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QUANTUM MECHANICS

(First version)

1. States

e State space= a complex Hilbert space H.

e Possible states = norm 1 vectors ¥ € H : wave
functions.

2. Observables

e Observables of the system H = self-adjoint operators

on H.

e Possible numerical outcomes for the measure of the
observable H = the (real) spectrum o(H) of H.

o If 'H is in a state W, if the observable H admits a
spectral measure A — 1 4(H ), then the probability to
measure H with values in the set A is

<V, T4(H)Y>.
Also equal to
[ (H) |[* = Tr(|UY| 14(H)) .



3. Time evolution

e Energy observable H = Hamiltonian of the system.

e Consider the unitary group

Ut = G_itH .
If U is the state at time 0, then it becomes
v, = UV

at time t.



OPEN QUANTUM SYSTEMS

e Quantum system H in interaction with another I :

H® K.

e The typical situation: we have access to 'H only.

— System K is too complicated or unknown (envi-
ronment, heat bath, noisy channel ...)

— System K not accessible (shared EPR pair, ...)

e State ¥ on 'H ® IC, observable X on H, what does a
measurement of X give?

Prob(X € A) = Tr(p14(X))
with p = Tric(|W)XP]).
e The observer of ‘'H does not see ¥ but only
p = Tric(|UN W)



QUANTUM MECHANICS

(Second version)

1. States

e States = positive, trace-class operators p on ‘H with
trace 1, the density matrices of H.

P = Z An |\Ijn><\ljn|

An >0, 3, Ap = 1).

2. Observables

e If H is in a state p, if the observable H admits the
spectral measure A — 14(H), then the probability
that the measurement of H lies in A is

Te(p Ta(H)).



3. Time evolution

o If pg is the state at time 0, it becomes
pt = Ut po Uy

at time t.

3’. Noisy channels

What is the most general transformation for a
state?

p—pRuw—U(p@w)U* — Tri (U(p@w)U") .
It is a completely positive map on L1(H)

L(p) = Z L;pL;

with

Y LiLi=1
(Stinespring, Kraus).

3”. Time-dependant case

General time evolution of an open quantum sys-
tem = (F;),>, semigroup of completely positive maps

Pt _ etL
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with

L(p) = —ilH, p] - 5 > (LnLpp+ pLyL} — 217 pLy,)

n

(Lindblad).



QUANTUM PROBABILITY

1. Setup

e A quantum probability space is (H, p)
| # (2, F. P)].

e A quantum random variable is a self-adjoint operator
X on'H

[ =# a measurable function X : Q — R}

e The distribution of X in the state p is the probability
measure i on IR given by

H(A) = Tr(p 14 (X)).

Or else

/f ) dp(z) = Tr(pf(X))
= Tr(pe™™).

[;é,u:XoP}.



2. Connecting to classical theory

e When one is given a single observable X it is the
same situation as classical theory

— if X is an observable, one can represent it as a mul-
tiplication operator on some (92, F, P),

— 1f X 1is a classical random variable then take H =
L?(Q), F,P) and M.
e It holds the same for any family (X;);c; of commut-

ing observables.

e The difference lies when considering non-commuting
observables on ‘H. Each one is like a classical random
variable, but on its own space.



STOPPING TIMES

1. Setup

e A Hilbert space H, a filtration of sub-Hilbert spaces
(Ht) e m+, with associated projectors IF;.

e A (quantum) stopping time 7T is an increasing family
of orthogonal projectors lr<; such that

EAr<; = r<, IE,,
for all u > t.
o Set ]lT:oo =1 — hmt_wo ]1T§t-

e Equivalently T' can be seen as generalized observable
with spectrum C IR™ U {4o00}.

e Physically, T' is not an observable. It cannot be
measured directly. Only 17<; can be.
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RESULTS

e Most definitions and properties can be extended.
Hr ={f € H; Ip<f € Hy, Vi}.
Hr_ =span{llrsf; f € Hy,t € RT}YUH, .
o S <Tif lp<y > g« for all ¢.

e One can also define S < T (more tricky), predictable
stopping times.

Theorem — On the Fock space ®, for every predictable
quantum stopping time 1" we have &7 = ®p_.

e This generalizes the following remark:

Every normal martingale (< X, X >y=t) with the pre-
dictable representation property has a quasi left-conti-
nuous natural filtration.

It shows that this property is not really proba-
bilistic, but more intrinsic to the Fock space structure
(continuous tensor product of Hilbert spaces).

e Results on strong Markov property for quantum pro-
cesses, quantum Dirichlet problem,... have been ob-
tained.
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STOPPING QUANTUM PROCESSES

e One of the main problems: given a family of op-
erators (X¢),cp+ (for example an observable evolving
with time), and a (finite) stopping time T: how to
define X7

e In the classical case (for T' discrete)

X =Y Xl

For a general stopping time, pass to the limit on dis-
crete approximation of 7', that is pass to the limit on

Z th‘+1 ]ITG[ti,ti—{—l[ .

e In the quantum case, what shall we consider?

Z Xt%*l ]ITG[ti,ti+1[ .
Z ]ITE[tz',ti+1[ Xti_H .

Z ]]‘TG['[;'I;,trI;_{_l[ th’—l—l ]ITG[ti,ti—{—l[ .

something else?
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e Condition for the convergence of the two first forms
are workable. But the resulting object is not satisfac-
tory (not preserving self-adjointness, not adapted,...).

e The third one has some advantages: it preserves
self-adjointness, it is the only one to have adaptedness
properties (w.r.t. Hr), ... But finding a general condi-
tion for the convergence is a completely open problem.

e It is maybe a too strong projection (like condition-
ning w.r.t. o(7T) instead of Fr in classical probability).

e A surprising computation:

Wr = =21, .

n
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PHYSICAL EXAMPLES

e Yet no true applications in quantum physics.

e Most examples are as follows: under some quantum
evolution a particular observable evolves: (N;);cp+
and gives rise to a commutative family of self-adjoint
operators. Namely, a classical stochastic process (of-
ten a Markov process). The natural stopping times
of this process can be considered in the general non-
commutative setup. They give rise to quantum stop-
ping times.

e But purely non-commutative examples are lacking.
The naive definitions fail.

e For example, take the free particle. It undergoes the

Schrodinger evolution driven by the Laplacian. Let

)+ be the position observable at time ¢. Let us try to

define the entrance time T in IR for the particle.
We must have

(T >1) CNe<t(Qs CIR™).
But
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Theorem — For all s <t we have

(Qs CIRT)N(Q: C IR™) = {0}.

Idea: By unitary transtorms s = 0. If ¢ is a wave func-
tion with support in IR~ then its Fourier transform ¢
has support on all [R. But ¢ is the wave function for
the position of the particle and ¢ is the wave function
for the speed of the particle. As a consequence, imme-
diately after 0, ¢; is spread all over IR, and it stays so.

Hence ¢ ¢ (Q: C IR™).
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