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QUANTUM MECHANICS

(First version)

1. States

• State space= a complex Hilbert space H.

• Possible states = norm 1 vectors Ψ ∈ H : wave
functions.

2. Observables

• Observables of the system H = self-adjoint operators
on H.

• Possible numerical outcomes for the measure of the
observable H = the (real) spectrum σ(H) of H.

• If H is in a state Ψ, if the observable H admits a
spectral measure A 7→ 1lA(H), then the probability to
measure H with values in the set A is

< Ψ , 1lA(H) Ψ > .

Also equal to

||1lA(H) Ψ||2 = Tr
(
|Ψ〉〈Ψ| 1lA(H)

)
.
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3. Time evolution

• Energy observable H = Hamiltonian of the system.

• Consider the unitary group

Ut = e−itH .

If Ψ0 is the state at time 0, then it becomes

Ψt = UtΨ0

at time t.
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OPEN QUANTUM SYSTEMS

• Quantum system H in interaction with another K :

H⊗K .

• The typical situation: we have access to H only.

– System K is too complicated or unknown (envi-
ronment, heat bath, noisy channel ...)

– System K not accessible (shared EPR pair, ...)

• State Ψ on H⊗K, observable X on H, what does a
measurement of X give?

Prob(X ∈ A) = Tr
(
ρ 1lA(X)

)

with ρ = TrK(|Ψ〉〈Ψ|).

• The observer of H does not see Ψ but only

ρ = TrK(|Ψ〉〈Ψ|) .
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QUANTUM MECHANICS

(Second version)

1. States

• States = positive, trace-class operators ρ on H with
trace 1, the density matrices of H.

ρ =
∑

n

λn |Ψn〉〈Ψn|

(λn ≥ 0,
∑

n λn = 1).

2. Observables

• If H is in a state ρ, if the observable H admits the
spectral measure A 7→ 1lA(H), then the probability
that the measurement of H lies in A is

Tr(ρ 1lA(H)) .
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3. Time evolution

• If ρ0 is the state at time 0, it becomes

ρt = Ut ρ0 U∗
t

at time t.

3’. Noisy channels

What is the most general transformation for a
state?

ρ 7→ ρ ⊗ ω 7→ U(ρ ⊗ ω)U∗ 7→ TrK (U(ρ ⊗ ω)U∗) .

It is a completely positive map on L1(H)

L(ρ) =
∑

i

Li ρ L∗
i

with ∑

i

L∗
i Li = I

(Stinespring, Kraus).

3”. Time-dependant case

General time evolution of an open quantum sys-
tem = (Pt)t≥0 semigroup of completely positive maps

Pt = etL
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with

L(ρ) = −i[H, ρ] −
1

2

∑

n

(LnL∗
nρ + ρLnL∗

n − 2L∗
nρLn)

(Lindblad).
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QUANTUM PROBABILITY

1. Setup

• A quantum probability space is (H, ρ)
[
6= (Ω,F , P )

]
.

• A quantum random variable is a self-adjoint operator
X on H
[
6= a measurable function X : Ω → IR

]
.

• The distribution of X in the state ρ is the probability
measure µ on IR given by

µ(A) = Tr(ρ 1lA(X)) .

Or else ∫
f(x) dµ(x) = Tr(ρf(X))

µ̂(t) = Tr(ρ eitX) .

[
6= µ = X ◦ P

]
.
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2. Connecting to classical theory

• When one is given a single observable X it is the
same situation as classical theory

– if X is an observable, one can represent it as a mul-
tiplication operator on some (Ω,F , P ),

– if X is a classical random variable then take H =
L2(Ω,F , P ) and MX .

• It holds the same for any family (Xi)i∈I of commut-
ing observables.

• The difference lies when considering non-commuting
observables on H. Each one is like a classical random
variable, but on its own space.
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STOPPING TIMES

1. Setup

• A Hilbert space H, a filtration of sub-Hilbert spaces
(Ht)t∈IR+ , with associated projectors IEt.

• A (quantum) stopping time T is an increasing family
of orthogonal projectors 1lT≤t such that

IEu1lT≤t = 1lT≤t IEu

for all u ≥ t.

• Set 1lT=∞ = I − limt→∞ 1lT≤t.

• Equivalently T can be seen as generalized observable
with spectrum ⊂ IR+ ∪ {+∞}.

• Physically, T is not an observable. It cannot be
measured directly. Only 1lT≤t can be.
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RESULTS

• Most definitions and properties can be extended.

HT = {f ∈ H; 1lT≤tf ∈ Ht, ∀t} .

HT− = span{1lT>tf ; f ∈ Ht, t ∈ IR+} ∪ H0 .

• S ≤ T if 1lT≤t ≥ 1lS≤t for all t.

• One can also define S < T (more tricky), predictable
stopping times.

Theorem –On the Fock space Φ, for every predictable
quantum stopping time T we have ΦT = ΦT−.

• This generalizes the following remark:

Every normal martingale (< X, X >t= t) with the pre-
dictable representation property has a quasi left-conti-
nuous natural filtration.

It shows that this property is not really proba-
bilistic, but more intrinsic to the Fock space structure
(continuous tensor product of Hilbert spaces).

• Results on strong Markov property for quantum pro-
cesses, quantum Dirichlet problem,... have been ob-
tained.
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STOPPING QUANTUM PROCESSES

• One of the main problems: given a family of op-
erators (Xt)t∈IR+ (for example an observable evolving
with time), and a (finite) stopping time T : how to
define XT ?

• In the classical case (for T discrete)

XT =
∑

i

Xti
1lT=ti

For a general stopping time, pass to the limit on dis-
crete approximation of T , that is pass to the limit on

∑

i

Xti+1
1lT∈[ti,ti+1[ .

• In the quantum case, what shall we consider?
∑

i

Xti+1
1lT∈[ti,ti+1[ .

∑

i

1lT∈[ti,ti+1[ Xti+1
.

∑

i

1lT∈[ti,ti+1[ Xti+1
1lT∈[ti,ti+1[ .

something else?
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• Condition for the convergence of the two first forms
are workable. But the resulting object is not satisfac-
tory (not preserving self-adjointness, not adapted,...).

• The third one has some advantages: it preserves
self-adjointness, it is the only one to have adaptedness
properties (w.r.t. HT ), ... But finding a general condi-
tion for the convergence is a completely open problem.

• It is maybe a too strong projection (like condition-
ning w.r.t. σ(T ) instead of FT in classical probability).

• A surprising computation:

WTn
= −2Tn .
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PHYSICAL EXAMPLES

• Yet no true applications in quantum physics.

• Most examples are as follows: under some quantum
evolution a particular observable evolves: (Nt)t∈IR+

and gives rise to a commutative family of self-adjoint
operators. Namely, a classical stochastic process (of-
ten a Markov process). The natural stopping times
of this process can be considered in the general non-
commutative setup. They give rise to quantum stop-
ping times.

• But purely non-commutative examples are lacking.
The naive definitions fail.

• For example, take the free particle. It undergoes the
Schrödinger evolution driven by the Laplacian. Let
Qt be the position observable at time t. Let us try to
define the entrance time T in IR+ for the particle.

We must have

(T > t) ⊂ ∩s≤t(Qs ⊂ IR−) .

But
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Theorem –For all s < t we have

(Qs ⊂ IR−) ∩ (Qt ⊂ IR−) = {0} .

Idea: By unitary transforms s = 0. If φ is a wave func-
tion with support in IR− then its Fourier transform φ̂

has support on all IR. But φ is the wave function for
the position of the particle and φ̂ is the wave function
for the speed of the particle. As a consequence, imme-
diately after 0, φt is spread all over IR, and it stays so.
Hence φ 6∈ (Qt ⊂ IR−).
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