∪Kλ, λ ∈ Λ are sets and
n : I → S(Λ), m : J → S(Λ) are maps.

b) A structure M of similarity type τ consists of
(i) A non-empty sets Uλ, λ ∈ Λ called the universes of M ,

For any λ̄ = (λ1, ..., λn) ∈ S(Λ) we write U λ̄ = Uλ1 × ...× Uλn .

(ii) A family of relations {RM
i ⊂ Un(i), i ∈ I},

(iii) A family of functions {fMj : Um(j)′ → U[m(j)]}, j ∈ J and

(iv) A subset of distinguished elements {cMk ∈ Uλ, k ∈ Kλ}.�
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Examples 2.15. E:basic
a) Integral domains (ID) Let τ be the type as in 2.2. The theory

ID consists of following sentences
(1) ∀x, y, z [(x+ y) + z = x+ (y + z)]
(2) ∀x [x+ 0 = x]
(3) ∀x [x+ (−x) = 0]
(4) ∀x, y [x+ y = y + x]
(5) ∀x, y, z [(x× y) × z = x× (y × z)
(6) ∀x [x× 1 = x]
(7) ∀x, y[x, y 6= 0 → x× y 6= 0]
(8) ∀x, y [x× y = y × x]
(9) ∀x, y, z [(x× (y + z) = x× y + x× z]
(10) 0 6= 1

Models of ID are integral domains. For any such a model M the
minimal submodel U0(M) is the image of the natural homomorphism
Z →M

b) F fields (TF) The theory TF is the theory ID augmented by
the sentence
∀x 6= 0∃y[xy = 1]

Models of TF are fields and that substructures of such models are
subrings containing the unit element.

c) Algebraically closed fields (ACF).
The theory ACF is the theory TF augmented by following list of

sentences:

{⋆n}∀y1, ..., yn∃x|x
n + y1x

n−1 + ...+ yn = 0

Models of ACF are algebraically closed fields.

d) Linear ordering (LO). Consider a similarity type τ =< I, J,K, n,m >
where I = K = ∅, J = ⋆ and m(⋆) = 2. Then a τ -structure has a form

M =< X,≤>

where X is a set and < is a 2-place relation on X. We define LO as
the theory generated by the following three axioms

i) ∀x, y[x ≤ y ∨ y ≤ x],

ii) ∀x, y, z[x ≤ y ∧ y ≤ z → x ≤ z],

iii) ∀x, y[x ≤ y ∧ y ≤ x→ x = y].

e) Abelian groups (AG). Consider a structure

M =< Γ,+,−, 0 >
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where + is a 2-place function on Γ, − is a 1-place function on Γ, and
0 is a distinguished element of Γ.

Write a set of axioms such that models of the corresponding theory
AG are Abelian groups.

f) The theory OAG of Ordered Abelian groups is is the theory
AG augmented by a linear ordering ≤ and axiom

∀α, β, γ ∈ Γ, [α < β → α + γ < β + γ]
Models of OAG are ordered Abelian groups.

We denote by OAG+ the theory such that models of OAG+ have a
form Γ∪∞ where Γ is an ordered Abelian group, x <∞ for any x ∈ Γ
and x+ ∞ = ∞ for any x

g) ordered Abelian divisible groups (OADG). The theory OADG
is the theory OAG augmented by the axioms

⋆n = [∀x∃y : x = ny]

for all n ∈ N. Models of OADG are ordered abelian divisible groups.

h) Valued integral domains (VID).
In this case the similarity type τ =< I, J,K, n,m > has two sorts F

and Γ. More precisely

Λ = {F,Γ}, I = {<}, J = {+,−,×, +̄, −̄, <, v}K = KF∪KΓ, KF = {0, 1}, KΓ = {0̄,∞}

and

n(<) = (Γ,Γ), m(+) = m(×) = (F, F, F ), m(−) = (F, F ), m(+̄) = (Γ,Γ,Γ), m(−̄) = (Γ,Γ), m(v)

So a τ -structure M has a form

M = (F ∪ Γ,+,−,×, 0, 1, +̄, −̄, 0̄, <, v)

where (F,+,−,×, 0, 1) is a structure as in TF, (Γ, +̄, −̄, 0̄, < ∞) is a
structure of OAG+ and v is a 1-place function from F to Γ ∪∞.

We consider the theory which consists of sentences which say that
(F,+,−,×, 0, 1) is the theory (ID), (Γ, +̄, −̄, 0̄, >) is the theory (OAG)
augmented by axioms

∀x, y ∈ F [v(x× y) = v(x)+̄v(y)]

v(x+ y) ≥ min(v(x), v(y)), ∀x, y ∈ F ∗

v(x) = ∞ ↔ x = 0

We call Γ the valuation group of a valued fields F . When there
is no danger of mixing elements of Γ with the ones of F we will write
+,−, 0 instead of +̄, −̄, 0̄.

i) Valued fields (VF)
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The theory (V F ) is the theory (V ID) augmented by axioms of TF
for V

j) Algebraically closed valued fields (AVF)

The theory (AVF) is the theory (V ID) augmented by axioms of
ACF for V

and the axioms

∀γ ∈ Γ∃x ∈ F [v(x) = γ] and

∃γ 6= 0

Models of AV F are algebraically closed valued fields.

k) Show that for any algebraically closed valued field the that the
group Γ is uniquely divisible.

l) The theory OF of ordered fields (OF) is the theory (TF) aug-
mented by a 2-place symbol < and the following axioms

(1) ∀x [¬(x < x)]

(2) ∀x, y, z [x < y ∧ y < z → x < z]

(3) ∀x, y [x < y ∨ x = y ∨ y < x]

(4) ∀x, y [0 < x ∧ 0 < y → 0 < x× y]

(5) ∀x, y, z [x < y → x+ z < x+ y]

m) The theory of real closed fields (RCF) is the theory OF aug-
mented by axioms

(6) ∀x [0 < x, ∃y|x = y2]
(⋆n) for all odd n ∈ N.�

Problem 2.16. Find a model of (RCF ) different from R

Definition 2.17. D:mono Let τ be a similarity type andM a structure
of type τ .

a) A monomorphism ρ of M into another structure M ′ of type τ is
a map ρ : U(M) → U(M ′) such that

(i) RM
i (u1, ..., un) ↔ RM ′

i ρ((u1), ..., ρ(un)), ∀i ∈ I,

(ii) ρ(fMj (u1, ..., um)) = fM
′

j (ρ(u1), ..., ρ(um)), ∀j ∈ J ,

(iii) ρ(cMk ) = cM
′

k , ∀k ∈ K.



LOGIC 13

b) A monomorphism ρ : M → M ′ is elementary if for any formula
ψ(x1, ..., xr) and any (a1, ..., ar) ∈M we have

M |= ψx1,...,xr
[a1, ..., ar] ↔M ′ |= ψx1,...,xr

[a1, ..., ar]

In this case we say that M ′ is an elementary extension of M and write
M ≺M ′.

Remark 2.18. R:subst Since = [and therefore 6=] are part of the
language any monomorphism M → M ′ comes from an imbedding ρ :
U(M) → U(M ′)

Definition 2.19. D:direct a) A directed set is a partially ordered set
(I,≤) such that for any i, j ∈ I there exists k ∈ I such that i ≤ k and
j ≤ k.

b) A directed system of sets parametrized by a directed set (I,≤) is
a family Ui, i ∈ I of sets and maps mij : Ui → Uj , i, j ∈ I such that

i) mii = Id for all i ∈ I and

ii) mik = mjk ◦mij for all i ≤ j ≤ k ∈ I.

c) If {Ui, mij : Ui → Uj}, i, j ∈ I is directed system of sets we
define the direct limit U = lim

−→
Ui as the quotient of ∪i∈IUi×{i} be the

equivalence relation

(u′, i′) ∼ (u′′, i′′) ↔ ∃i ∈ I, i ≥ i′, i ≥ i′′, mi′i(u
′) = mi′′i(u

′′)

and denote by ρi : Ui → U the natural imbeddings.

d) A directed system of structures parametrized by a directed set
(I,≤) is a family Mi, i ∈ I of τ -structures and monomorphisms ρij :
Mi → Mj , i, j ∈ I such that the imbeddings ρij : Mi → Mj , i, j ∈ I
constitute a directed system of sets.

e) If Mi, ρij : Mi → Mj , i, j ∈ I is directed system of structures
we define a structure M = lim

−→
Mi as a structure with the universe

U = lim−→U(Mi) and such that
i) a relation

RM(mi1(u1), . . . , ρin(un), uir) ∈ Uir , 1 ≤ r ≤ n

holds iff for some k, k ≥ ir the relation

RM(ρi1,k(u1, k), . . . , ρin,k(un))

holds .

ii) an equality f(ρi1(u1), . . . , ρin(un)) = ρi(u) holds iff for some k, k ≥
ir, i the relation f(ρi1,k(u1), . . . , ρin,k(un)) = ρi,k(u) holds .
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iii) cM = ρi(c
Mi) for any i ∈ I.

f) A directed system of structures is elementary if all monomorphisms
mij are elementary.

Problem 2.20. P:direct Show that for any elementary directed sys-
tem Mi, ρij of structures then the monomorphsims ρi : Mi → M are
elementary.

Definition 2.21. D:expand Let A be a subset the universe U of a
structure M of a similarity type τ =< I, J,K, n,m >. We define

a) τA to be the similarity type < I, J,K ∪ A, n,m >.
b) MA to be the τA-structure obtained from M in such a way that

cMA

ka
= a, a ∈ A.

c) the diagram D(A) as the set of all atomic sentences and negations
of such sentences in the language LA := LτA which are true in MA.

d) the theory TA the [in the language LA ] as the extension of T by
D(A) (see Definition 2.10 d).

e) we denote by T (M,A) the theory in the language LA consisting
of the set of all the formulas in the language LA which are true in MA

and will write T (M) instead of T (M,U(M)).

Example 2.22. Let k be an algebraically closed field. Then k is a
structure of ACF and models of ACFk are algebraically closed exten-
sions K ⊃ k where K.

Remark 2.23. a) Even if a theory T is complete the theory TA does
not have to be complete.

b) From now on we will always assume that our theories have a form
T = T ′(M,A) where the language of T ′ is countable and A is a subset
of a universe of some model M of T ′.

Problem 2.24. P:complete Show that
a) For any subset A of U the languages LA and L<A> are equivalent.

where < A >⊂ U is the minimal substructure containing A.

b) if A is a substructure of M then models of the theory TA consist
of triples (M ′, A′, r) where M ′ is a model of T and A′ ≤ M ′ is a
substructure and r : A→ A′ is an isomorphism of structures.

c) for any structure M the theory T (M) is complete.

d) Let ψ be a formula in LM such that x1, ..., xr are all the free
variables of ψ. Then u1, ..., ur ∈ ψ(M) iff the sentence ψ[u1, ..., ur] in
LM is true.
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e) let M be a structure, t a variable-free term of LM and ψ a formula
of LM in which no variables except x occurs. Then
ψx[t](M) = ψx[t(M)](M).

f) models of T (M) are elementary extensions of M .

3. The basics of the set theory

Definition 3.1. D:well a) A well-ordered set is a linearly ordered set
S,< such that any non-empty subset S ′ ⊂ S has a minimal element.

b) If S,< is a well-ordered set an initial segment of S is a subset
S ′ ⊂ S such that for any any x ∈ S ′ and any y < x we have y ∈ S ′.

c) An ordinal is an isomorphism class of a well-ordered set.

d) Given tow ordinals α, β we say that α < β if α is isomorphic to
an initial segment of β.

Remark 3.2. a) It is clear that any initial segment of a well-ordered
set is a well-ordered set.

b) We denote ordinals by Greek letters from the beginning of the
alphabet.

The following result is well known.

Lemma 3.3. L:well a) A well-ordered set does not have non-trivial
automorphisms.

b) If R, S are well-ordered sets such that R is isomorphic to an initial
segment S ′ of S then S ′ ⊂ S is uniquely defined.

c) If R, S are well-ordered sets then either there are isomorphic, or
R is isomorphic to an initial segment of S or S is isomorphic to an
initial segment of R.

d) If S ′ ⊂ S is a proper initial segment of a well-ordered set S then
there exists x ∈ S such that S ′ = {y ∈ S|y < x}.

e) If α is an ordinal with the minimal element 0 and Fβ , β ≤ α is a
statement such that ,

i) F0 is true,

ii) if Fβ is true then Fβ+1 is true,

iii) for any limit ordinal γ ≤ α such that Fβ is true for all β < γ the
statement Fβ is true,

then Fα is also true.
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Remark 3.4. a) As follows from Lemma 3.3 the class of ordinals is
well-ordered. If we don’t want to talk about classes we can assume
that all the ordinals are initial segments of a fixed very big ordinal Λ.

b) The last claim of Lemma 3.3 is the principle of the transfinite
induction.

Definition 3.5. D:well1 a) For any ordinal α we define the successor
α+1 of α as the ordinal obtained from α by an addition of an element
bigger then any element of α.

b) An ordinal is a limit ordinal if it is not a successor of another
ordinal,

c) An ordinal α is even if it has a form α = β + n where β is a limit
ordinal and n is even. An ordinal α is odd if it has a form α = β + n
where β is a limit ordinal and n is odd.

d) A cardinal is an ordinal which can not be put into one-to-one
correspondence with a lesser ordinal.

h) If κ is a cardinal we denote by κ+ the least cardinal greater then
κ and by 2κ the cardinality of the set of all subsets of κ.

Remark 3.6. a) The class of infinite cardinals is well-ordered. So we
can number all the infinite cardinals by ordinals α→ ωα in such a way
that ω0 is the countable cardinal.

b) We will use the generalized continuum hypothesis [GCH] which
says that for any cardinal κ we have κ+ = 2κ.

c) For a wide class of statements we know that their truth is inde-
pendent of the validity of GCH. To be precise consider two kinds of
mathematical objects: finite objects x such as integers and objects X
such as sets of integers, real numbers, continuous function on R which
can be specified using countably many bits.

Next, classify mathematical statements regarding such objects ac-
cording to their logical complexity. A ∆0-sentence is one that can be
verified “by a computer”. Π0

1 sentence has the form ”for all n, . . .”
where . . . is ∆0¿ It is clear that the usual statement of Fermat’s last
theorem is Π0

1. The usual statement of Euclid’s theorem on the infini-
tude of primes is Π0

2, i.e. requires two such quantifiers: (∀m)(∃p)(p >
m&pisprime). More generally, an arithmetic sentence allows any finite
number of quantifiers on integers.

A Π1
1 sentence has the form ”for all X, . . . ”, where X is essentially

countable, and . . . is arithmetic. More generally, Π1
n sentence allows n

such quantifiers.
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Most statements of number theory and geometry can be stated as Π1
1

sentences, and often with a little effort, as arithmetic sentences. For ex-
ample the usual formulation of Riemann’s hypothesis is of Π1

1 form but
one can find a Π0

1 formulation of Riemann’s hypothesis. formulation.
See, for example,[M].

Shoenfield and Levy have shown that that the truth of a Π1
2 sentence

cannot depend on questions such as the axiom of choice, or the con-
tinuum hypothesis. Moreover given a proof of a Π1

2 sentence which is
based on the axiom of choice or on the continuum hypothesis there is
an algorphm how to write a proof which does not relay on the axiom of
choice or on the continuum hypothesis. But, of course, the new proof
could be much longer.

Definition 3.7. D:regular An infinite cardinal κ is regular for any
subset X of κ such that κ(X) < κ there exists y ∈ κ such that x < y
for all x ∈ X.

Lemma 3.8. L:regular For any infinite cardinal κ the cardinal κ+ is
regular.

Proof. We can write X = {xδ}, δ ∈ ∆, κ(∆) ≤ κ. For any δ ∈ ∆
we define Zδ = {γ|γ ≤ xδ}. Since xδ < κ+ and κ+ is a cardinal we see
that κ(Zδ) < κ+. So κ(Zδ) ≤ κ and therefore κ(∪δ∈∆) ≤ κ2. Since κ is
infinite κ2 = κ. On the other hand, the union Z of intervals Zδ, δ ∈ ∆
is an interval {γ|γ ≤ x for some z ≤ κ+. Since κ(Z) ≤ κ < κ+ we see
that z < κ+.�

4. The fundamental existence theorem

The following result which is called the fundamental existence theo-
rem is a backbone of the Model theory.

Theorem 4.1. T:fund Let τ be a similarity type, and S be a consistent
set of sentences in the language Lτ . Then there exists a model M of the
theory T (S) with the universe U of cardinality κ(U) ≤ max(ℵ0, κ(S)).

Before proving this result we show how to use it.

Corollary 4.2. C:comp [The compactness theorem]
If S is a set of sentences such that every finite subset S ′ of S has a

model then S has a model.

Proof. I claim that S is consistent. Really, if S were inconsistent
we could derive ⊥ from. But any deduction uses only a finite number
S ′ ⊂ S of axioms. Since, by the assumption, S ′ has a model such a
deduction is not possible.
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So S is consistent and the existence of a model of S follows from the
fundamental existence theorem.

Corollary 4.3. C:upw [The upward Skolem-Lowenheim theorem]. Let
M be an infinite structure of type τ . Then for any κ ≥ max(κ(M), κ(Lτ ))
there exists an elementary extension M ′ of M of cardinality κ.

Proof. Let R be a set of cardinality κ, ν :=< I, J,K ∪ R, n,m >
and S = T (M)

⋃
∪r 6=r′∈R[r 6= r′] where T (M) is the complete theory of

M . I claim that any finite subset S ′ of S has a model. Indead for any
finite subset S ′ of S only a finite set r1, ..., rN of distinguished elements
from R appear in S ′. So

S ′ ⊂ T (M) ∪ ∪1≤i<j≤N [ri 6= rj ]

Since the modelM is infinite we can findN distinct elements u1, ..., uN ∈
U(M). But then an extension of M to an L[r1, ..., rN ]-structure by
rl → ui, 1 ≤ l ≤ N is a model of S ′.

Now it follows from the compactness theorem that there exists a
model N of S with the universe U ′ of cardinality ≤ κ. On the other
hand axioms r 6= r′ ∈ R[r 6= r′] imply that κ(U ′) ≥ κ. So κ(U ′) = κ.

Since S ⊃ T (M) the model M ′ is an elementary extension of M.�
(see Problem 2.24 f)

Our proof of the fundamental existence theorem is based of the no-
tion of the Henkin set of sentences.

Definition 4.4. D:Henkin Let S be a consistent set of sentences in
the language Lτ . We say that the set S is Henkin if for any formula
ψ ∈ Lτ containing a free variable x there exists a constant kψ ∈ K such
that

⊢S ∃xψ → ψx[kψ]

Lemma 4.5. L:fuH If S is a Henkin set of sentences in the language
Lτ then there exists a model M of T (S) of cardinality not bigger then
max(ℵ0, κ(S)).

Proof of Lemma 4.5. Let T be the set of consistent theories in the
language Lτ containing S. As follows from the Zorn’s lemma the set
T contains a maximal element T . We fix T and define an equivalence
relation ∼ on K by

k ∼ k′ ↔⊢T k = k′

and denote by U the set of equivalence classes of ∼. For any k ∈ K we
denote by [k] ∈ U the equivalence class of ∼ containing k.

The following statement is not difficult. I’ll leave it as an exercise.
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Sublemma 1.
a) T is a complete theory.

b) For any i ∈ I and any (k1, ...kn(i)), (k
′
1, ...k

′
n(i)) ∈ K such that

kl ∼ k′l, 1 ≤ l ≤ n(i) we have

⊢T Ri(k1, ...kn(i)) ↔ Ri(k
′
1, ...k

′
n(i))

c) For any j ∈ J and any (k1, ...km(j)) ∈ K there exists k ∈ K such
that fj(k1, ...km(j)) = k.

d) for any j ∈ J and any (k1, ...km(j)), (k
′
1, ...k

′
m(j)) ∈ K such that

kl ∼ k′l, 1 ≤ l ≤ m(j) we have

⊢T fj(k1, ...km(j)) ↔ fj(k
′
1, ...k

′
m(j))�

e) For any i ∈ I, ([k1], ...[kn(i)]) ∈ Un(i) the validity of ⊢T Ri(k1, ...kn(i))
does not depend on a choice of kr ∈ [kr], 1 ≤ r ≤ n(i),

f) j ∈ J, ([k1], ...[km(j)], [k]) ∈ Um(j), [fj(k1, ...km(j))] ∈ U does not
depend on a choice of kr ∈ [kr], 1 ≤ r ≤ n(i).�

Remark 4.6. Only the proof of c) using the assumption that S is
Henkin.

Consider now the τ -structure M = (U,RM
i , f

M
j , c

M
k ) where

(i) U is the set of equivalence classes of elements in K,
(ii) RM

i ([k1], ..., [kn(i)]) iff ⊢T Ri(k1, ...kn(i)), i ∈ I
(iii) fMj (([k1], ..., [km(j)]) = [k] iff ⊢T fj(k1, ...k(m(j)) = k, j ∈ J

(iv) cMk = [k].

Sublemma 2. M is a model of T and for any sentence ψ ∈ Lτ we
have M |= ψ iff ψ ∈ T .

The proof of Sublemma 2 is by the induction in the number of steps
needed to generate a sentence ψ ∈ Lτ .

Lemma 4.5 follows immediately from Sublemma 2.�

Lemma 4.7. L:exH If S is a consistent set of sentences in the lan-
guage Lτ then there exists an extension τ ′ of τ and a Henkin set S ′ of
sentences in Lτ ′ containing S such that κ(S ′) ≤ max(ℵ0, κ(S)).

Proof of Lemma 4.7 . Let κ = max(ℵ0, κ(S)). We define

K ′ := K
⋃

∪δ<κkδ

where kδ is a set of distinct elements, non of which occurs in S and
define

τ ′ =< I, J,K ′, n,m >
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Let ψδ(x), δ < κ be the list of all formulas in Lτ ′ whose only free
variable is x. By the transfinite induction we can choose a function
h : κ→ κ such that

(i) γ < δ implies h(γ) < h(δ),
(ii) γ ≤ δ implies kh(δ) does not occur in ψγ(x).
Using the function h we define for any δ < κ a set Sδ of sentences in

Lτ ′ by

Sδ = S
⋃

∪γ<δ{∃xψγ(x) → ψγ(kh(γ))}

Remark 4.8. The constant kh(δ) does not occur in Sδ.

Claim. The theory Sδ is consistent for all δ ≤ κ.

We prove the Claim by the transfinite induction in δ.

By the assumption S0 = S is consistent. If λ is a limit ordinal and
Sδ is consistent for all δ < λ, then the consistency

Sλ = ∪δ<λSδ

is clear since any sentence of Sλ belongs to Sδ for some δ < λ.

To show that the consistency of Sδ implies the consistency of Sδ+1 is
equivalent showing that the inconsistency of Sδ+1 implies the inconsis-
tency of Sδ.

Assume that Sδ+1 is inconsistent. Then there exists a sentence φ in
Lτ ′ such that Sδ+1 ⊢ φ ∧ ¬φ. So

Sδ ⊢ [∃xψδ(x) → ψδ(kh(δ))] → [φ ∧ ¬φ]

and therefore [ see Problem 2.13]

Sδ ⊢ ∃xψδ(x) ∧ ¬ψδ(kh(γ))

Since kh(γ) does not occur in Sδ we have [ see Problem 2.13]

Sδ ⊢ ∃xψδ(x) ∧ ∀y¬ψδ(y)

So an inconsistency of Sδ+1 implies an inconsistency of Sδ.

We see that Sδ is consistent for all δ < κ and therefore Sκ := ∪δ<κSδ
is also consistent. By the construction we see that Sκ is a Henkin set.�

It is clear that Lemma 4.5 and Lemma 4.7 imply the validity of the
fundamental existence theorem.�
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5. Applications of the fundamental existence theorem

to the algebraic geometry

We start with the following well known result.

Lemma 5.1. Let k be a field and K an extension of k such that K is
algebraically closed and the cardinality κ(K) of K is strictly bigger then
κ(k). Then there exist a transcendence basis of K over k. That is there
exist elements uii ∈ κ(K) of K which are algebraically independent over
k K is an algebraic closure of the field k(ui), i ∈ I.

Lemma 5.2. L:acf a) Let K ′ ⊃ k be another algebraically closed field
such that κ(K ′) ≥ κ(K). Then there exists a field homomorphism
φ : K → K ′ such that φ(a) = a, ∀a ∈ k.

b) If κ(K ′) = κ(K) then there exists a field isomorphism φ : K → K ′

such that φ(a) = a, ∀a ∈ k.

Proof. a) Choose a transcendence bases ui ∈ K, i ∈ κ(K) and
u′i ∈ K ′, i ∈ κ(K ′) of K,K ′ over k. Since κ(K ′) ≥ κ(K) we can find
an imbedding f of κ(K) into κ(K ′). Such an imbedding defines a field
isomorphism φ0 : k(ui) → k(u′i) such that φ(ui) = u′f(i), i ∈ κK. As
follows from the essential uniqueness an algebraic closure we can extend
φ0 to a k-homomorphism φ : K → K ′. The proof of b) is completely
analogous.�

Definition 5.3. D:categorical Let T be a theory and κ an ordinal.
We say that T is κ-categorical if any two models of T of cardinality κ
are isomorphic.

Example 5.4. As follows from Lemma 5.2, for any algebraically closed
field k the theory ACFk is κ-categorical for any κ > κ(k).

Lemma 5.5. L:categorical If T is a theory which is κ-categorical for
all sufficiently big κ then any two models M,M ′ of T are elementary
equivalent.

Proof. Choose a cardinality κ such that T is κ-categorical and κ is
bigger then max(κ(M), (κ(M ′)). As follows from the upward Skolem-
Lowenheim theorem, there exists elementary extensions
E ⊃M,E ′ ⊃M ′ of T such that κ(E) = κ(E ′) = κ. Since the theory

T is κ-categorical the models E,E ′ of T are elementary equivalent.
Therefore the models M,M ′ of k are also elementary equivalent. �

Corollary 5.6. C:elacf For any algebraically closed field k any two
models of the theory ACFk are elementary equivalent.
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Corollary 5.7. C:acfcom The ACFp of algebraically closed fields of
characteristic p is complete for any characteristic p.

Proof. As follows from the Problem 2.24 it is sufficient to show
that any two models F, F ′ of ACFp are elementary equivalent. But the
elementary equivalence of F, F ′ follows from Lemma 5.5 applied to the
case when k is the prime field [k = F̄p or k = Q].�

Corollary 5.8. C:nu [Nullstellenzatz]. Let k ⊂ K be algebraically
closed fields and Y a constructible ”subset” of the affine space An such
that Y (K) 6= ∅. Then Y (k) 6= ∅.

Proof. By the definition of a constructible ”subset” there exists an
open formula ψ in Lk such that for any algebraically closed extension
K of k we have

Y (K) = ψ(K)

(on the left K is a field and on the right it is a model of ACFk).
But by Lemma 5.5, the models k ⊂ k and k ⊂ K of ACFk are

elementary equivalent. So ψ(K) 6= ∅ implies that ψ(k) 6= ∅.�

Lemma 5.9. L:fchar Let D be a definable ”set” in TF such that such
that D(K) 6= ∅ for some field K of characteristic zero. Then there
exists r ∈ N such that D(k) 6= ∅ for any algebraically closed field k of
characteristic p > r.

Proof. We can assume that the field K is algebraically closed.
By Corollary 5.7 we know that the theory ACF0 is complete. Since
D(K) 6= ∅ we have ACF0 ⊢ D 6= ∅.

On the other hand ACF0 = ACF
⋃

∪n∈Nψn where ψn = [n 6= 0].
Since the derivation ACF0 ⊢ D 6= ∅ is finite there exists r ∈ N such
that one can derive ACF0 ⊢ D 6= ∅ in ACF

⋃
∪1≤n<rψn. So D(K) 6= ∅

for any algebraically closed field of characteristic p > r.�

Definition 5.10. a) An affine algebraic variety Y over a field k is a
constructible subset of An given by a system of polynomial equations
Pi(x1, ..., xn) = 0, 1 ≤ i ≤ l.

b) a regular automorphism f : Y → Y of an affine algebraic variety
Y is one given by

y → f(y) = (Q1(x1, ..., xn), ..., Qn(x1, ..., xn))

where Qj(x1, ..., xn) ∈ k[(x1, ..., xn], 1 ≤ j ≤ n are such that f(y) ∈
Y (k) for all y ∈ Y (k).
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Lemma 5.11. L:ax Let Y ⊂ Cn be an affine algebraic subvariety over
C and f : Y → Y a regular map such that the map fC : Y (C) → Y (C)
is an imbedding. Then fC is onto.

Proof. Assume that there exists a regular map f : Y → Y which is
not surjective and f(y′) 6= f(y′′), ∀y′ 6= y′′ ∈ Y (C). We want to show
that that such as assumption leads to a contradiction.

The subset Y ⊂ Cn is defined by a system of equations

{Pi(x1, ..., xn) = 0}, Pi(x1, ..., xn) ∈ k[(x1, ..., xn]1 ≤ i ≤ l

and the map f : Y → Y is given by polynomials
Qj(x1, ..., xn), 1 ≤ j ≤ n such that f(y) = (Q1(y), ..., Qn(y).

Let r be the maximal degree of polynomials Pi, Qj, 1 ≤ i ≤ l, 1 ≤ j ≤
n and AN the affine space of polynomials Pi, Qj , 1 ≤ i ≤ l, 1 ≤ j ≤ n of
degree ≤ r. We denote by Z ⊂ AN the subset consisting of polynomials
Pi, Qj, 1 ≤ i ≤ l, 1 ≤ j ≤ n of degree ≤ r such that

(i) if (x1, ..., xn) ∈ Cn are such that Pi(x1, ..., xn) = 0, 1 ≤ i ≤ l then
Pi(Q1(x1, ..., xn), ..., Qn(x1, ..., xn)) = 0, 1 ≤ i ≤ l

(ii) if (x1, ..., xn), (y1, ..., yn) ∈ Cn are such that
Pi(x1, ..., xn) = Pi(y1, ..., yn) = 0, 1 ≤ i ≤ l and
Qj(x1, ..., xn) = Qj(y1, ..., yn), 1 ≤ j ≤ n then

(x1, ..., xn) = (y1, ..., yn)

(iii) there exists (y1, ..., yn) ∈ Cn is such that
Pi(y1, ..., yn) = 0, 1 ≤ i ≤ l and

(Q1(x1, ..., xn), ..., Qn(x1, ..., xn)) 6= (y1, ..., yn)

for any (x1, ..., xn) ∈ Cn such that Pi(x1, ..., xn) = 0, 1 ≤ i ≤ l.

By the construction Z is a definable ”set” in TF . The existence of a
regular imbedding f : Y → Y such that fC is not surjective shows that
Z(C) 6= ∅. As follows from Lemma 5.9 there exists a prime p such that
Z(F̄p) 6= ∅ where F̄p is the algebraic closure of the field Fp. In other
words there exist polynomials
Pi(x1, ..., xn), Qj(x1, ..., xn) ∈ F̄p, 1 ≤ i ≤ l, 1 ≤ j ≤ n which satisfy

(i),(ii),(iii) when we replace C by F̄p.
Since we consider only a finite set of polynomial there exists a finite

extension Fq of Fp such that
Pi(x1, ..., xn), Qj(x1, ..., xn) ∈ Fq[x1, . . . , xn], 1 ≤ i ≤ l, 1 ≤ j ≤ n.
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By enlarging q we can assume that there exists (y1, ..., yn) ∈ Y (Fnq )
such that for any (x1, ..., xn) ∈ Y (F̄p) we have

(Q1(x1, ..., xn), ..., Qn(x1, ..., xn)) 6= (y1, ..., yn).
But as follows from (i),(ii) the map

(x1, ..., xn) → (Q1(x1, ..., xn), ..., Qn(x1, ..., xn))

defines an imbedding of a finite set g : Y (Fq) → Y (Fq) into itself. So
g : Y (Fq) → Y (Fq) onto. This contradiction proves the non existence
of a regular imbedding f : Y → Y such that fC is not surjective shows
that Z(C) 6= ∅.�

6. Types

For the simplicity of exposition I give a definition of types only for
theories with only one sort (see Definition 2.14). If a theory T has a
number of sorts parameterized by a set Λ then one has to understand
n as a map from Λ to N.

Definition 6.1. D:”set” a) Given a type τ we denote by M(τ) the
category such that objects of M(τ) are τ -structures and morphisms
are elementary monomorphisms. We fix a τ -theory T and denote by
M(T ) the subcategory of M(τ) consisiting of models of T .

b) A definable set D is a functor from the category M(T ) to the
category of sets of the form M 7→ φ(M), where φ is a formula of
L = Lτ .

c) A definable set is constructible if can be defined by an open for-
mula.

d) An ∞- definable set is an intersection of definable sets.

e) we say that two formulas ψ, ψ′ of L are equivalent if φ(M) = φ′(M)
for any model M of T .

f) We denote by Bn(τ) the set of definable sets which come from
formulas ψ of L whith free variables x1, . . . , xn. For any such formula
ψ we denote by [ψ] ∈ Bn(T ) the corresponding equivalence class. An
element of Bn(T ) is an equivalence class of formulas but often we call
an element of Bn(T ) ” a formula”.

g) If R ⊆ D ×D′ and for any model M |= T , R(M) is the graph of
a function D(M) → D(M ′), we say R is a definable function of T .

h) a definable ”set” D is finite if D(M) is finite for any M |= T .

i) for any model M of T and a subset A of U(M) we denote by
dcl(A, T ) [ or simply dcl(A)] the definable closure of A in M as the
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subset of all points u ∈ U(M) for which there exists a definable set
D in the language LA such that for any extension M ′ of M we have
D(M ′) = {u} .

j) for any model M of T and a substructure A ⊂ U(M) we denote
by acl(A) the algebraic closure of A in M as the subset of all points
u ∈ U(M) for which there exists a finite definable set D such that
u ∈ D(M).

k) For any theory T and any n ∈ N we denote by An the ”set”
M → U(M)n.

Problem 6.2. P:types a) Let T be a complete theory, M a model of T
and D,D′ definable sets such that D(M) = D′(M). Show that D = D′.

b) Give an example of two ∞-definable sets D,D′ such that D(M) =
D′(M) but D 6= D′.

c) If M ′ ⊂ M is an elementary submodel then U(M ′) is algebraic
closed in U(M). [ That is U(M ′) is equal to its algebraic closure in
U(M).]

Remark 6.3. a) It is often the case that one formula is equivalent to a
different one. For a example, in the theory TF the formula {∃y|xy = 1}
is equivalent to an open formula {x 6= 0}.

b) The set of formulas depends only on the language τ , but the notion
of the eqivalence of formulas and therefore the set Bn(T ) depends on
a choice of a theory T .

c) In the case of complete theories we will often identify a definable
set D ⊂ An with a subset D(M) of U(M)n for a particular model M
of T .

d) dcl(∅) contains U0(M) but in general dcl(∅) is strictly bigger then
U0(M). For example for the model Q of TF the set U0(M) is equal to
Z but dcl(∅) = Q.

Examples 6.4. If K is a field then models of TFK are fields extensions
F ⊃ K, substructures are subrings of F containing K, and monomor-
phisms between models are K-homomorphisms of fields.

Constructible ”subsets” of the ”set” An are functors from the cate-
gory of the field extensions of K to Sets which can be represented as
finite Boolean combinations of ”sets” defined by equations

Pi(x1, ..., xn) = 0, 1 ≤ i ≤ s, Pi ∈ K[x1, ..., xn]�
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Lemma 6.5. L:finite If D is finite, then for some integer m we have
|D(M)| ≤ m for any M |= T .

Proof. Let D = Dψ ⊂ An be a definable ”set”such that for any
integer m there exists a model Mm of T such that |D(Mm)| > m. We
have to show that there exists a model M of T such that the set D(M)
is infinite. Consider a new theory T ′ which is obtained from T by
additions of sentences

⋆m = ∃xilψm
where ψm is the formula with free variables xil, 1 ≤ l ≤ n, 1 ≤ i ≤ m
given by

ψm = ∧mi=1ψ(xi1, . . . , x
i
n) ∧1≤j<k≤m (∨nl=1x

j
l 6= xkl )

for all m ∈ N. It follows from the existence of models Mm for all
m ∈ N that any finite subset of T ′ has a model. So by the compactness
theorem the theory T ′ has a model M . Then D(M) is an infinite model
of T .�

Problem 6.6. P:open a) Describe all open sentences in TF ,

b) show that any term t with one free variable x in the language of
TF is of the form t = p(x), p ∈ Z[x],

c) show that any open formula with one free variable x in the lan-
guage of TFK , where K is a field, is equivalent to a Boolean combina-
tions of sentences of the form p(x) = 0, p(x) ∈ K[x].

d) show that any open formula in the language of OFK, where K is
an ordered field, is equivalent to a Boolean combinations of sentences
of either of the form p(x) = 0 or of the form a < p(x) where p(x) ∈
K[x], a ∈ K.

e) Let F be an algebraically closed valued field [ that is a model M
of AV F ]. Show that any open formula of AV FM with one variable x
of the sort F is equivalent to a Boolean combination of the of formulas
of types

(i) v(p(x)) < v(q(x)),
(ii) v(p(x)) = v(q(x))
(iii) p(x) = 0 where p(x), q(x) ∈ F [x].

f) describe open sentences and formulas with only free variable in the
theory OAG.

Definition 6.7. D:type a) We define Boolean operations on Bn(T )
by:

[ψ′] ∪ [ψ′′] = [ψ′ ∨ ψ′′]
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[ψ′] ∩ [ψ′′] = [ψ′ ∧ ψ′′]

c[ψ] = [¬ψ]

b) A formula [ψ] ∈ Bn(T ) is consistent with T if there exists a model
M of T such that

M |= ∃x1, ..., xnψ(x1, ..., xn)

c) a set S ⊂ Bn(T ) is consistent if a conjunction of any finite number
of members of S is consistent with T .

d) an n− type of T is a maximal consistent subset p ⊂ Bn(T ).

e) if M is a model of T and ū = (u1, . . . , un) ∈ Un. We denote by
pū(T ) the n− type of ū in T given by
pū = {[ψ] ∈ Bn(T ) : ψx1,...,xn

(u1, ..., un) is true }.
f) If p is an n-type of T and M is a model of T we say that p is

realizable in M if there exists ū ∈ Un such that p = pū. In such a case
we say that ū realizes the type p.

h) We denote by Sn(T ) the set of n− type of T .

i) We denote by T the topology on Sn(T ) such that the sets Vψ :=
{p ∋ [ψ]}, [ψ] ∈ Bn(T ) is a basis of open sets in T .

j) We denote by Scn(T ) the quotient of Sn(T ) by an equivalence re-
lation
p ∼c p′ iff for any open formula φ we have p ∈ [φ] ↔ p′ ∈ [φ].

k) We denote by T c the topology on Scn(T ) with a basis of open sets
given by Vφ where φ is an open formula.

l) If Λ is a set of formulas with free variables x1, . . . , xn we define
VΛ ⊂ Sn(T ) as the intersection VΛ = ∩ψ∈ΛVψ.

m) If M is a model of T, U = U(M) we say that a subset X of
Un is ∅ definable if there exists a formula ψ(x1, . . . , xn) in L such that
X = Vψ(M) and we say that t X is definable if there exists a formula
ψ(x1, . . . , xn) in LM such that X = Vψ(M).

n) We denote by T (M) the topology on Un(M) such that ∅ definable
sets are a basis of open sets in T (M).

Remark 6.8. a) As follows from the Zorn’s lemma any consistent
subset of Bn(T ) can be extended to an n− type.

b) For any p ∈ Sn(T ) there exists a model M of T such that p is
realizable in M . On the other hand in general there exist types p, q
which are not be in the same model.
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c) The set S1(T ) is not a model of T since function symbols fj , j ∈ J

do not define maps S
m(j)
1 (T ) → S1(T ). For example if T = ACFk then

the sum of two transcendental element is not defined.

d) A set S of formulas is consistent iff Vs 6= ∅.

e) the topological spaces (Scn(T ), T c) and (Sn(T ), T ) are Hausdorff.

Problem 6.9. P:consistent a) If T = ACFk then Sc1(T ) = k∪ t where
t is ”an element transcendental over k”.

b) If T = ACFk then Scn(T ) is the set of prime ideals of k[x1, . . . , xn]
and open sets of T c are unions of constructible sets in the Zariski topol-
ogy on the k-scheme An.

c) If T = OADG is the theory of ordered abelian divisible groups
then S1(T ) cosisits of three elements p<, p0, p> which are realized in
the model Q of T by negative elements, 0 and positive elements.

d) For any t ∈ R we denote by p(1,t) the 2-type of OADG realized by
a pair (1, t) ∈ R2 where we consider R as a model of OADG. Then the
2-types p(1,t), p(1,t′) are distinct if t 6= t′.

e) Describe S2(OADG).

f) A complete theory T a formula [ψ] ∈ Bn(T ) is consistent iff

T ⊢ ∃x1, ..., xnψ(x1, ..., xn)

g) Closed subsets of Bn(T ) are in one-to-one correspodence with ∞-
definable subsets of An.

Remark. We will see that for any countable field k the set Sn(ACFk)
is countable for all n ∈ N. On the other hand it follows from Problem
6.9 c) that the set S2(OADG) is uncountable.

Lemma 6.10. L:compact a) For any type p ∈ Sn(T ) there exists an
elementary extension M ′ of M which realizes the type p and κ(M ′) =
κ(M).

b) The topological space (Sn(T ), T ) is compact.

Proof . a) Let k1, ..., kn new constants and S = T (M)∪{F (k1, ..., kn)}
where F (x1, ..., xn) runs through all the formulas in p. The set S is con-
sistent since for any F (x1, ..., xn) ∈ p we have T (M) ⊢ ∃x1, ..., xnF (x1, ..., xn).
Using the same arguments as in the proof of the upward Skolem-
Lowenheim theorem (Corollary 4.3) one shows the existence of a model
M ′ of S of cardinality κ(M) which is an elementary extension of M
such that κ(M ′) = κ(M). Then u = (kM

′

1 , ..., kM
′

n ) realizes the type p.
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b) Let ψi, i ∈ I be a set of formulas whose free variables are among
x1, . . . , xn such that Sn(T ) = ∪i∈IVψi. We want to show the existence
of a finite subset I ′ ⊂ I such that Sn(T ) = ∪i∈I′Vψi .

If such a subset does not exist then for any finite subset I ′ ⊂ I
we have Sn(T ) 6= ∪i∈I′Vψi and the theory T ({∃x1, ..., xn¬ψ

i}), i ∈ I ′

is consistent. Therefore the theory T ({∃x1, ..., xn¬ψ
i}), i ∈ I is also

consistent. Therefore there exists a model M of T and u1, ..., un ∈ U
such that ψix1,...,xn

(u1, ..., un) is false for all i ∈ I. But then pu1,...,un

does not belong to ∪i∈IVψi . This condrudiction shows the existence of
a finite subset I ′ ⊂ I such that Sn(T ) = ∪i∈I′Vψi�

Problem 6.11. P:compact a) For any set B of types of T there exists
an elementary extension M ′ of M which realizes all the types in B and
such that κ(M ′) = max(κ(M), (κ(B).

b) Find a modelM of ACF such that the topological space (U(M), T (M))
is not quasi-compcat.

Lemma 6.12. L:openclosed A subset X ⊂ Sn(T ) has a form Vψ for
some formula ψ iff X is open and closed.

Proof. Since Sn(T ) − Vψ = V¬ψ the set Vψ is open and closed for
any formula ψ.

Conversely if a subset X of Sn is both open and closed then there
exists a family ψi, i ∈ I of formulas such that X = ∪i∈IVψi

. Since X
is closed it is compact and therefore there exists a finite subset I ′ ⊂ I
such that X = ∪i∈I′Vψi

. But then X = Vψ for ψ = ψi∈I′ .�

Corollary 6.13. C:ccomp The topological space (Scn(T ), T c) is com-
pact.

Proof. (Scn(T ), T c) is an image of the compact (Sn(T ), T ) under the
continuous map π : Sn(T ) → Scn(T ). So it is compact.

Corollary 6.14. C:bij If the theory T is complete and the natural
continuous map π : Sn(T ) → Scn(T ) is a bijection then any formula of
T is equivalent to an open formula.

Proof. Let ψ be a formula with free variables x1, ..., xn. Since the
topological space Sn(T ) is compact, any closed subset X ⊂ Sn(T ) is
also compact and therefore π(X) ⊂ Scn(T ) is closed. So π : Sn(T ) →
Scn(T ) is a homeomorphism. Since the set Vψ ⊂ Sn(T ) is both open
and closed in T it is both open and closed in T c.

The same arguments as in the proof of Lemma 6.12 show then the
existence of an open formula φ such that Vψ = Vφ.�
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Definition 6.15. If D an ∞-definable set in a complete theory T and
M a model of T we say that D is LM -definable if there exists a formula
ψ in LM such that D(M ′) = Vψ(M ′) for any extension M ′ of M .

Lemma 6.16. L:inf Let T be a complete theory, M a model of T and
D is an LM -definable set such that there exist a set ψi, i ∈ I of formulas
in L such that D = ∩i∈Iψi then there exists a finite subset I ′ of I such
that D = ∩i∈I′ψi.

Proof. We have An − D = ∪i∈IV 6=φi
. Since D is LM -definable the

set An−D is compact and there exists a finite subset I ′ of I such that
An −D = ∪i∈I′V 6=φi

. But then D = Vψ, ψ = ∧i∈I′φi.�

7. Basics of the theory of valued fields

There are different ways to formalize the concept of a valued field.
In 2.15 i) we used an axiomatization V F of the theory in a 2-sorted
language (F,Γ) where F corresponds to field elements and Γ to ele-
ments of a valued group. But there are other axiomatizations of the
theory.

Definition 7.1. D:V A subring O of field F is a valuation ring if
u ∈ O of u−1 ∈ O.

The following two Lemmas are well known [ see for example [L] 12.4)

Lemma 7.2. Let O ⊂ F be a valuation ring. Then

a) O is a local ring.

b) The ordering ≤ on Γ = F ⋆/O⋆ defines on Γ a structure of an
ordered abelian group.

c) The natural surjection v : F ⋆/toΓ defines a structure of a valued
field on F .

d) For any valued field (F.Γ, v) the ring O : {a ∈ F |v(a) ≤ 0} is a
valued ring.

Problem 7.3. Let τV R be the type obtained by the augmentation of the
type τ of the theory of fields (see 2.15 b)) by an 1-placed relation symbol
o. Find an extension V R of the system TF of axioms of the theory of
fields to a system of axioms in the language of τV R such models of V R
correspond to valued fields.

Remark 7.4. The theories V R and V F describe the same mathemat-
ical objects but they are very different. For example in the theory
V R there is no sybols to talk about elements of the value group. We
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see later how to reconstruct elements of the value group as imaginary
elements of V R.

Definition 7.5. Let O ⊂ F be a valuation ring.
a) We denote by m the maximal ideal of O, by k = O/m the quotient

field, by p : O → k the natural projection, by k̄ an algebraic closure of
k and by F̄ an algebraic closure of F .

b) We denote by R the set of subrings of F̄ containing O for which
there exists an extention of p : O → k to a ring homomorphsim p′ :
O′ → k̄ and by R′ the set of maximal elelements of R.

Lemma 7.6. L:L a) Any O′ ∈ R′ is a valuation subring of F̄ .

b) Any valuation subring of F̄ containing O belongs to R′. Let O′

be a maximal subring of F̄ Then

c) For any two valuation subrings of O′,O′′ ⊂ F̄ containing O there
exists an automorphism of σ of the field F̄ such that O′′ = σ(O′).

Corollary 7.7. C:L Let F, v : F ⋆ → Γ a valued field and F̄ an
algebraic closure of F . Then

a) there exists an extension of v to a valuation v̄ : F ⋆ → Γ⊗Q and

b) if v̄′ : F ⋆ → Γ ⊗ Q is another such extension then there exists
σ ∈ Gal(F̄ /F ) such that v̄′ = v̄ ◦ σ.

One can ask when there is unique extension of v to a valuation
v̄ : F ⋆ → Γ⊗Q. In other words when there is unique maximal subring
O′ of F̄ such that there exists an extention of p : O → k to a ring
homomorphsim p′ : O′ → k̄.

Definition 7.8. D:hens A local ring A ⊃ m is Henselian if for any
monic polynomial p(t) ∈ A[t] a decompostions of the reduction p̄(t) ∈
k[t], k = A/m in a a product of relatively prime factors q̄(t), r̄(t) ∈ k[t]
lifts to decompostions of p(t) in A[t].

Remark 7.9. R:hens a) It it is easy to show ( see the first four pages
of [R]) that a local ring A is Henselian iff any integral A-algebra B
finitely generated as an A-module is local.

b) One can show (see [R] Proposition 7.3) that a local ring A ⊃ /m
is Henselian iff for any monic polynomial p(t) ∈ A[t] and a ∈ A such
that p(a) ∈ m, p′(a) /∈ m there exists unique b ∈ A such that p(b) = 0
and a− b ∈ m.

Lemma 7.10. L:hens Let O ⊂ F be a Henselian valuation ring. Then
there is unique extension of v to a valuation v̄ : F ⋆ → Γ ⊗ Q.
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Proof. Let Ō be the integral closure of O in F̄ . It is easy to see
that O′ ∈ R′ of F̄ contains Ō. So it is sufficient to show that the ring
Ō is a maximal proper subring of F̄ .

Since F̄ is a union of finite extension E ⊃ F is sufficient to show
that for any finite extension E ⊃ F the integral closure B of O in E is
a maximal proper subring of E. Since O is Henselian and B is integral
ring finitely generated as a O-module the ring B is local. It is now easy
to see now that B is a maximal proper subring of E.

Remark 7.11. The converse statement is also true.

Since for any algebraically closed valued field its value group is divis-
ible, we start the analyzis of the theory AV F with a result on OADG
(see 2.15 g).

Definition 7.12. D:simG a) Let Γ ⊂ U be a pair of abelian divisible
groups, u ∈ U . We denote by Γu = {ru+ γ}, r ∈ Q, γ ∈ Γ the minimal
abelian divisible subgroup of U containing Γ and u.

b) Let U ⊃ Γ and U ′ ⊃ Γ be ordered abelian divisible groups. Given
u ∈ U, u′ ∈ U ′ we say that u, u′ are equivalent and write u ∼ u′ if for
any γ ∈ Γ we have

u < γ ↔ u′ < γ and u > γ ↔ u′ > γ.

Remark 7.13. We don’t know a priory that any two ordered abelian
divisible groups containing U ⊃ Γ, U ′ ⊃ Γ are imbeddable into a bigger
model group U ′′ [ in other words that any two models M,M ′ of the
theory OADGΓ are imbeddable into a bigger model M ′′]. Therefore
we can not assume that u, u′ are elements of the same ordered abelian
divisible group.

Lemma 7.14. L:extG Let U,U ′ ⊃ Γ be ordered abelian divisible groups
and u ∈ U, u′ ∈ U ′ be equivalent elements. Then there exists an iso-
morphism f : Γu → Γu′ of ordered abelian groups such that f(u) = u′

and f(γ) = γ for all γ ∈ Γ.

Proof. It is clear that if u ∼ u′ then u ∈ Γ ↔ u′ ∈ Γ. If both
u, u′ ∈ Γ there is nothing to prove. So we assume that u, u′ /∈ Γ and
we can define an a group isomorphism f : Γu → Γu′ by f(ru + γ) =
ru′ + γ, r ∈ Q, γ ∈ Γ.

To prove the Lemma we have to check that f compatible with the
orders on U,U ′. In other words we have to show that an inequality
ru+ γ < su + δ implies that ru′ + γ < su′ + δ, r, s ∈ Q, γ, δ ∈ Γ. But
this follows immediately from the condition u ∼ u′.�



LOGIC 33

Let F, v : F ⋆ → Γ be algebraically closed valued field [ that is a
model of AV F (see 2.15].

Definition 7.15. D:balls a) Given α, β ∈ Γ we write α ≤ β if either
α < β or α = β.

b) To any pair a ∈ F, γ ∈ Γ+ we associate a definable setsD(a, γ), D̄(a, γ)
and R(a, γ) in the theory AV FF which we call an open balls and closed
balls and rings of radius γ ∈ Γ+. These ”sets” associate to any model

M of the theory AV FF sets

D(a, γ)(M) = {u ∈ U(M) : v(u− a) < γ}

D̄(a, γ)(M) = {u ∈ U(M) : v(u− a) ≤ γ}

and

R(a, γ)(M) = {u ∈ U(M) : v(u− a) = γ}

It is clear that O := D̄(0, 0̄) is the valuation ring of F and m :=
D(0, 0̄) is the maximal ideal of O. We denote the residue field O/m by
k.

Let E ⊃ F be algebraically closed valued field extension of F, e ∈ E.
We denote by F (e) ⊂ E the subfield generated by e over F , by ¯F (e)
the algebraic the smallest closure of F (e) in E and by Γe the image

of ¯F (e)
⋆

under the valuation vE . Then F̄ (e), vE : ¯F (e)
⋆
→ Γe is an

algebraically closed valued field.

Lemma 7.16. L:Ge a) If vE(e− a) ∈ Γ for all a ∈ F then Γe = Γ .

b) If Γe 6= Γ then there exists a ∈ F such that vE(e − a) /∈ Γ and
Γe = QvE(e− a) + Γ .

Proof. a) Assume that vE(e−a) ∈ Γ for all a ∈ F . Since the field F
is algebraically closed any polynomial p(x) ∈ F [x] is a is a product of
linear factors and therefore vE(p(e)) ∈ Γ. It follows now from Corollary
7.7 that Γe = Γ ⊗ Q = Γ.

b) Choose a ∈ F such that vE(a− e) /∈ Γ. Let Γ̃ = QvE(a− e) + Γ.
Since Γ̃ is divisible it is sufficient to show that for any p(x) ∈ F [x] we

have vE(p(a− e)) ∈ Γ̃. Since the field F is algebraically closed we have

p(x) = c
n∏

i=1

(x− ai), c, ai ∈ F

Therefore it is sufficient to show that vE(a− e− ai) ∈ Γ̃ for any a ∈ F .
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But vE(a− e) /∈ Γ. Therefore vE(a− e) 6= v(ai) and either

vE(a− e− ai) = vE(a− e)

or

vE(a− e− a) = v(ai) ∈ Γ.�

Definition 7.17. D:imF Let E ⊃ F and E ′ ⊃ F be algebraically
closed valued field extensions of F . Given e ∈ E, e′ ∈ E ′ we say that
e.e′ are equivalent and write e ∼ e′ if

e ∈ D(a, γ) ↔ e′ ∈ D(a, γ), e ∈ R(a, γ) ↔ e′ ∈ R(a, γ)

for any a ∈ F, γ ∈ Γ+.

Proposition 7.18. P:extv If E ⊃ F and E ′ ⊃ F are algebraically
closed valued field extensions of F and elements e ∈ E, e′ ∈ E ′ are
equivalent then there exists an isomorphism ḡ : ¯F (e) → ¯F (e′) of valued
fields.

Proof. We start with the following result.

Lemma 7.19. L:exGe a) If e ∈ E, e′ ∈ E ′ are equivalent then vE(e) ∼
vE′(e′).

b) If Γe = Γ then Γe′ = Γ.

c) If Γe = Γe′ = Γ then there exists a field isomorphism

f̃ : F (e) → F (e′)

such that f̃(e) = e′ and vE(x) = vE′(x) for any x ∈ F (e).

d) If Γe 6= Γ then there exists an isomorphism f : Γe → Γe′ of ordered
abelian groups and a field isomorphism

g : F (e) → F (e′)

such that g(e) = e′ and f(vE(x)) = vE′(x) for any x ∈ F (e)

Proof of Lemma. a) We have to show that for any γ ∈ Γ

vE(e) < γ ↔ vE′(e′) < γ, vE(e) > γ ↔ vE′(e′) > γ

But , vE(e) < γ ↔ e ∈ D(0, γ) and , vE(e) > γ ↔ e /∈ D̄(0, γ). So the
assumption e ∼ e′ implies that vE(e) ∼ vE′(e′).

b) Suppose that Γe′ 6= Γ. By Lemma 7.16 there exists a ∈ F such
that vE′(e′ − a) /∈ Γ. As follows from a), vE(e − a) ∼ vE′(e′ − a). So
vE(e− a) /∈ Γ.



LOGIC 35

c) Let g : F (e) → F (e′) be the field isomorphism such that g(e) =
e′. We have to show that for any polynomial p(x) ∈ F [x] we have
vE(p(e)) = vE′(p(e′)).

Since any polynomial in F [x] is a product of linear factors it is suf-
ficient to show that vE(a− e) = vE′(a− e′) for all a ∈ F .

Let γ := vE(a− e) ∈ Γ. Then e ∈ R(a, γ) and therefore e′ ∈ R(a, γ).
So vE′(a− e′) = γ.

d) By replacing e with e− b, b ∈ F we can assume [ see Lemma 7.16]
that vE(e) /∈ Γ. As follows from a) vE′(e′) ∼ vE(e). Therefore, (see
Lemma 7.14), there exists an isomorphism f : Γu → Γu′ of ordered
abelian groups such that f(vE(e)) = vE′(e′). We have to show that for
any polynomial p(x) ∈ F [x] we have f(vE(p(e))) = vE′(p(e′)). Since
any polynomial in F [x] is a product of linear factors it is sufficient to
show that f(vE(a− e)) = vE′(a− e′) for all a ∈ F .

Since vE(e) /∈ Γ we have vE(a−e) = min(v(a), vE(e)). More precisely
vE(a − e)) = v(a) if e ∈ D(0, v(a) and vE(a − e)) = vE(e) if e /∈

D(0, v(a).
Analogously vE(a − e′) = v(a) if e′ ∈ D(0, v(a) and vE′(a − e)) =

vE(e′) if e′ /∈ D(0, v(a).
So for all a ∈ F we have f(vE(a− e)) = vE′(a− e′).�

Now we can finish the proof of Proposition 7.18. Let ḡ : ¯F (e) → ¯F (e′)
be an extension of a field isomorphism g : F (e) → F (e′). Then vE and
vE′ ◦ ḡ define valuations of the field F̄ (e) which coincide on F (e). As
follows from Lemma 7.6, there exists σ ∈ Gal( ¯F (e)/F (e)) such that
vE(x) = vE′(ḡ ◦ σ(x)) for all x ∈ ¯F (e). Therefore ḡ ◦ σ : ¯F (e) → ¯F (e′)
is an isomorphism of valued fields.�

Definition 7.20. We denote by C the collection of definable sets of
AV FM which are finite Boolean combinations of sets of the formD(a, γ)
and D̄(a, γ).

Proposition 7.21. P:openv a) Any constructible subset D ⊂ A1 be-
longs to C

b) X(M) 6= ∅ for any non-empty set in X ∈ C.

Proof. a) We say that p, p′ ∈ Sc1(T ) are equivalent and write p ∼ p′

if for any realizations u, u′ ∈ U(M ′) of p, p′ we have

u ∈ D(a, γ) ↔ u′ ∈ D(a, γ), u ∈ D̄(a, γ) ↔ u′ ∈ D̄(a, γ)

Let S ′(T ) be the quotient of Sc1(T ) by the relation ∼ and π′ : Sc1(T ) →
S ′(T ), p→ [p] be the natural projection.
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The same arguments as in the proof of Corollary 6.14 show that the
validity of Proposition 7.21 would follow from the injectivity of π′. In
other words we have to show that for any valued field extensions E,E ′

of F and any u ∈ E, u′ ∈ E ′ the equivalences

u ∈ D(a, γ) ↔ u′ ∈ D(a, γ), u ∈ D̄(a, γ) ↔ u′ ∈ D̄(a, γ)∀a ∈ F, γ ∈ Γ+

imply that for any open formula φ of LT with x as the only free variable
we have

u ∈ Vφ ↔ u′ ∈ Vφ

But the equivalence u ∈ Vφ ↔ u′ ∈ Vφ follows from Proposition 7.18.

b). It is clear that for any two balls B,B′ either B ⊂ B′ or B′ ⊂ B
or B ∩ B′ = ∅. Therefore any non-empty set X ∈ C is a union of
non-empty sets Y of the form X = B−∪ni=1Bi where Bi ⊂ B are balls
of radii γi ∈ Γ and centers ai ∈ V, 1 ≤ i ≤ n and either B is a ball or
B is equal to A1. It is sufficient to show that Y (M) 6= ∅. I consider
first the case when B is a ball of radius γ ∈ Γ.

After the shift by a and a multiplication by b ∈ F = U(M) such
that v(b) = γ we can assume that B is a ball of radius 0̄ ∈ Γ with the
center at 0. We consider separately the case when B = m is an open
ball and the case when B = O is a closed ball. We define δi = v(ai).

i) Assume that B = m. Since X 6= ∅ we have Bi 6= B for all
i, 1 ≤ i ≤ n and therefore γi, δi > 0̄ for all i, 1 ≤ i ≤ n.

Choose c ∈ V such that v(c) = minni=1(γi, δi). Since the field V
is algebraically closed we can find d ∈ V such that c = d2. Then
d ∈ X(M).

ii) Let π : O → k be the natural projection. Since X 6= ∅ we have
Bi 6= B for all i, 1 ≤ i ≤ n and therefore b̄i = π(Bi) ⊂ k is a point.
Since the field k is algebraically closed and therefore infinite we can
find ē ∈ k⋆ such that ē 6= b̄i for all i, 1 ≤ i ≤ m. Let e ∈ V be an
element such that v(e) = ē. Then e ∈ X(M) .

Consider now the case when B = A1. Since Γ 6= {̄0} it is easy to see
that there exists γ ∈ Γ, γ > 0 such that Bi ⊂ D(0, y). If a ∈ F is such
that v(a) = γ then a ∈ X(M).�

Corollary 7.22. For any polynomials p(x), q(x) ∈ F [x] the definable
sets

M ′ → {u′ ∈ U ′ : v(p(u′)) = v(q(u′))}

and

M ′ → {u′ ∈ U ′ : v(p(u′)) < v(q(u′))}
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belong to C.

8. Elimination of quantifiers

Definition 8.1. D:QE a) A theory T admits the quantifier-elimination
[QE] if for model M of T any definable ”set” X of T (M) is equivalent
to a constructible set (see Definition 6.1 c)).

b) A formula φ is simply existential if it has a form φ = ∃xψ where
ψ is an open formula.

L:sim

Lemma 8.2. If Let T is a theory such that for any simply existential
formula ψ there exists an open formula φ equivalent to ψ. Then T
admits quantifier-elimination.

Remark 8.3. To simplify the exposition I will assume that in this
section that the language τ contains constants in all it’s sorts.

Proof. We have to show that for any formula ψ there exists an
equivalent open formula φ. The proof is by the induction in the number
of times the quantifier ∃ appearing in ψ. We decrease the number
ofappearences by replacing the most inner subformula of ψ containing
the quantifier ∃ by an open formula.�

Problem 8.4. P:QE Let T be a theory which admits QE.

a) Any monomorphism between models of T is elementary.

b) For any substructure A of a model M of T theories TA and
T (M,A) coincide.

c) For any model M of T and extensions M ′,M ′′ there exists an

extension M̃ of M containing both M ′ and M ′′.

d) If for any open sentence φ in the lanugage of T the validity φ(M)
does not depend on a choice of a model M then T is complete.

Remark 8.5. a) Not every theory T which admits quantifier-elimination
is complete. For example, as we will see, the theory ACF admits
quantifier-elimination. But it is not complete since there are alge-
braically closed fields of different characteristics.

b)) If a theory T admits QE then for any substructure A of a model
of T theory TA also admits QE. Really any formula ψA of TA is otained
from a formula ψ of T after a substitution of some free variables by
elements of A. Since ψ is equivalent to an open formula φ the formula
ψA is equivalent to the open formula φA .
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c) If a type τ does not have any constants it could happen that while
a τ -theory T does not admit QE, the theory obtained from T by an
addition of a constant admits QE.

Really, consider the case when in addition to x1 = x2 the type τ
consists of a one-places predicate P , does not contain any functions
and the theory T is generated by a sentence ∀xP (x)∨∀x¬P (x). Then
the sentence ∃xP (x) is not equivalent to any open sentence.

But if we augment τ by a constant k then the sentence ∃xP (x) will
be equivalent to an open sentence P (k). One can show that the theory
T [k] admits QE.�

Given any theory T we can construct a theory T S which admits QE
and is essentially equivalent to T . We start with a definition.

Definition 8.6. D:Sk We say that a theory T in a language L is
Skolem if for any n ≥ 0 and any formula ψ(x1, . . . , xn+1) in L with free
variables x1, . . . , xn+1 there exists a functions symbol f(x1, . . . , xn) such
that

T |= [∀{x1, . . . , xn}∃xn+1 ↔ ψ(x1, . . . , xn, f(x1, . . . , xn))]

[In particular for formula ψ(x) there exists a constant k ∈ K such that

T |= ∃xψ(x) ↔ ψ(k)]

Lemma 8.7. L:Sk a) Any Skolem theory andmits QE.

b) For any theory T in a language L admits a Skolem extension
(T S , LT S) such that any model M of T can be expanded to a model
MS of T S.

Proof. a) The proof is by induction in the number of appearence of
∃ in a formula ψ. Suppose that ψ(x1, . . . , xn) has a form

∃xn+1ψ
′(x1, . . . , xn+1)

Since the theory T is Skolem there exists a functions symbol f(x1, . . . , xn)
such that

T |= [∀{x1, . . . , xn}∃xn+1 ↔ ψ′(x1, . . . , xn, f(x1, . . . , xn))]

By induction there exists an open formula φ(x1, . . . , xn) such that

T |= ψ′(x1, . . . , xn, f(x1, . . . , xn)) ↔ φ′(x1, . . . , xn)

But then

T |= ψ(x1, . . . , xn) ↔ φ(x1, . . . , xn)



LOGIC 39

b) Give a language L we define an extension L′ of L by adding a
new n-placed symbol fψ for any formula ψ(x1, . . . , xn+1) in L with free
variables x1, . . . , xn+1 and define LS by

L0 = L,Lm+ 1 = L⋆M , L
S = ∪∞

m=0Lm

Let T S a theory in the language LS obtained by adding to T the axioms

∀{x1, . . . , xn}∃xn+1 ↔ ψ(x1, . . . , xn, fψdotsc, xn))]

for any formula ψ(x1, . . . , xn+1), n ≥ 0 of LS .

If M is a model of T we can, using the axiom of choice, extend M
to a model MS of T S with the same universe. �

Remark 8.8. We see that for any theory T it is possible to eliminate
the quantifiers if we expand the language of T . So when we ask about
the possibility to eliminate quantifiers in an theory we talk about the
elimination in it’s natural language.

The following result is called the downward Skolem-Lowenheim the-
orem.

Corollary 8.9. Given any theory T in a language L we can decompose
any monomorphism a : M ′ →M of T -models as a composition a = b◦c
where c : M ′ → M ′′ is a monomorphism of T -models, b : M ′′ → M is
an elementary monoimorphism, and κ(M ′′) ≤ max(κ(M ′), κ(L))

Proof. Let MS be an extension of M to a T S-model as in Lemma
8.7 and M ′′S ⊂MS be the minimal T S-submodel containing a(U(M ′).
As follows from Lemma 8.7 a) and Problem 8.4 a) the monomorphism
bS : M ′′S →MS given by the natural inclusion is elementary. Therefore
the natural inclusion induces an elementary monomorphism b : M ′′ →
M .

On the other hand it is clear that κ(M ′′) ≤ max(κ(M ′), κ(L)) and
that a induces a monomorphism c : M ′ → M ′′ such that a = b ◦ c.�

One of important achievements of the Model theory is the discovery
of a simple criterion for the existence of quantifier-elimination.

Definition 8.10. D:cond Let T be a theory. We say that

a) T satisfies the isomorphism condition if for any modelsM,M ′ of T ,
any substructures A ⊂M,A′ ⊂M ′ and an isomorphism f : A→ A′ we
can find submodels B ⊂M,B′ ⊂M ′ containing A and A′ respectively
and an extension of f : A→ A′ to an isomorphism f̃ : B → B′.
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b) T satisfies the submodel condition if for any pair M ⊂ M ′ of
models of T and every simply existential sentence φ of LM we have
∃xφ(M) ↔ ∃xφ(M ′).

Theorem 8.11. T:QE If a theory T satisfies both the isomorphism
and the submodel conditions, then T admits the quantifier-elimination.

Proof of Theorem 8.11 . We start the proof with the following
definition.

Definition 8.12. D:alop Let T be a theory in the language L. A
sentence ψ in L is almost open if for any two models M,M ′ of T such
that φ(M) = φ(M ′) for any open sentence φ in L the equality ψ(M) =
ψ(M ′) is also true.

Lemma 8.13. L:alop Any almost open sentence ψ in L is equivalent
to an open one.

Proof of Lemma 8.13. Let Γ be the set of all open sentences which
are theorems in T (ψ) ( see Definition 2.11). It is sufficient to show that
ψ is a theorem in T (Γ). Really if ψ is a theorem in T (Γ) there exists
φ1, .., φr ∈ Γ such that

⊢T φ1 ∧ · · · ∧ φr → ψ.

On the other hand ⊢T ψ → φi, 1 ≤ i ≤ r. So ψ ↔ φ1 ∧ · · · ∧ φr.

We see that it is sufficient to show that an assumption that ψ is not
a theorem in T (Γ) leads to a contradiction.

Assume that ψ is not a theorem in T (Γ). Then, as follows from
Theorem 4.1, there exists a model M of T (Γ) such that ψ is false in
M . Let ∆ be the set of all open sentences which are true in M .

I claim that for any model M ′ of T (∆) the sentence ψ is false in M ′.
Indead, by the definition of ∆, any open formula φ is true in M iff it
is true in M ′. On the other hand the formula ¬ψ is almost open and
true in M . So it is true in M ′.

Since the sentence ¬ψ is true in M ′ for any model M ′ of T (∆) it
is a theorem in T (∆) ( see Theorem 4.1). In other words there exists
φ1, .., φr ∈ ∆ such that ⊢T φ1∧, .., φr → ¬ψ. So ⊢T ψ → ¬(φ1∧· · ·∧φr)
and therefore ¬(φ1∧, .., φr) ∈ ∆. We see that ¬(φ1 ∧ · · · ∧ φr) is true
in M . On the other hand for all i, 1 ≤ i ≤ r the sentence φi is true in
M . This contradiction proves Lemma 8.13.�
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Lemma 8.14. L:opset
Let M ′,M ′′ be structures of a type τ such that for any open sentence

φ in Lτ we have φ(M ′) = φ(M ′′). Then there exists an isomorphism
π : U0(M

′) → U0(M
′′) where U0(M

′) ⊂ M ′ and U0(M
′′) ⊂ M ′′ are the

minimal substructures [ see Definition 2.1].

Proof of Lemma 8.14. For any u ∈ U0(M
′) there exists a term t = tu

without free variables such that u = tM
′

[see Problem 2.8]. We define
π(u) := tM

′′

. I claim that π(u) ∈ U0(M
′′) does not depend on a choice

of a term t such that u = tM
′

. Really if s is an other term such that
u = sM

′

then the open sentence t = s is true in M ′. Therefore this
sentence is also true in M ′′ and we have tM

′′

= sM
′′

.

The same arguments show that for any i ∈ I, u1, ..., un(i) ∈ U0(M
′)

we have
RM ′

i (u1, ..., um(j)) iff RM ′′

i (π(u1), ..., π(um(j)))
and that for any j ∈ J, u, u1, ..., um(j) ∈ U ′

0 we have

fM
′

j (u1, ..., um(j)) = u iff fM
′′

j ((π(u1), ..., (π(um(j))) = π(u)

Therefore the map π : U0(M
′) → U0(M

′′) is an isomorphism of
substructures.�

Lemma 8.15. L:both Assume that a theory T satisfies both the iso-
morphism and the submodel conditions and any sort of T contains a
constant. Then any simply existential sentence in the language L of T
is equivalent to an open sentence.

Proof of Lemma 8.15 Let ψ be a simply existential sentence. By
Lemma 8.13 it is sufficient to show that the sentence ψ is almost open.
In other words we have to show that for any pair M.M ′ of models of
T such that φ(M) = φ(M ′) for all open sentences φ of L we also have
ψ(M) = ψ(M ′).

By Lemma 8.14 there exists an isomorphism π : U0(M) → U0(M
′)

between the minimal substructures of M,M ′. By the isomorphism con-
dition we can extend π to an isomorphism of submodels N ⊂M,N ′ ⊂
M ′. Since the sentence ψ is simply existential, the submodel condition
implies that ψ(N) = ψ(M) and ψ(N ′) = ψ(M ′). On the other hand
the models N,N” of T are isomorphic and therefore ψ(M) = ψ(M ′).�

Lemma 8.16. L:adcon Let T be a theory satisfying the isomorphism
and the submodel conditions and T ′ be the theory obtained from T by
adding a new constant k [ see Problem 2.2]. Then

a) T ′ satisfies the isomorphism condition,
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b) T ′ satisfies the submodel condition.

Proof of Lemma 8.16 a) LetM,M ′ be models of T ′ and f : A→ A′

be an isomorphism between substructures A,A′ of M,M ′. We want to
construct an extension h of f to an isomorphism of submodels C,C ′ of
M,M ′.

Let M̄, M̄ ′ be models of T obtained by the restrictions of M,M ′ to
T . Since T satisfies the isomorphism condition we can find submodels
D̄, D̄′ of M̄, M̄ ′ and an isomorphism ḡ : D̄ → D̄′. We expand D̄ to
a structure D of T ′ by kD = kA. Analogously we expand D̄′ to a
structure D′ of T ′. Then D,D′ are models of T ′ and we can define the
extension of ḡ to a monomorphism g : D → D′ by g(kD) = kD

′

. It is
clear that g : D → D′ is an isomorphism.

b) Let M ⊂M ′ be models of T ′ and ψ′ a simply existential sentence
of L(T ′). We want to show that ψ′(M) = ψ′(M ′).

Let ψ be the sentence of LM(T ) obtained from ψ′ by the replacement
of the free variable x by kM . Since T satisfies the submodel condition
we have ψ(M) = ψ(M ′).

On the other hand it follows from Problem 2.13 a) that ψ′(M) =
ψ(M) and ψ′(M ′) = ψ(M ′)�

Now we can prove Theorem 8.11. Let T be a theory satisfying both
the isomorphism and the submodel conditions. We want to show that
for any simply existential formula ψ in the language L there exist an
equivalent open formula φ. Let x1, ..., xr be all the free variables of ψ.
Consider the theory T ′ be the theory obtained from T by adding new
constants k1, ..., kr. As follows from Lemma 8.16 the theory T ′ satisfies
the isomorphism condition and the submodel condition. As follows
from Lemma 8.15 the sentence ψ′ = ψ[k1, ..., kr] is equivalent to an
open sentence φ′ of T ′. Therefore, (see Problem 2.13) the open formula
φ obtained from φ′ be the substitution of constants ki by variables
xi, 1 ≤ i ≤ r is equivalent to ψ.�

Corollary 8.17. The theory ACF admits quantifier-elimination.

Proof. It is sufficient to show that ACF satisfies the isomorphism
and the submodel conditions.

a) For the proof of the isomorphism condition we have to show that
for any pair K,K ′ of algebraically closed fields, a pair of subrings A ⊂
K,A′ ⊂ K ′ and a ring isomorphism f : A → A′ there exist subfields
E ⊂ K,E ′ ⊂ K ′ containing A,A′ and an isomorphism f̃ : E → E ′

extending f : A→ A′.
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Let F ⊂ K,F ′ ⊂ K ′ be subfields generated by A,A′. It is clear
that F, F ′ are the fraction fields of A,A′ and the ring isomorphism
f : A → A′ extends to an isomorphism f1 : F → F ′. Let E,E ′ be
the algebraic closures of E,E ′ in K,K ′. Since K,K ′ are algebraically
closed it follows from the uniqueness of the algebraic closures that one
can extend an isomorphism f1 : F → F ′ to an isomorphism f̃ : E → E ′.

b) For the proof of the submodel condition we have to show that
for any pair K ⊂ K ′ of algebraically closed fields and any simply
existential sentence φ in ACFK we have φ(K) = φ(K ′). This result
follows immediately from Corollary 5.8. But we give a different proof,
the one which admis a generalization.

Any simply existential sentence ψ in ACFK is equivalent to a ∃xψ
where ψ is a Boolean combinations of formulas of the form

p(x) = 0, p(x) ∈ K[x]

( see Problem 6.6 b)). Since the field K is algebraically closed, a
formula p(x) = 0 is equivalent to a finite union formulas of the form
x = a, a ∈ K. Therefore any non-empty Boolean combinations of
formulas of the form p(x) = 0 is either equivalent to a formula

[x = a1] ∧ . . . ∧ [x = an], al ∈ K

or to a formula

[x 6= a1] ∨ . . . ∨ [x 6= an], al ∈ K, 1 ≤ l ≤ n

It is clear now that either ψ =⊥ or ∃xψ(K) 6= ∅.�

Corollary 8.18. C:aclacf Let F be an algebraically closed field, A
a subring of F containing 1 and E ⊂ F be the field of fractions of
A. Let dcl(A), acl(A) be the definable and the algebraic closures of the
structure A in the model F of ACF . Then

a) acl(A) is the algebraic closure Ē of E in F .

b) dcl(A) is the perfect closure of E in F .

Proof. a) It is clear that acl(A) contains the algebraic closure of E.
So it is sufficient to show for any algebraically closed subfield E of F we
have acl(E) = E. Since the theory ACF admits quantifier elimination,
E ⊂ F is an elementary submodle. Therefore [ see Problem 6.2 c)]
acl(E) = E.

b) It is clear that dcl(A) contains the perfect closure of E. So it is
sufficient to show for any perfect subfield E of F we have dcl(E) = E.
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The groupGal(Ē/E) acts on acl(E) = Ē and it is clear that dcl(E) ⊂
E)Gal(Ē/E). But the standard Galois theory of fields implies that dcl(E) ⊂
EGal(Ē/E) is the perfect closure of E.�

Our next goal is to show that the theory RCF of real closed fields
also admits QE. I start with a short reminder of the theory of real
closed fields.

Definition 8.19. Let F be an ordered field. A real closure of F is a
real closed field E ⊃ F such that the ordering on E induces a given
ordering on F and such that every element of E is algebraic over F .

Lemma 8.20. L:or Let F be an ordered field. Then
a) there exists a real closure E ⊃ F of F ,
b) if E,E ′ are two real closures of F , then there exist an order field

isomorphism f : E → E ′ trivial on F .

A proof of this Lemma can be found on pages 452-457 of [L].

Lemma 8.21. Any simple existential formula ψ of RCFK is equivalent
to a union of points x = a and intervals {a < x}, {a < x < b}, {x <
b}, a, b ∈ K.

Proof of Lemma 8.21. As follows from the Problem 6.6 d) ψ is
equivalent to a Boolean combinations of sentences of either of the form
p(x) = 0 or of the form a < p(x) where p(x) ∈ K[x], a ∈ K. Since
any Boolean combinations of a union of intervals and points is itself a
union of intervals and points, it is sufficient to show that sets Vφ where
φ are formulas of the form p(x) = 0 or a < p(x), p(x) ∈ K[x], a ∈ K
are equivalent to unions of intervals and points.

Consider first the set ψ = [p(x) = 0]. I claim that in this case Vψ
is equal to the union of points which are the roots of p(x) in K. For
this we have to show that for any real closed extension K ′ ⊃ K we
have Vψ(K ′) = Vψ(K). But it is clear that all elements of Vψ(K ′) are
algebraic over K. So the result follows from Lemma 8.20.

Consider now the set ψ = [a < p(x)]. Let b1 < . . . < bn be roots of
p(x) − a in K. We can write p(x) − a in the form

p(x) − a = c
∏

1≤l≤n

(x− bl)
nlq(x)

where q(x) is a monic polynomial which does not have roots in K.
The same arguments as before show that for any real closed extension
K ′ ⊃ K and any t ∈ K ′ we have 0 < q(t). In other words the formula
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a < p(x) is equivalent to the formula φ′ = [0 < c
∏

1≤l≤n(x− bl)
nl]. But

it is clear that Vφ′ equivalent to a union of points and intervals.�

Theorem 8.22. The theory RCF of real closed fields admits QE.

As follows from the Theorem 8.11 it is sufficient to check now that
the theory RCF satisfies the isomorphism and the submodel conditions
.

a) For the proof of the isomorphism condition we have to show that
for any pair K,K ′ of real closed fields, a pair of subrings A ⊂ K,A′ ⊂
K ′ and a ring isomorphism f0 : A→ A′ there exist real closed subfields
E ⊂ K,E ′ ⊂ K ′ containing A,A′ and an isomorphism f : E → E ′

extending f : A→ A′.

Let F ⊂ K,F ′ ⊂ K ′ be the quotient rings of A,A′. It is clear that
f0 extends uniquely to an isomorphism f1 : F → F ′ of ordered fields.

Let E ⊂ K,E ′ ⊂ K ′ be subfields of elements algebraic over F, F ′. It
is clear that E,E ′ are real closed fields and therefore real closures of
F . It follows now from Lemma 8.20 that there exists an isomorphism
f : E → E ′ of ordered fields such that fF = f1.

b) let K ⊂ K ′ be real closed fields. We have to show that for
any simple existential sentence φ of LK such that Vφ(K) = ∅ we have
Vφ(K

′) = ∅.

As follows from Lemma 8.21, the sentence φ is equivalent to a formula
∃x ∈ C where C is a union of points x = a, a ∈ K and intervals with
endpoints in K. It is clear then that Vφ(K) = ∅ iff C = ∅. But then
Vφ(K) = ∅.�

Definition 8.23. We say that a set X ⊂ Rn is semialgebraic if X =
Vφ(R) where φ is an open sentence in OFR. [In other words X is if a
Boolean combination of subsets of Rn of the form p(x) = 0 or p(x) > 0
for p(x) ∈ R[x].]

Corollary 8.24. Let f : Rn+1 → R be a function with a semialgebraic
graph and Xf ⊂ Rn be the set of points x ∈ Rn such that the limit
limy→+∞ f(x, y) exists. Then the set Xf is semialgebraic.

Proof. Let

ψ = [x ∈ An|∃a∀ǫ > 0∃r∀y > r∃z[f(x, y) = z ∧ (z − a)2 < ǫ]

Then X = ψ(R).

Since RCF admitsQE there exists an open formula φ in the language
of OFR equivalent to ψ. Therefore the set Vψ(R) is equal to Vφ(R)�.
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Corollary 8.25. Let V be a finite-dimensional real vector space, P (v)
a real-valued polynomial function on V . Define a function yP (x) for
x > 0 by

yP (x) := min‖v‖2=xP (v)2

Then there exists a non-zero q(x, y) ∈ R[x, y] such that q(r, yP (r)) ≡ 0.

Proof. Let

ψ(x, y) = [∃v : ‖v‖2 = x ∧ P (v)2 = y]

Since RCF admits QE there exists an open formula φ(x, y) equivalent
to ψ(x, y). But any such φ(x, y) has a form

φ(x, y) = φ1(x, y) ∨ . . . ∨ φn(x, y)

where φi(x, y), 1 ≤ i ≤ n is a system Si of polynomial equalities and
inequalities. Since yP (x) is function, we see that for any i, 1 ≤ i ≤ n
the system Si contains a non-trivial equality qi(x, y) = 0. Now we can
take q =

∏
1≤i≤n qi.�

Problem 8.26. a) In the set-up of the Corollary 8.25 show the exis-
tence of a rational number r and a real number a such that yP (x) = axr

for small x > 0,

b) let X be the set of zeros of P in the ball ‖v‖ ≤ 1. Show that if
X 6= ∅ then there exist A ∈ R, r ∈ Q such that |P (v)| ≥ Adr(X, v)
where d(X, v) is the distance from v to X,

c) For any polynomial P (x) ∈ R[x1, ..., xn] there are positive con-
stants c, r such that

|P (x)| ≥ c|x−X|r, ∀x ∈ Rn, |x| ≤ 1

where X ⊂ Rn is the set of zeros of P and |x| =
√
x2

1 + ... + x2
n.

Remark 8.27. You can find other applications of Theorem 2 in [G]

Theorem 8.28. T:QEV The theory AV F admits QE.

Proof. As before we have to check that AV F satisfies the isomor-
phism and the submodel conditions.

a) To prove the isomorphism condition we have to show that for
any pair v : F → Γ, v′ : F ′ → Γ′ of valued fields, valued subdomains
(A,Π), (A′,Π′) and an isomorphism f : (A,Π) → (A′,Π′) we can extend

f to an isomorphism f̃ : E → E ′ of valued subfields of F, F ′ containing
A,A′ and such that Π ⊂ v(E⋆),Π′ ⊂ v′(E ′⋆). By enlarging Π,Π′ we
can assume that Π,Π′ are ordered divisible groups.
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We consider first the case when Π ⊂ v(A−{0})o×Q. The existence
of an isomorphism f : (A,Π) → (A′,Π′) shows that in this case Π′ ⊂
v′(A′ − {0}) ⊗ Q. Let E ⊂ F,E ′ ⊂ F ′ be the fraction fields of the
rings A,A′. It is clear that f extends f to an isomorphism f ′ : E → E ′

of substructures E,E ′ of F, F ′. Let Ẽ, Ẽ ′ be the algebraic closures of
E,E ′ in F, F ′. As follows from the uniqueness of the algebraic closure
[ see Corollary 7.7] the isomorphism fE extends to an isomorphism

f̃ : Ẽ → Ẽ ′. Since Π ⊂ v(A− {0}) ⊗ Q,Π′ ⊂ v′(A′ − {0}) ⊗ Q valued
fields E,E ′ are extensions of thesubstructures (A,Π), (A′,Π′).

It is sufficient now to show that any pair E,E ′ of algebraically
closed subfields of F, F ′, divisible subgroups Π ⊂ Γ,Π′ ⊂ Γ′ containing
v(Ẽ⋆), v′(Ẽ ′⋆) and an isomorphism f : (E,Π) → (E ′,Π′) we can ex-

tend it to an isomorphism f̃ : (A,Π) → (A′,Π′) where (A,Π), (A′,Π′)
are substructures of F, F ′ such that Π = v(A − {0})o × Q,Π′ =
v′(A′ − {0}) ⊗ Q. By induction in dimQ(Π/v(E⋆)) we can assume
that

Π = v(Ẽ⋆) ⊕ Qe,Π = v′(Ẽ ′⋆) ⊕ Qe′

Choose now any x ∈ F, x′ ∈ F ′ such that v(x) = e, v′(x′) = e′. Since
x, x′ do not belong to algebraically closed subfields A.A′ of F, F ′ there
exists an extension of field isomorphism f : E → E ′ to a field iso-
morphism f̃ : E(e) → E ′(e). The same arguments as in the proof of

Lemma 7.16 show that f̃ : A(e) → A′(e) is an isomorphism of valued
fields. So we can take A = E(e), A′ = E ′(e′).

b) The submodel condition. Let F ⊂ F ′ be two models and φ a
simply existential sentence of T . We have to show that if Vφ(M

′) 6= ∅
then Vφ(M) 6= ∅.

As follows from Proposition 7.21 b) we can assume that Vφ belongs
to C. But then the claim follows from Proposition 7.21 a) .�

Corollary 8.29. L:aclacvf Let F be an algebraically closed valued field
[ that is a model M of AV F ] and E ⊂ F a subfield. Then

a) acl(E) is the algebraic closure Ē of E in F .

b) dcl(E) = E iff E is perfect and the ring OE is Henselian.

Proof. a) We have to show that for any algebraically closed subfield
E of F we have acl(E) = E. If the restriction of the valuation v :
F − {0} → Γ to E is not trivial then E is a model of AV F and the
claim follows from Problem 6.2 c).

Consider now the case when the restriction of the valuation v : F −
{0} → Γ to E is trivial. By replacing F by a bigger algebraically
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closed valued field we can assume the existence of elements t′, t′′ in F
which are algebriacally independent over E and such that v(t′) 6= 0̄
and v(t′′) 6= 0̄. Let E ′, E ′′ ⊂ F be the algebraic closures of E(t′), E(t′′).
Since the restrictions of the valuation v on E ′ and E ′′ are not trivial we
see that acl(E) ⊂ E ′ ∩E ′′. On the other hand since elements t′, t′′ are
algebriacally independent over E we have E ′∩E ′′ = E. So acl(E) = E.

b) Assume that the field E is perfect and the ring OE is Henselian.
We want to show that dcl(E) = E. Let Ē be the algebraic closure of
E in F . Since OE is Henselian the there exists unique extension of the
valuation v : E⋆ → Γ to a valuation v̄ : Ē⋆ → Γ × Q on Ē. Therefore
dcl(E) ⊂ EGal(Ē/E) = E.

Now we have to show that dcl(E) 6= E in the case when OE is not
Henselian. In this case we can find a monic polynomial p(t) ∈ OE [t]
such that the reduction p̄(t) ∈ k[t] of p(t) mod m is a product of
relatively prime factors q̄(t), r̄(t) which does not lift to a decomposition
p(t) = q(t) × r(t), q(t), r(t) ∈ OE [t].

Since any algebraically closed field is Henselian there exists unique
lift of the decomposition p̄(t) = q̄(t) × r̄(t) to a decomposition p(t) =
q(t) × r(t), q(t) in a product of monic polynomials in OF [t]. But then
of the polynomials q(t), r(t) belong to dcl(E).�

9. Galois theory and saturated models

As we have seen [Problem 6.6] for any model M of the theory ACF
and a substructure A ⊂ U = U(M) the rational closure dcl(A) of
A in U coincides with the set of Gal(M,A)-fixed points of U where
Gal(M,A) is the subgroup of the group of automorphisms σ of the
model M such that σ(a) = a for all a ∈ A.

Unfortunately for other theories we can not describe the rational
closure dcl(A) as the set of fixed points of Gal(M,A).

Consider for example valued field Q̄p as a model of the theory AV F
and a substructure [ even a submodel] A of of elements of Q̄p which
are algebraic over Q. Then Gal(M,A) = {e} but A 6= U(M).

It is natural to ask about the existence of models M for which the
Galois theory holds.

Definition 9.1. D:satur Let M be an infinite model of a theory T
and A a substructure of M . We say that

a) M is A-saturated if any type p ∈ S1(M,A) of the theory T (M,A)
is realizable in M .
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b) M is κ-saturated if for any substructure A of cardinality less then
κ the model M is A-saturated.

c) M is saturated if it is κ(M)-saturated.

Remark 9.2. In the case when T is a complete theory and M is a
saturated model of T we will often identify LM -definable sets D with
the subsets D(M) ⊂Mn.

Problem 9.3. P:satur a) Let M be a saturated model of T, U = U(M)
Show that

a) for any n ∈ N the topological space (Un(M), T (M)) is quasi-
compact.

b) Let Xi, i ∈ I be a set of closed subsets of Un(M) such that κ(I) <
κ(U) and for any finite subset I ′ ∈ I the intersection ∩i∈I′Xi is not
empty. Then ∩i∈IXi 6= ∅.

c) An algebraically closed field [considered as a model of ACF ] is
saturated iff it has infinite trancendence degree over it’s prime subfield.

d) If M a saturated model of T then any type p ∈ Sn(T (M,A)) is
realized.

e) IfM a saturated model of T then topological spaces (U(M)n, T (M)), n ∈
N [ see Definition 6.7 l)] are quasi-compcat.

Proposition 9.4. P:count
A theory T with a countable language L has a countable saturated

model iff sets Sn(T ) are countable for all n ∈ N.

We start with the folloing result.

Lemma 9.5. Let T be theory such that all the sets Sn(T ), n ∈ N are
countable. Then for any model M of T and any finite subset A ⊂ U(M)
all the sets Sn(T (M,A)), n ∈ N are countable.

Proof of Lemma. By the definition any formula ψ of LA has a
form

ψ = ψ̃x1,...,xm
[u1, . . . , um]

for some formula ψ̃ of L. Therefore the set Sm(T (M,A)), m ∈ N is a
subset of ∪∞

n=1Sn(T ).�

Proof of Proposition 9.4. a) Suppose that T has a countable
saturated model M . Then any type p ∈ Sn(T ) is realizable by some
ū ∈ U(M)n. Since U(M) is countable the set Sn(T ) is also countable.
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b) Assume that all the sets Sn(T ) are countable. Then ( see Theorem
4.1) there exists a countable model M0 of T . Now it follows from Prob-
lem 6.11 a) that there exists an elementary monomorphism M0 ≺ M1

such that for any finite set A ⊂ U(M) all the types Sn(T (M,A)), n ∈ N
are realizable in M1 and U(M1) is countable.

By induction we can define elementary monomorphism Mn ≺ Mn+1

such that all the types T (Mn) are realized in Mn+1 and the sets U(Mn)
are countable. Let M be the direct limit of the direct system M0 ≺
M1 . . . ≺ Mn . . . . Since any type of M comes from a type of Mn for
some n ∈ N we see that M is saturated. Since the set U(M) is a direct
limit of countable sets U(Mn) it is countable.�

The validity of the next result Proposition is conditional - it depends
on the acceptence of the Generalized continuum hypothetisis.

Proposition 9.6. P:satur If T is a theory with countable language
then for any regular uncountable cardinality κ there exists a saturated
model M of T of cardinality κ.

Let N be a model of T of cardinality κ. As follows from the GCH
the cardinality of the set of all subsets of U(N) of cardinality < κ
is also equal to κ. As follows from Problem 6.11 a) there exists an
elementary monomorphism N ≺ N ′ such that κ(N ′) = κ and for any
subset A ⊂ U = U(N) of cardinality κ all the types p ∈ S1(T,A) are
realized in N ′.

We choose a model M0 of T of cardinality κ and construct by the
transfinite induction an elementary directed system of models Mδ, δ ≤
κ, κ(Mδ) = κ such that for any δ < κ and any subset A ⊂ U = U(Mδ)
of cardinality κ all the types p ∈ S1(T,A) are realized in Mδ+1.

If δ = γ + 1 we define Mδ = M ′
γ . On the other hand if δ is a limit

ordinal we define Mδ = lim−→Mγ , γ < δ. It is easy to see that for any
δ ≤ κ we have κ(Mδ) ≤ κ.

I claim that M = Mκ is a saturated model of T . We have to show
that for any subset A ⊂ U = U(M) of cardinality < κ any type
p ∈ S1(T,A) is realizable in M . Since the cardianl κ is regular there
exists δ < κ such that A ⊂ U(Mδ). But then any p ∈ S1(T,A) is
realizable in Mδ+1 ≺M.�

To show that the Galois theory holds for saturated models we start
with the following definition.

Definition 9.7. D:homog Let T be a theory with the language L and
M be a model of T .
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a) If f : A → B is a bijection between subsets of U = U(M) and
ψ is a sentence of LA we denote by f(ψ) the sentence in LB obtained
by the substitution of every occurence of a ∈ A in ψ by f(a) ∈ B. [In

other words, if ψ = ψ̃x1,...,xr
[a1, ..., ar] where ψ̃ is formula in L with free

variables x1, ..., xr then f(ψ) = ψ̃x1,...,xr
[f(a1), ..., f(ar)]].

b) We say that a bijection f : A → B between subsets and A,B of
U = U(M) is an elementary partial automorphism of M if a sentence
ψ of LA is true in M iff the sentence f(ψ) is true in M . In this case
we write

< M, a >a∈A≡< M, f(a) >a∈A

c) We say that an elementary partial automorphism f : A → B is
immediately extendable if for any u ∈ U − A there exists an element
u′ ∈ U − B such that the extention of f to a bijection f ′ : A ∪ {u} →
B ∪ {u′} is an elementary partial automorphism.

d) We say that the modelM is homogeneous if any elementary partial
automorphism f : A → B such that κ(A) < κ(U) is immediately
extendable.�

Lemma 9.8. L:homog If M a homogeneous and A a subset of U of
cardinality less then κ := κ(U). Then every elementary partial au-
tomorphism f : A → B of M of can be extended to an elementary
automorphism of M .

Proof Using the transfinite induction it is easy to extend f to an
elementary partial automorphism f ′ : U → C ⊂ U . On the other hand
if one works with f−1 : B → A it is easy to extend f to an elementary
partial automorphism f ′′ : C → U . So it is not surprising that the
construction of an extensions of f to an elementary automorphism of
M is based on the back-and-forth technique when on even steps we
build extensions of f and on odd steps extensions of f−1.

By the assumption κ(U − A) = κ(U − B) = κ. We can write

U − A = {xδ|δ < κ}, U −B = {yδ|δ < κ}

Now we define elements cδ ∈ U − A, dδ ∈ U − B, δ < κ} by induction
in δ in such a way that the extensions fδ of f to a map

fδ : A ∪ ∪γ<δcγ → B ∪ ∪γ<δdγ , fδ(cγ) = dγ

are elementary partial automorphisms.

If δ is a limit ordinal and fγ is defined for all γ < δ then fδ is also
defined. So we have only to explain how to define fγ+1 if fγ is already
defined.
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Case 1. γ is even [ see Definition 3.1 e)] .

Let cγ be the element in U − (A∪∪ǫ<γcǫ) with least subscript. Since

fγ : A ∪ ∪ǫ<γcǫ → B ∪ ∪ǫ<γdǫ

is an elementary partial automorphism and M is homogeneous we can
find b ∈ U − (B ∪ ∪ǫ<γdǫ) such that

< M, a, cǫ, cγ >a∈A,ǫ<γ≡< M, f(a), dǫ, b >a∈A,ǫ<γ

and define dγ = b

Case 2. γ is odd.

Apply the same procedure to f−1. Let dγ be the element in U −
(B∪∪ǫ<γdǫ) with least subscript. Since M is homogeneous we can find
ã ∈ U − (A ∪ ∪ǫ<γcǫ) such that

< M, a, cǫ, ã >a∈A,ǫ<γ≡< M, f(a), dǫ, dγ >a∈A,ǫ<γ

and define cγ = ã.

It is easy to see that the maps fδ are elementary partial automor-
phisms and the map fκ is a bijection which defines an elementary au-
tomorphism of M extending f.�

Problem 9.9. P:iso a) Let M,M ′ be two saturated elementary equiv-
alent models of the same cardinality. Then M and M ′ are isomorphic.

A hint. Use the back-and-forth arguments as in the proof of Lemma
9.8.

b) Let M,M ′ be two homogeneous models of a theory T of the same
cardinality which realize the same set of n-types for all n ∈ N. Then
M and M ′ are isomorphic.

c) Let ω be the countable cardinal, ω1 = ω+, ωn+1 = ω+
n , ωω =

∪n∈Nωn. Show that the theory LO of linear ordering does not have
a saturated model of the cardinality ωω.

Now we develope the Galois theory for saturated models.

Definition 9.10. a) Let M be a saturated model of a theory T with
a countable language, U = U(M), Gal(M) be the group of automor-
phisms of M and D be an M-definable subset of Un. We define

a) Gal(M,D) := {σ ∈ Gal(M)|σ(x) = x∀x ∈ D(M)} .

b) St(D) = {σ ∈ Gal(M)|σ(D(M)) = D(M)}.

c) d̃cl(D) = {ū ∈ U⋆|σ(ū) = ū, ∀σ ∈ St(D)}.
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d) ãcl(D)) is the set of all points ū ∈ U⋆ such that there exists a
finite St(D)-invariant definable set D containing ū.

e) We say that ū ∈ Um is a canonical parameter of D if Gal(M, ū) =
St(D).

f) We say that ū ∈ Um is an alomost canonical parameter of D if
Gal(M, ū) is a subgroup of finite index of St(D).

Lemma 9.11. L:homsat Let M be a saturated model of a theory T
with a countable language, A ⊂ U(M) be a finite subset and Gal(M)
be the group of automorphisms of M .

a) M is homogeneous.

b) Let D ⊂ Un be a LM -definable subset such that the subset D(M) ⊂
Mn is Gal(M)-invariant. Then D is T -definable.

c) If v̄ = (v1, . . . , vm ∈ Um is a canonical parameter of an M-
definable subset D ⊂ Un then there exists a formula ψ(x1, . . . , xn; y1, . . . , ym)
such that

{v̄} = {w̄ ∈ Um|D(M) = Vψy1,...,ym [v̄]}

Proof of Lemma 9.11. a) Let f : A → B an elementary partial
automorphism of M and u an elelment of U . Let pA(u) ∈ S1(TA) be
the type of u and q ⊂ B1(TB) be the set of formulas of the form f(ψ)
for [ψ] ∈ p. Since f : A→ B is an elementary partial automorphism of
M we have q ∈ S1(TK). But then the extension f ′ : A∪{u} → B∪{u′}
of f is an elementary partial automorphism.

b) Let Bn(D) be the set of formulas ψ such that D(M) ⊂ Vψ :=
Vψ(M) and consider an ∞-definable set

D̃ := ∩ψ∈Bn(D)Vψ

of Un. It is clear that D(M) ⊆ D̃(M). We first show that an assump-

tion that D̃ * D leads to a contrudiction.

Suppose that D̃ * D. Since the model M is saturated there exists

u ∈ D̃(M) −D(M).

Let Bn(u) be the set of formulas φ of L such that u ⊂ Vφ. I claim
that

D(M) ∩ Vφ 6= ∅

for any φ ∈ Bn(u). Really if

D(M) ∩ Vφ = ∅
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then ¬φ ∈ Bn(D). But this would contrudict the assumption that

u ∈ D̃(M).

Since D(M) ∩ Vφ 6= ∅ for any φ in the countable set Bn(u) and the
model M is saturated we have (see Problem 9.6)

D(M) ∩ ∩φ∈Bn(u)Vφ(M) 6= ∅

Choose any v ∈ D(M)∩∩φ∈Bn(u)Vφ(M). By the constuction the types
of u and v coincide and the the map u→ v is an elementary partial au-
tomorphism. Since M is homogeneous it extends to an automorphism
σ ∈ Gal(M) such that σ(u) = v. Since v /∈ D(M) such an equality
would contrudict the assumption that D(M) is Gal(M)-invariant.

Now it follows from Lemma 6.16 that D is a T -definable set.

c) Let v̄ = (v1, . . . , vm) ∈ Um be a canonical parameter of an M-
definable subset D ⊂ Un and Tv̄ = T (M, v̄) [see Definition 2.21 d)].
Since Gal(T, v̄) ⊂ St(X) and Gal(Tv̄) = Gal(T, v̄) it follows from the
part b) that there eixsts a formula ψ′

0(x1, . . . , xn) in the language Lv̄
such that D(M) = Vψ′

0
(M). By the definition of the language Lv̄ there

exists a formula ψ0(x1, . . . , xn; y1, . . . , ym) in the language L of T such
that

ψ′
0(x1, . . . , xn) = ψ0,y1,...,ym

[v1, . . . , vm]

Let Ψ be the set of all the formulas ψ(x1, . . . , xn; y1, . . . , ym) such that

D(M) = Vψy1,...,ym [v1,...,vm](M)

For any ψ ∈ Ψ we define

Wψ = {(w1, . . . , wm) ∈ Um|D(M) = Vψy1,...,ym [w1,...,wm](M)}

Since Gal(T, v̄) ⊃ St(X), the same arguments as in the proof of b)
show that

{v̄} = ∩ψ∈ΨWψ

Now the same arguments as in the proof of Corollary 6.14 show the
existence of a formula φ(x1, . . . , xn; y1, . . . , ym) such that

{v̄} = {(w1, . . . , wm) ∈ Um|D(M) = Vφy1,...,ym [w1,...,wm](M)�

Corollary 9.12. C:Gal a) Any subset A of U of cardinality smaller
then κ(U) we have dcl(A) = UGal(M,A) where

Gal(M,A) = {σ ∈ Gal(M)|σ(a) = a∀a ∈ A}

Proof. By replacing the theory T with T (M,A) we can assume that
A = ∅. But in this case Corollary 9.12 follows from Lemma 9.11 b) if
D = {u}.�
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Definition 9.13. D:addrel Let T be theory of the type τ =< I, J,K, n,m >
and let M be a saturated model of T, U = U(M), X ⊂ Un be a defin-
able set. We define

a) τX =< I, J ∪ ⋆,K, n⋆, m > where n⋆ is the extension of n such
that n⋆(⋆) = n.

b) MX is the extension of M to a τX such that ⋆MX = X.

c) TX = T (MX)

Corollary 9.14. C:addrel For any u ∈ USt(X) there exists a formula
ψ in the language LτX such that Vψ = {u}

Proof. Apply Lemma 9.11 b) for the theory is TX to the case when
D = {u}.

10. Imaginary elements

In this section we will assume that T is a complete theory with a
countable language L,M is a saturated model of T and write U =
U(M).

Definition 10.1. D:parameter a) A subset D ⊂ Mn is M-definable
if there exists a finite subset A ⊂ M and a formula ψ in the language
LA such that D = Vψ(M).

b) A subset D ⊂ Mn is definable if there exists a formula ψ in the
language L such that D = Vψ(M).

c) If X is an M-definable subset a canonical parameter of X is a
point ū ∈M⋆ such that St(X) = Gal(M, ū).

d) An almost canonical parameter of X is a point ū ∈M r such that
St(X) ⊂ Gal(M, ū) is a subgroup of finite index.

Example 10.2. E:parameter Consider a subset {(a, b)∪(b, a)} ⊂M2.
Then

a) in the theory TF the point (a+ b, ab) is a canonical parameter of
the set (a, b).

b) in the theory of AG of abelian groups the set (a, b) does not have
a canonical parameter.

There is a class of theories for which a M-definable subset D ⊂ Mn

admits an almost canonical parameter.

Definition 10.3. D:str a) A theory T is strongly minimal if form any
model M of any M-definable subset of U in T (M) is either a finite set
or a complement to a finite set.
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Example 10.4. E:str The theory and ACF are strongly minimal but
the theory TF is not strongly minimal since it has an extension RCF
which is not strongly minimal.

Lemma 10.5. L:wea Let T be a strongly minimal theory such that
for any model N of T the set acl(N0) is infinite [see Definition 2.1 e)
and Definition 6.1], M be a saturated model of T and ∼ a definable
equivalence relation of on Mn. Then any equivalence calss D ⊂ Mn

admits an almost canonical parameter.

Proof. Since the equivalence relation ∼ is T -definable any point
ū ∈ D such that the orbit St(D)(ū) is finite is an almost canonical
parameter for D. So is sufficien to show that any M-definable D ⊂ Mn

contains a point ū such that the orbit St(D)(ū) is finite. We prove the
existence of such a point by induction in n.

Consider the projection X ⊂ U of D onto the n-th component. Since
the theory T strongly minimal either X is finite or U −X is finite.

If X is finite and choose a point u ∈ X. Since St(D)(u) ⊂ X we see
that the orbit St(D)(u) is finite. Let St′(D) be the stabilizer of u in
St(D)(u). Then

D′ := D ∩ Un−1 × {u} 6= ∅

and St(D′) ⊃ St′(D). By the inductive assumption there exists ū ∈ D′

such that the orbit St(D′)(ū) is finite. Therefore the orbit St(D)(ū) is
also finite.

Assume now that U − X is finite. Since the set acl(M0) is infinite
we can find u ∈ acl(M0) ∩ X. Let St′(D) be the stabilizer of u in
St(D)(u). Then

D′ := D ∩ Un−1 × {u} 6= ∅

and St(D′) ⊃ St(D′). By the inductive assumption there exists ū ∈ D′

such that the orbit St(D′)(ū) is finite. Therefore the orbit St(D)(ū) is
also finite.�

Definition 10.6. D:EI A theory T admits an elimination of imagi-
naries (EI) if for any model M of T all M-definable subsets admit a
canonical parameter.

Lemma 10.7. L:EI Let T be a theory of a 1-sorted similarity type.
Then the following three conditions are equivalent.

(1) A theory T admits EI.

(2) For any equivalence relation ∼ on U r there exists a definable map
p : U r → U l such that x ∼ y ↔ p(x) = p(y).
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(3) For any equivalence relation ∼ on U r and any model M of T all
equivalence classes X ⊂ M r of ∼ admit canonical parameters.

Proof. (3) =⇒ (1). Let D be an M-definable subset of U r. Then
there exists a formula ψ(x1, . . . , xr; y1, . . . , yn) in L and ū0 = (u0

1, . . . , u
0
n) ∈

Un such that D = Vψ(ū0) where ψ(ū0) = ψy1,...,yn
[u0

1, . . . , u
0
n]. We define

an eqivalence relation of Un by ū ∼ v̄ ↔ Vψ(ū) = Vψ(v̄). Let X ⊂ Mn

be the equivalence class of ū0. By (3) X admits a canonical parameter
w̄ ∈ Um. But it follows now from Lemma 9.11 b) that w̄ is a canonical
parameter of D.

(1) =⇒ (3). Clear.

(2) =⇒ (3). Let X ⊂ M r be an equivalence class of an equivalence
relation ∼ on U r and p : U r → U l be a definable map such that
x ∼ y ↔ p(x) = p(y). Then w̄ = p(X) is a canonical parameter of X.

(3) =⇒ (2). For any v̄ ∈ U r we denote by ūv̄ ∈ Um(v) a canonical
parameter of the equivalence class Dv̄ of v̄. As follows from Lemma
9.11 c) for any v̄ ∈ U r there exists a formula ψv̄(x1, . . . , xn; y1, . . . , ym(v̄))
such that

Dv̄(M) = {(u1, . . . , un) ∈ Un|ψv̄y1,...,ym(v̄)
[u1, . . . , um(v̄)] = {ū}}

Let Uv̄ be the set of w̄ ∈ Um(v̄) such that the set

{w̄ ∈ Um(v)|Dw̄(M) = {(u1, . . . , un) ∈ Un|ψv̄y1,...,ym(v̄)
[w̄]

By the definiton Uv is an open subset of Um(v) containing v̄. It follows
now from Problem 9.6 there exists a finite subset (v̄1, . . . , v̄l) of U r such
that U r = ∪li=1Uv̄i

. Let Vi = Uv̄i
−(∪j<iUv̄j

∩Uv̄i
). Then U r is a disjoint

union of Vi, 1 ≤ i ≤ l. For any i, 1 ≤ i ≤ l the formula the restriction
of the formula ψv̄y1,...,ym(v)

[u1, . . . , um(v)] to Vi is a definable pi map from

Vi to Um(v̄i). Since U r is a disjoint union of Vi, 1 ≤ i ≤ l we can define
p : U r → ⊕Um(v̄i), 1 ≤ i ≤ l in such a way that the restriction of p on
Vi is given by pi.�

Problem 10.8. P:EI Formulate the analog of Lemma 10.7 for many
sorted theories.

Lemma 10.9. L:EI1 The following two conditions are equivalent

(1) A theory T admits EI.

(2) For any equivalence relation ∼ on Ar there exists a definable map
p : Ar → Al such that x ∼ y ↔ p(x) = p(y).

(3) Any equivalence class X ⊂ M r of an equivalence relation ∼ on
Ar has a canonical parameter.
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Proof. (3) =⇒ (1). Let D be an M-definable subset of Ar. Then
there exists a formula ψ(x1, . . . , xr; y1, . . . , yn) in L and ū0 = (u0

1, . . . , u
0
n) ∈

Un such that D = Vψ(ū0) where ψ(ū0) = ψy1,...,yn
[u0

1, . . . , u
0
n]. We define

an eqivalence relation of An by ū ∼ v̄ ↔ Vψ(ū) = Vψ(v̄). Let X ⊂ Mn

be the equivalence class of ū0. By (3) X admits a canonical parameter
w̄ ∈ Um. But it follows now from Lemma 9.11 b) that w̄ is a canonical
parameter of D.

(1) =⇒ (3). Clear.

(2) =⇒ (3). Let X ⊂ M r be an equivalence class of an equivalence
relation ∼ on Ar and p : Ar → Al be a definable map such that
x ∼ y ↔ p(x) = p(y). Then w̄ = p(X) is a canonical parameter of X.

(3) =⇒ (2). For any v̄ ∈ U r we denote by ūv̄ ∈ Um(v) a canonical
parameter of the equivalence class Dv̄ of v̄. As follows from Lemma
9.11 c) for any v̄ ∈ U r there exists a formula ψv̄(x1, . . . , xn; y1, . . . , ym(v̄))
such that

Dv̄(M) = {(u1, . . . , un) ∈ Un|ψv̄y1,...,ym(v̄)
[u1, . . . , um(v̄)] = {ū}}

Let Uv̄ be the set of w̄ ∈ Um(v̄) such that the set

{barw ∈ Um(v)|Dw̄(M) = {(u1, . . . , un) ∈ Un|ψv̄y1,...,ym(v̄)
[w̄]

By the definiton Uv is an open subset of Um(v) containing v̄. It follows
now from Problem 9.6 there exists a finite subset (v̄1, . . . , v̄l) of U r such
that Ar = ∪li=1Uv̄i

. Let Vi = Uv̄i
− (∪j<iUv̄j

∩Uv̄i
). Then Ar is a disjoint

union of Vi, 1 ≤ i ≤ l. For any i, 1 ≤ i ≤ l the formula the restriction
of the formula ψv̄y1,...,ym(v)

[u1, . . . , um(v)] to Vi is a definable pi map from

Vi to Am(v̄i). Since Ar is a disjoint union of Vi, 1 ≤ i ≤ l we can define
p : Ar → ⊕Am(v̄i), 1 ≤ i ≤ l in such a way that the restriction of p on
Vi is given by pi.�

Corollary 10.10. C:EIACF The theory ACF admits the elimination
of imaginaries.

Proof. We have to show that for any equivalence relation ∼ on Ar

any equivalence class X ⊂ M r of ∼ on Ar has a canonical parameter.
Since the theory ACF is strongly minmal it follows from rlwea that we
can find ū = (u1, . . . , un) such that the orbit St(X)(ū) is finite. So we
can write

St(X)(ū) = ∪mi=1ū
i, ūi = (ui1, . . . , u

i
n), 1 ≤ i ≤ m
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Then coefficents cr, r ∈ R of the polynomial

P (Z, T1, . . . , Tn) =
m∏

i=1

(Z + ui1T1 + . . . uinTn)

are St(X)-invariant. It is clear that the point (c1, . . . , cR) ∈ U⋆ is a
canonical base of X.�.

If the theory T does not admit EI then one can extend it to a theory
T eq which already admit EI by adjoining imaginary elements. For the
simplicity I assume that the theory T is complete and that the type
τ =< I, J,K,m, n > of T has only one sort λ0.

Definition 10.11. D:eq We define T eq as a many-sorted theory where
the set Λ of sorts as the union Λ = 0 ∪ ∪E∈E where E is the set of all
the definable equivalence realtions E ⊂ Am(E) × Am(E) in such a way
that

a) The type τ eq =< Ieq, Jeq, Keq, neq, meq > is the type with sorts Λ
such that

i) Ieq = I, Jeq = J ∪ ∪E∈EjE , K
eq = K

ii) the restriction of neq and meq on I coincides with n and m.

iii) meq(jE) = (0r(E), E).

b) The structure Meq of the type τ eq as the extension of the model
M of T with

i) the universe U0 = U(M) and UE be the set of equivalence classes
of M r(E) under the equivalence relation E(M).

ii) the functions fjE : U(M)r(E) → UE be the natural projections.

c) The theory T eq(M) is the complete theory T (Meq) of the structure
Meq.

Problem 10.12. P:image Show that a) The assignment M →Meq is

a functor from the category M(τ) to the category M(τ eq) [ see Defini-
tion 6.1] which defines an equivalence of categories.

b) If the theory T is complete then the theory T eq(M) does not depent
on a choice of a model M .

Remark 10.13. a) Since for a complete theory T all the theories
T eq(M) are isomorphic we denote the corresponding theories as T eq.

b) Often people identify the type 0 with the type =.
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Problem 10.14. P:eq If M a model of a complete theory T and ū, ū′ ∈
Un(M) are such that pū(T ) = pū′(T ) then pū(T

eq) = pū′(T
eq) [see

Definition 6.7 c)].

A hint. The proof is analogous to the proof of Lemma 9.11.

Lemma 10.15. L:eq For any complete theory theory T the theory T eq

admits EI.

Proof. Let M be a saturated model of T . We have to show that for
any T eq-definable equivalence relation ∼ on a (UE1 ∪ . . .∪ UEk

)n there
exists a T eq-definable set D and T eq-definable map f : UE1∪. . .∪UEk

→
D such that ū ∼ ū′ iff f(ū) = f(ū′). For simplicity of notations I assume
that n = 1.

Let ∼i be the equivalence relations on U ri corresponding to Ei, 1 ≤
i ≤ k and m be the maximum of ri. Let A ⊂ Um+k+1 be the set of
(m + k + 1)-tuples (a0, a1, . . . , ak; b1, . . . , bm), bi ∈ U ri such that there
exists unique i, 1 ≤ i ≤ k such that a0 = ai. We consider an equivalence
relation ∼′ on A such that

(a0, a1, . . . , ak; b1, . . . , bm) ∼′ (a′0, a
′
1, . . . , a

′
k; b

′
1, . . . , b

′
m) iff

(b1, . . . , bri) ∼ (b′1, . . . , b
′
rj

) where i, j are such that a0 = ai, a
′
0 = a′j

and extend it to an equivalence relation E on Um+k+1 by declair-
ing Um+k+1 − A as one equivalence class. By the construction the
equivalence relation E is T eq-definable. It follows now from Prob-
lem 10.14 [ see the proof of Lemma 9.11] that it is T -definable and
we have a T eq-definable map fE : Um+k+1 → UE . Consider now
the T eq-definable map f : UE1 ∪ . . . ∪ UEk

→ UE such that the re-
striction of f(b1, . . . , bri), (b1, . . . , bri) ∈ UEi

, 1 ≤ i ≤ k is equal to
fE(a0, a1, . . . , ak; b1, . . . , bm) where (a0, a1, . . . , ak; b1, . . . , bm) ∈ A is any
points such that a0 = ai and bj ∈ U, ri < j ≤ m are arbitrary. It is clear
that the T eq-definable map f is well defined and fibers of f coincide
with equivalence classes of ∼ .�

Definition 10.16. D:VF We denote by V F ′ the extension of the
V F by elements of the residue field which we interpret as imaginary
elements corresponding to the equivalence on O ⊂ A corresponding to
cosets of the addition by m.

Remark 10.17. The theory V F ′ has three sorts F,Γ, k which corre-
spond to elements of the valued field, the value group and the residue
field.

If F is a valued field which is a local field [ so either the field F is a
finite extension of Qp or it is isomorphic to the field Fq((t))] then the
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maximal ideal m of O is principle and one can chose a generator π of
m. In the proof of the Ax-Kochen theorem we will use an extension
→ V F of V F ′ which axiomatizes the idea of fixing a generator of m.
The corresponding language is called Denef -Pas language.

Definition 10.18. D:tVF We denote by Ṽ F the extension of the V F
by a functional symbol ac from the sort F to the sort k which is the
semigroup homomorphism from the multiplicative group of F to the
multiplicative group of k such that the restriction of ac on O⋆ coincides
with the restriction of the natural map from O → k on O⋆.

11. Ultrafilters

Definition 11.1. D:ultraf Let I be a non-empty set.

a) We denote by Λ(I) the set of subsets of I.

b) A filter D over I is a subset D ⊂ Λ(I) such that

i) I ∈ D

ii) if X, Y ∈ D then X ∩ Y ∈ D

iii) if X ∈ D and X ⊂ Y ⊂ then Y ∈ D

iv) ∅ /∈ D

c) An ultrafilter is a maximal filter.

d) An ultrafilter is ω -regular if there exists a countable decreasing
chain

I = I0 ⊃ I1 ⊃ . . .

of elements In ∈ D such that ∩nIn = ∅.

e) An ultrafilter D is principal if there exists i ∈ such that D =
{X ⊂ I|i ∈ X}.

Definition 11.2. D:ultrap a) If D is an ultrafilter over I and Ui, i ∈ I
are sets we define an equivalence relation ∼D on

∏
Ui by

{ui} ∼D {u′i} if the set X = {i ∈ I|ui = u′i} belongs to D.

b) If D is a filter over I and Ui, i ∈ I are sets we define
∏

D Ui as the
set of equivalence classes by the equivalence relation ∼D and for any
ui ∈

∏
Ui we denote by < ui >∈

∏
D Ui it’s equivalence class.

c) if Mi, i ∈ I are structures of the same type τ we denote by
∏

DMi

the structure of the type τ such that

i) U(M) =
∏

D U(Mi)
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ii) for any n-placed relation symbol R and ūl ∈ U(M), 1 ≤ l ≤ n we
have RM(ū1, . . . , ūn) iff the set X = {i ∈ I|uiR

Mi(u1
i , . . . , u

n
i )} belongs

to D where {uli} ∈
∏
U(Mi) are representatives of ūl, 1 ≤ l ≤ n

iii) for any m-placed function symbol f of Lτ we have

fM(ū1, . . . , ūn) = {fMi(u1
i , . . . , u

m
i )

iv) if c is a constant of Lτ then cM{cMi}

d) if all the models Mi coincide with a fixed model M we denote∏
DMi by

∏
DM and call it the ultrapower of M .

Problem 11.3. P:ultra a) If E ⊂ Λ(I) is a set such that for any finite
set X1, , . . . , Xn of elemtns in E we have ∩ni=1Xi 6= ∅ then there exists
an ultrafilter D over I containing E.

b) If M =
∏

DMi then

i) for any term t(x1, . . . , xn) of Lτ and ūl ∈ U(M), 1 ≤ l ≤ n we
have

tM (ūl) =< tMi
(uli) >

where {uli} ∈
∏
U(Mi) are representatives of ūl, 1 ≤ l ≤ n.

ii) for any formula ψ(x1, . . . , xn) of Ltau and ūl ∈ U(M), 1 ≤ l ≤ n
M |= ψ(ū1, . . . , ūn) if {i ∈ I|Mi |= ψ(u1

i , . . . , u
n
i )} belongs to D.

iii) for any sentence ψ of LLτ

M |= ψ iff {i ∈ I : Mi |= ψ} ∈ D.

Lemma 11.4. L:usat Let T be a theory with a countable language, D
be a ω-regular ultrafilter on a countable set I and Mi, i ∈ I models of
T such that κ(Mi) ≤ ω1 for all i ∈ I. Then the model M =

∏
DMi of

T is saturated.

Proof. Since I is countable and κ(Mi) ≤ ω1 we have

κ(U(M)) ≤ κ(
∏

D

U(Mi)), i ∈ I ≤ 2ω = ω1

Therefore it is sufficient to show that for any countable sequence ān ∈
U(Mn), n ∈ N and every set S of formulas ψ(x) of L[k1, . . . , kn, . . . ]
such that any finite subset of S is satisfiable in M the whole set S is
satisfiable in M . Since the language L[k1, . . . , kn, . . . ] is also countable
we can assume that L[k1, . . . , kn, . . . ] = L.

Since the set S is countable we can write S = {ψn(x)}, n ∈ N an
define φn = ψ1 ∧ . . .∧ψn. Since D is a ω-regular ultrafilter we can find
a sequence

I = I0 ⊃ I1 ⊃ . . . ⊃ In ⊃
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of elelments in D such that ∩nIn = ∅. Let X0 = I and for any positive
n we define

Xn = In ∩ {i ∈ I|Mi |= ∃φn}

Since any finite subset of S is satisfiable in M it follows from Problem
11.3 that Xn ∈ D. Since Xn+1 ⊂ Xn and ∩nXn = ∅ we see that for
any i ∈ I there exists a greatest n(i) ∈ N such that i ∈ Xn(i).

For any i ∈ I such that n(i) > 0 we choose ui ∈ U(Mi) in such a
way that

Mi |= φn(i)[ui]

and for any i ∈ I such that n(i) = 0 we choose some element ui ∈
U(Mi).

By the construction, for any i ∈ Xn we have n ≤ n(i) and therefore
Mi |= φn(i)[ui]. By the construction, for any i ∈ Xn we have n ≤ n(i)
and therefore for any i ∈ Xn,Mi |= φn[ui]. Let ū =< ui >. Then it
follows from Problem 11.3 that M |= φn(ū) for all n ∈ N.�

Definition 11.5. D:nat Let I be a non-empty set, D an ultrafilter
over I and M be a model of a theory T . We denote by d the imbedding
M →

∏
DM given by d(u) :=< u >.

Problem 11.6. P:nat For any theory T , a modelM and an ultrafilterD
over I the imbedding is an elementary monomorphism.

We show now how one can use ultraproducts to reprove and simplify
some of the results of the Model theory.

The natural imbedding of M into
∏

DM
To start with we reprove Corollary 4.2.

Proof. Let S be a set of sentences in a language L such that any
finite subset i of S has a model. We want to show that S has a model.
Of course we can assume that S is infinite.

Let I be the set of finite subsets X of S. For each sentence s in S
we define ŝ ⊂ I

ŝ := {X ⊂ S|s ∈ X

For any finite set i ⊂ S of sentences we have i ∈∈ ∩s∈iŝ. So the set
E := {ŝ}, s ∈ S is a filter over I and as follows from Problem 11.3 a)
there exists an untrafilter D over I containing E. By our assumptions
for any finite subset i ⊂ S we can find a model Mi of the theory i. But
then it follws from Problem 11.3 that M :=

∏
DMi is a model of S.�

We now reprove a slightly weaker form of Corollary 4.3. We will show
that for any model M l of theory T and a cardinality bigger then κ(M)
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there exists model M ′ of T of a cardinality ≥ κ and an elementary
monomorphism M →M ′.

Proof. Let I be a any set of cardinality κ and D an ultrafilter on I
which contains I−J for any subset J of I of cardinality < κ. As follows
from Problem 11.6 the imbedding d : M →

∏
DM is an elementary

monomorphism. It is easy to see that κ(
∏

DM) ≥ κ.�

As the last application of the theory of ultrafilters we reprove Propo-
sition 9.6. We want to show that for any countable theory T and any
cardinality κ there exists a saturated model of T of cardinality κ+.
Let M be any countable model of T and D a regular ultrafilter on a
contable set I. Then it follows from Lemma 11.4 that the ultrapower∏

DM is a a saturated model of T of cardinality ω1 = ω+.�

Remark 11.7. There many resuts of the Model theory require more
delicate constructions then unltraproducts. Therefore I decided to
present in the beginnig proofs which do not to use ultraproducts.

12. The theorem of Ax-Kochen

Let k be a field and Γ be an ordered abelian group. If (F, ac) is
a valued field with the the value group Γ the residue field k and the
semigroup homomorphism ac : F → k as in Definition 10.18 the we
can consider (F, ac) as a model of the theory Ṽ F .

Theorem 12.1. T:Ax If k is a field of characteristic zero and Γ an
ordered abelian group. Then all the models (F, ac) of the theory Ṽ F
where F is a Henselian valued field with the residue field k and the
value group Γ are elementary equivalent.

In our treatments of the theory Ṽ F we denote by x, y, z elements of
F , by x̄, ȳ, z̄ elements of Fm, by Greek letters such as µ, ν, ξ elements
of Γ and by α, β elements of k. We start with the following definition.

Definition 12.2. D:cell a) A function h : Fm×kn → F is strongly de-
finable if for any open formula φ(z, ȳ, ρ, a) there exists an open formula
ψ(x̄, ν, ȳ, ρ, a) such that

φ(h(x̄, ν̄), ȳ, ρ, ᾱ) = ψ(x̄, ν̄, ȳ, ρ, ᾱ)

b) A cell is a subset X of Fm such that there exists

a C ⊂ Am
F × kn such that there exists

i) a subset D ⊂ Am
F × kn defined by an open formula,

ii) strongly definable functions b1, b2, c from D to F ,

iii) a positive integer r and
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iv) a choice <1, <2 where <i is either < or ≤ such that X is a disjoint
union of the sets

X(ν̄), ν̄ ∈ kn

where

X(ν̄) = {(x̄, t) ∈ D(ν̄)|v(b1((x̄, ν̄) <1 rv(t−c(x̄, ν̄) <2 v(b1((x̄, ν̄), ac(t−c(x̄, ν̄) = ν1}

where ν̄ = (ν1, . . . , νn), D(ν̄) = p−1(ν̄) and

c) The function c is the center of the cell C and subsets X(ν̄) ⊂ X
are fibers of the cell.

The Proof of Theorem 12.1 is based on the following result of Denef[
see ?].

Proposition 12.3. P:cell Let fi(x̄, t), 1 ≤ i ≤ l, x̄ = (x1, . . . , xm)
be polynomials in t with coefficients in the ring of strongly definable
functions on Fm. Then there exists a finite partition of Fm × F in a
disjoint union of cells X and for any cell X

i) strongly definable functions hi : Fm × kn → F , non-negative in-
tegers ri, 1 ≤ i ≤ l and a map q : [1, l] → [1, n] such that for any
i, 1 ≤ i ≤ l we have

v(fi(x̄, t)) = v(hi(x̄, p(x̄, t))(t− c(x̄, p(x̄, t))ri), ac(fi(x̄, t)) = νq(i)

Corollary 12.4. C:cell Any formula in Ṽ F is equivalent to a formula
without quantifiers over F variables.

Proof. It is sufficient to prove that or any formula ψ(t, x̄, ν, a), x̄ =
(x1, . . . , xm) without quantifiers over F variables the formula ∃tψ(t, x̄, ν, ᾱ)
is equivalent to a formula without quantifiers over F variables.

The formula ψ(t, x̄, ν, ᾱ) is constructed from atomic formulas. In any
atomic formula the variables t, x̄ appear either through expressions of
the form h(t, x̄) = 0, or through expressions of the form v(h(t, x̄)) or
through expressions of the form ac(h(t, x̄)) where h is a polynomial
with integral coefficients. By replacing the formula h(t, x̄) = 0 by an
equivalent formula ac(h(t, x̄)) = 0 we can disregard the first possibility.
In other words the variables t, x̄ appears in ψ either through k-variables
ac(fi(t, x̄)), 1 ≤ i ≤ M or through Γ-variables v(gj(t, x̄)), 1 ≤ j ≤ N
where fi(t, x̄), gj(t, x̄) are polynomials with integral coefficients.

Let φ be the formula obtained from ψ when we replace fi(t, x̄) by
k-variables νi, 1 ≤ i ≤ M and gj(t, x̄)) by Γ-variables αj, 1 ≤ j ≤ N .
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Then the formula ψ(t, x̄, ν, ᾱ) is equivalent to the formula

(1)∃νi∃αj |φ(x̄, ν, ᾱ, νi, αj) ∧ (

M∧

i=1

ac(fi(t, x̄) = νi)

∧(
N∧

j=1

v(gj(t, x̄)) = αj

Since φ does not contain t it is sufficient to show that one can eliminate
the quantifier ∃ over the F variable t in the formula

∃t(
M∧

i=1

ac(fi(t, x̄) = νi) ∧ (

N∧

j=1

v(gj(t, x̄)) = αj)

As follows from Proposition 12.3 there exists a partition of F ×Fm into
a finite number of cells X with parameters c(x̄, µ̄, µ̄ ∈ kn) such that for
any for any (t, x̄) ∈ X(m̄u) we have

ac((fi(t, x̄) = µq(i), v(gj(t, x̄) = v(hj(x̄, µ̄)(t−c(x̄, µ)rj), 1 ≤ i ≤M, 1 ≤ j ≤ N

where hj(x̄, µ̄), rj, q(i) are as in Proposition 12.3.

Therefore (2) is equivalent to the formula

(2)∃t∃µ1 . . .∃µn|(t, x̄) ∈ X(µ̄) ∧ (

M∧

i=1

µq(i) = νi)

∧(
N∧

j=1

v(hj(x̄, µ̄) + rjv((t− c(x̄, µ)) = αj)))

By the defintion of a cell the condition (t, x̄) ∈ X(µ̄) has a form

θ(x̄, µ̄, v(t− c(x̄, µ)) ∧ ac(t− c(x̄, µ)) = µ1

where θ(x̄, µ̄, β) is an open formula. If we introduce a Γ variable β then
we can rewrite (2) in the form

(3)∃t∃µ1 . . .∃µn|θ(x̄, µ̄, β) ∧ (
M∧

i=1

µq(i) = νi)

∧(

N∧

j=1

v(hj(x̄, µ̄)+rjv((t−c(x̄, µ)) = αj)))∧v(t−c(x̄, µ)) = β∧ac(t−c(x̄, µ)) = µ1

So it is sufficent to eleminate t in the formula

∃t[v(t− c(x̄, µ)) = β ∧ ac(t− c(x̄, µ)) = µ1

But it is clear that the last formula is equivalent to ¬[µ1 = 0].�
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Now we can prove Theorem 12.1. Let F, F ′ be Henselian valued fields
with such that the value groups Γ,Γ′and residue fields k, k′ of F, F ′ are
isomorphic and ch(k) = 0. We want to show that F, F ′ are elementary

equivalent as models of Ṽ F . In other words we want to show that for

any sentence ψ in the language L̃ of Ṽ F we have F |= ψ ↔ F ′ |= ψ. As
follows from Corollary 12.4 we can assume that the formula ψ does not
have quantifiers over F variables. Since there is no functional symbols
in L̃ relating Γ and k variables we see that the sentence ψ is equivalent
to the sentence of the form

(ψ1 ∧ φ1) ∨ . . . ∨ ψm ∧ φm)

where ψi are formulas in LΓ and φi are formulas in Lk. Therefore
F |= ψ ↔ F ′ |= ψ.�

Corollary 12.5. Ax For any n ∈ N there exists s(n) ∈ N such that
for any prime number p > s(n) any homogeneous polynomial equation
P (x0, ..., xn2) = 0, where P ∈ Qp[x0, ..., xn2 ] is a polynomial of degree

n, has a non-zero solution.

Proof. We assume that there exists a number n ∈ N such that
there exists an infinite set S of prime numbers such that there exists
a homogeneous polynomial of degree n Pp(x0, ..., xn2) ∈ Qp such that
the equation Pp(x0, ..., xn2) = 0 does not have a non-zero solution and
show that this assumption leads to a contrudiction.

Let ψ be the sentence in L̃ saying that there exists a a homoge-
neous polynomial of degree n Pp(x0, ..., xn2) such that the equation
Pp(x0, ..., xn2) = 0 does not have a non-zero solution. Our assumption
implies that ψ is true in Qp for p ∈ S. D be any ω-regular ultrafilter
over the set P of prime numbers containing S and F =

∏
D Qp. As

follows from Problem 11.3 b) the sentence ψ is true in F .

On the other hand it follows from the theorem of Tsen, for any n ∈ N
and any homogeneous polynomial Q(x0, ..., xn2) ∈ Fp((u)) the equation
Q(x0, ..., xn2) = 0 has a non-zero solution. So the sentence ψ is false in
Fp((u)) for all prime numbers p.Let F ′ =

∏
D Fp((u)). As follows from

Problem 11.3 b) the sentence ψ is false in F ′.

But it is clear that F and F ′ are Henselian valued fields with the
residue fields equal to the field k =

∏
D Fp of characteristic zero and

valued groups equal to Γ ==
∏

D Z. Therefore it follows from Theorem

12.1 that the models F, F ′ of Ṽ F are elementary equivalent. This
contrudiction shows that our assumption the existence of a number n ∈
N such that there exists an infinite set S of prime numbers such that
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there exists a homogeneous polynomial of degree n Pp(x0, ..., xn2) ∈ Qp

such that the equation Pp(x0, ..., xn2) = 0 does not have a non-zero
solution leads to a contrudiction.�
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