STOPPING TIMES IN QUANTUM MECHANICS

Stéphane ATTAL

Camille Jordan Institute University of Lyon 1 France

QUANTUM MECHANICS

(First version)

1. States

• State space= a complex Hilbert space \mathcal{H} .

• Possible states = norm 1 vectors $\Psi \in \mathcal{H}$: wave functions.

2. Observables

• Observables of the system $\mathcal{H} =$ self-adjoint operators on \mathcal{H} .

• Possible numerical outcomes for the measure of the observable H = the (real) spectrum $\sigma(H)$ of H.

• If \mathcal{H} is in a state Ψ , if the observable H admits a spectral measure $A \mapsto \mathbb{1}_A(H)$, then the probability to measure H with values in the set A is

$$<\Psi$$
, $\mathbb{1}_A(H)\Psi>$.

Also equal to

$$\left|\left|\mathbb{1}_{A}(H)\Psi\right|\right|^{2} = \operatorname{Tr}\left(\left|\Psi\right\rangle\!\!\left\langle\Psi\right|\mathbb{1}_{A}(H)\right).$$

3. Time evolution

- Energy observable H = Hamiltonian of the system.
- Consider the unitary group

$$U_t = e^{-itH}$$

•

If Ψ_0 is the state at time 0, then it becomes

$$\Psi_t = U_t \Psi_0$$

at time t.

OPEN QUANTUM SYSTEMS

• Quantum system \mathcal{H} in interaction with another \mathcal{K} : $\mathcal{H} \otimes \mathcal{K}$.

• The typical situation: we have access to \mathcal{H} only.

- System \mathcal{K} is too complicated or unknown (environment, heat bath, noisy channel ...)

- System \mathcal{K} not accessible (shared EPR pair, ...)

• State Ψ on $\mathcal{H} \otimes \mathcal{K}$, observable X on \mathcal{H} , what does a measurement of X give?

$$\operatorname{Prob}(X \in A) = \operatorname{Tr}(\rho 1_A(X))$$

with $\rho = \operatorname{Tr}_{\mathcal{K}}(|\Psi\rangle\!\langle\Psi|).$

• The observer of \mathcal{H} does not see Ψ but only

 $\rho = \operatorname{Tr}_{\mathcal{K}}(|\Psi\rangle\!\langle\Psi|).$

QUANTUM MECHANICS

(Second version)

1. States

• States = positive, trace-class operators ρ on \mathcal{H} with trace 1, the *density matrices* of \mathcal{H} .

$$\rho = \sum_{n} \lambda_n \left| \Psi_n \right\rangle \! \left\langle \Psi_n \right|$$

 $(\lambda_n \ge 0, \sum_n \lambda_n = 1).$

2. Observables

• If \mathcal{H} is in a state ρ , if the observable H admits the spectral measure $A \mapsto \mathbb{1}_A(H)$, then the probability that the measurement of H lies in A is

 $\operatorname{Tr}(\rho 1_A(H))$.

3. Time evolution

• If ρ_0 is the state at time 0, it becomes

$$\rho_t = U_t \,\rho_0 \,U_t^*$$

at time t.

3'. Noisy channels

What is the most general transformation for a state?

$$\rho \mapsto \rho \otimes \omega \mapsto U(\rho \otimes \omega)U^* \mapsto \operatorname{Tr}_{\mathcal{K}} (U(\rho \otimes \omega)U^*)$$
.
It is a *completely positive map* on $\mathcal{L}_1(\mathcal{H})$

$$\mathcal{L}(\rho) = \sum_{i} L_{i} \, \rho \, L_{i}^{*}$$

with

$$\sum_{i} L_i^* L_i = I$$

(Stinespring, Kraus).

3". Time-dependant case

General time evolution of an open quantum system $= (P_t)_{t>0}$ semigroup of completely positive maps

$$P_t = e^{tL}$$

with

$$L(\rho) = -i[H,\rho] - \frac{1}{2} \sum_{n} (L_n L_n^* \rho + \rho L_n L_n^* - 2L_n^* \rho L_n)$$

(Lindblad).

QUANTUM PROBABILITY

1. Setup

• A quantum probability space is (\mathcal{H}, ρ)

 $\left[\neq (\Omega, \mathcal{F}, P)\right].$

- A quantum random variable is a self-adjoint operator X on \mathcal{H}
- $[\neq a \text{ measurable function } X : \Omega \to \mathbb{R}].$

• The distribution of X in the state ρ is the probability measure μ on $I\!\!R$ given by

$$\mu(A) = \operatorname{Tr}(\rho \, \mathbb{1}_A(X)) \,.$$

Or else

$$\int f(x) d\mu(x) = \operatorname{Tr}(\rho f(X))$$
$$\widehat{\mu}(t) = \operatorname{Tr}(\rho e^{itX}).$$

 $\left[\neq \mu = X \circ P\right].$

2. Connecting to classical theory

• When one is given a *single* observable X it is the same situation as classical theory

- if X is an observable, one can represent it as a multiplication operator on some (Ω, \mathcal{F}, P) ,

- if X is a classical random variable then take $\mathcal{H} = L^2(\Omega, \mathcal{F}, P)$ and \mathcal{M}_X .

• It holds the same for any family $(X_i)_{i \in I}$ of commuting observables.

• The difference lies when considering *non-commuting* observables on \mathcal{H} . Each one is like a classical random variable, but on its own space.

STOPPING TIMES

1. Setup

• A Hilbert space \mathcal{H} , a filtration of sub-Hilbert spaces $(\mathcal{H}_t)_{t \in \mathbb{R}^+}$, with associated projectors \mathbb{I}_t .

• A (quantum) stopping time T is an increasing family of orthogonal projectors $1_{T \leq t}$ such that

$$\mathbb{E}_u \mathbb{1}_{T \le t} = \mathbb{1}_{T \le t} \mathbb{E}_u$$

for all $u \ge t$.

- Set $\mathbb{1}_{T=\infty} = I \lim_{t \to \infty} \mathbb{1}_{T \le t}$.
- Equivalently T can be seen as generalized observable with spectrum $\subset \mathbb{R}^+ \cup \{+\infty\}$.
- Physically, T is not an observable. It cannot be measured directly. Only $1_{T \le t}$ can be.

RESULTS

• Most definitions and properties can be extended.

$$\mathcal{H}_T = \left\{ f \in \mathcal{H}; \ \mathbb{1}_{T \le t} f \in \mathcal{H}_t, \forall t \right\}.$$

 $\mathcal{H}_{T-} = \overline{\operatorname{span}} \{ \mathbb{1}_{T>t} f; f \in \mathcal{H}_t, t \in \mathbb{R}^+ \} \cup \mathcal{H}_0.$

• $S \leq T$ if $\mathbb{1}_{T \leq t} \geq \mathbb{1}_{S \leq t}$ for all t.

 \bullet One can also define S < T (more tricky), predictable stopping times.

Theorem – On the Fock space Φ , for every predictable quantum stopping time T we have $\Phi_T = \Phi_{T-}$.

• This generalizes the following remark:

Every normal martingale $(\langle X, X \rangle_t = t)$ with the predictable representation property has a quasi left-continuous natural filtration.

It shows that this property is not really probabilistic, but more intrinsic to the Fock space structure (continuous tensor product of Hilbert spaces).

• Results on strong Markov property for quantum processes, quantum Dirichlet problem,... have been obtained.

STOPPING QUANTUM PROCESSES

• One of the main problems: given a family of operators $(X_t)_{t \in \mathbb{R}^+}$ (for example an observable evolving with time), and a (finite) stopping time T: how to define X_T ?

• In the classical case (for T discrete)

$$X_T = \sum_i X_{t_i} \mathbb{1}_{T=t_i}$$

For a general stopping time, pass to the limit on discrete approximation of T, that is pass to the limit on

$$\sum_{i} X_{t_{i+1}} \mathbb{1}_{T \in [t_i, t_{i+1}[}.$$

• In the quantum case, what shall we consider?

$$\sum_{i} X_{t_{i+1}} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} X_{t_{i+1}]} \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} X_{t_{i+1}} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}]} \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} X_{t_{i+1}} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}} \cdot X_{t_{i+1}}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{i+1}]}] \cdot \sum_{i} \mathbb{1}_{T \in [t_i, t_{i+1}[} \cdot X_{t_{$$

something else?

• Condition for the convergence of the two first forms are workable. But the resulting object is not satisfactory (not preserving self-adjointness, not adapted,...).

• The third one has some advantages: it preserves self-adjointness, it is the only one to have adaptedness properties (w.r.t. \mathcal{H}_T), ... But finding a general condition for the convergence is a completely open problem.

• It is maybe a too strong projection (like conditionning w.r.t. $\sigma(T)$ instead of \mathcal{F}_T in classical probability).

• A surprising computation:

$$W_{T_n} = -2T_n \, .$$

PHYSICAL EXAMPLES

• Yet no true applications in quantum physics.

• Most examples are as follows: under some quantum evolution a particular observable evolves: $(N_t)_{t \in I\!\!R^+}$ and gives rise to a *commutative* family of self-adjoint operators. Namely, a classical stochastic process (often a Markov process). The natural stopping times of this process can be considered in the general non-commutative setup. They give rise to quantum stopping times.

• But purely non-commutative examples are lacking. The naive definitions fail.

• For example, take the free particle. It undergoes the Schrödinger evolution driven by the Laplacian. Let Q_t be the position observable at time t. Let us try to define the *entrance time* T in \mathbb{R}^+ for the particle.

We must have

$$(T > t) \subset \cap_{s \leq t} (Q_s \subset \mathbb{R}^-).$$

But

Theorem – For all s < t we have $(Q_s \subset \mathbb{R}^-) \cap (Q_t \subset \mathbb{R}^-) = \{0\}.$

Idea: By unitary transforms s = 0. If ϕ is a wave function with support in \mathbb{R}^- then its Fourier transform $\widehat{\phi}$ has support on all \mathbb{R} . But ϕ is the wave function for the position of the particle and $\widehat{\phi}$ is the wave function for the speed of the particle. As a consequence, immediately after 0, ϕ_t is spread all over \mathbb{R} , and it stays so. Hence $\phi \notin (Q_t \subset \mathbb{R}^-)$.