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THE AUTOMORPHISM TOWER PROBLEM 

SIMON THOMAS1 

ABSTRACT. It is shown that  the automorphism tower of an infinite centerless 
group terminates. For each ordinal a ,  a group is constructed whose automor- 
phism tower terminates in exactly a steps. 

Let G be a centerless group. Then the automorphism tower of G is defined 
inductively by 

Go = G,  
G, rAut G, = via the natural map, 

Gx = U G, when X is a limit ordinal. 
a < X  

The automorphism tower is said to terminate if there is an ordinal a such that 
G, = Gp for all p > a. A classical result of Wielandt [7]says that if G is finite then 
the automorphism tower terminates after finitely many steps. Rae and Roseblade 
[3]showed that this is also true if G is a cernikov group. If G is a polycyclic group, 
then Hulse [2] has proved that the automorphism tower terminates in at most 
countably many steps. Whether the automorphism tower of an arbitrary centerless 
group terminates has been an open question for some time. This is resolved by the 
following theorem: 

THEOREM1. If G i s  a n  infinite centerless group, then  the automorphism tower 
of G terminates  i n  a t  m o s t  (2iGl)+ steps. 

Throughout this paper cardinals are taken to be initial ordinals. If K is a cardinal, 
then K+ denotes the next greatest cardinal. As usual, /XI is the cardinality of the 
set X .  

The proof of Theorem 1 makes use of the fact that each successor cardinal K+ is 
a regular cardinal. This means that if X is a set of cardinality K+ then X cannot 
be expressed as a union of 8 < K+ sets, X = U,<eXo, with IX,I < K+ for all 
a < 8. 

PROOFO F  THEOREM1. By Lemma 8.1.1 of Hulse [2], CG, (G) = 1 for all 
ordinals a. If p E NG,(G), then p G = pl E GI ,  so pP,' E Cc,(G) = 1 and 
p = p l .  It follows that NG, (G) = G1 for all a > 1. Thus, [G,+1 : GI]  equals the 
cardinality of the set of all conjugates of G in G,+l. Each of the latter is contained 
in G,; thus, 

[G,+i : GI]  I / G , I ' ~ ' 
and 

/G,+I/ I l p l l .  I G , I ~ ~ ~  = I G , I ~ ~ ~ .  
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An easy induction shows that 
/Gal 5 21Gi 

for all a < X = (2iGi)+. 
Now, assume that the automorphism tower does not terminate in less than X 

steps. Then / G x /= A. 
Let p E Aut Gx. Using the fact that X is a regular cardinal, it is easily shown 

that there is an a < X such that Gg = G,; indeed, the set C of such a is unbounded. 
For each a E C we have p 1 G, E Aut G, = G,+I so that p 1 G, = igat Gal  

where igais the inner automorphism of Gx induced by some g, E G,+l. If a,P E C 
then E CG, (G) and g, = go. Since C is unbounded, it follows that p is an 
inner automorphism of Gx. Therefore, the automorphism tower of G terminates at 
GA. 

COROLLARY.A n  arbitrary infinite group G can be embedded as an ascendant 
subgroup of a complete group G* such that /G*lI(2iGI)+. 

PROOF. By a standard procedure, embed G subnormally in a centerless group 
GI such that /G /= /GI / .Now, embed GI  in the terminal group of its automorphism 
tower. 

It is not known yet whether (2iGl)f is the best possible bound. The next result 
shows that the bound does depend on the cardinality of G. 

THEOREM2. Suppose that a is an  ordinal and ii= max{w, / a / ) .  Then there 
exists a centerless group G of cardinality iisuch that the automorphism tower of G 
terminates i n  exactly a steps. 

First, another definition is required. If H is a subgroup of G, then the normalizer 
tower of H in G is defined inductively by 

No(H) = H, 

NA(H)  = U N, (H),  when X is a limit ordinal. 
a<X 

LEMMA.Let cy be an  ordinal. There exist groups H ( a )  < F(a )  such that 
(a) lF(a)/I max{w, /a/),  
(b) the normalizer tower of H(a)  in F ( a )  terminates i n  exactly a steps; further, 

N,(H(a)) = F(a ) .  

PROOF.The groups H(a)and F(a)are constructed inductively . Define 

If a = ,!3 + 1, let F(a)= F(P) wr Cz and take H(a) to be the subgroup H(P) x 1 
of the base group. If a is a limit ordinal, define 

(Dr denotes the restricted direct product). 
PROOFOF THEOREM2. Fried and Kollh [I]have shown that there exists a 

field K of cardinality iisuch that Aut K = F(a) .  By Schreier and van der Waerden 
161, 

Aut PSL(2, K )  = PI'L(2, K )  = PGL(2, K )  >a F(a) .  
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We claim that if G = PGL(2,K )  >a H ( a ) .  then for each 8 5 a. 

the Pth term of the normalizer tower of G in Aut PSL(2,K ) .  Suppose that this 
is true for /3 < a and consider Gp+l = Aut Go. Since PSL(2, K )  is the unique 
minimal normal subgroup of G3. there is an induced homomorphism 

p: Aut Gp 4 Aut PSL(2,K ) ,  

which is easily seen to be an embedding (e.g., Robinson [4, 13.5.21). Note that 
p 1 Gp is the identity map. So, identifying Aut Gp with its image under p, 
it follows that Aut Gp =PGL(2, K )  >a Np+l(H(a) ) .  Clearly no problems arise 
for limit ordinals. Thus, the automorphism tower of G terminates in exactly cr 
steps. 

Schenkman [5]proved that if L is a finite-dimensional centerless Lie algebra, 
then the tower of derivation algebras of L terminates after finitely many steps. 
A routine modification of the above argument shows that the tower of derivation 
algebras of an infinite-dimensional centerless Lie algebra L terminates in at most 
(2dim')+ steps. 
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