
Lecture 3

OPERATOR SEMIGROUPS

Stéphane ATTAL

Abstract This lecture is an introduction to the theory of Operator Semi-
groups and its main ingredients: different types of continuity, associated gen-
erator, dual and predual semigroups, Stone’s Theorem. The lecture also starts
with a complete introduction to the Bochner integral.
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This lecture makes use of basic elements of bounded and unbounded opera-
tor theory. The elements we use are rather elementary in most of the lecture:
domains, closed operators, spectrum, etc; only when dealing with Stone’s
Theorem we make use of the functional calculus for general self-adjoint op-
erators. All these ingredients may be found in Lecture 1.

3.1 Bochner Integral

Before entering into the theory of operator semigroups we shall make clear
basic constructions and properties of the Bochner integrals, that is, the in-
tegration theory for functions taking values in Banach spaces. These notions
and results are not only useful when considering operator semigroups but
they are also be used over and ever in many subject of interest for us, in
particular when dealing with integration on Fock spaces or with Quantum
Stochastic Calculus.

3.1.1 Dual Topologies on Banach Spaces

We shall make use of many well-known properties associated to the different
topologies associated to Banach spaces. We recall without proof the main
results that we use. They are all very classical theorems, proofs may be easily
found in the usual literature (see the notes at the end of the chapter).

Definition 3.1. Let B be a Banach space with a norm ‖·‖. The dual of B is
the space B∗ of continuous linear forms on B.

Recall that we denote the action on B of a linear form φ by B 7→ 〈φ , B〉
instead of B 7→ φ(B).

Theorem 3.2. When equipped with the norm

‖φ‖ = sup {|〈φ , B〉| ; B ∈ B , ‖B‖ = 1}

the space B∗ is a Banach space.

Definition 3.3. The dual space B∗ of B allows to define a weak topology on
B. It is the topology on B induced by the seminorms B 7→ |〈φ , B〉|, for all
φ ∈ B∗.

Definition 3.4. Note that every element B ∈ B defines a continuous linear
form φ 7→ 〈φ , B〉 on B∗, hence B is a subset of B∗∗, the dual of B∗. In general
B∗∗ is not equal to B. When this is the case, the space B is called reflexive.
Every Hilbert space is a reflexive Banach space, but this is not the only case.
For example, the spaces Lp(X,F , µ) are reflexive if 1 < p < ∞. The space
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L1(X,F , µ) is a well-known example of Banach space which is not reflexive
in general.

Definition 3.5. On the Banach space B∗ one can define also a weak topol-
ogy: the ∗-weak topology, also often called σ-weak topology . It is the smallest
topology on B∗ which makes the linear forms φ 7→ 〈φ , B〉 being continuous,
for all B ∈ B. It is generated by the seminorms φ 7→ |〈φ , B〉| for all B ∈ B.

Concerning these two weak topologies, here are the main theorems which
will be of much use for us. First of all, here are two very basic results con-
cerning the weak and the norm topologies on B.

Proposition 3.6.

1) The weak topology is weaker than the norm topology.

2) The weak and the norm closure of convex sets coincide.

The first basic results concerning the ∗-weak topology on B∗ are the fol-
lowing.

Theorem 3.7.

1) On B∗ the weak topology is stronger than the ∗-weak topology.

2) The space B∗ is closed for the ∗-weak topology.

3) A linear form λ on B∗ is ∗-weakly continuous if and only if there exists
an element B ∈ B such that

λ(φ) = 〈φ , B〉

for all φ ∈ B∗.

The main interest of the ∗-weak topology is the following result: this topol-
ogy makes the bounded balls of B∗ being compact, which is not the case of
the other topologies in infinite dimension.

Theorem 3.8 (Banach-Alaoglu Theorem). The unit ball of B∗ is com-
pact for the ∗-weak topology.

Finally, a theorem which is very useful in order to prove that a linear form
is ∗-weakly continuous.

Theorem 3.9 (Krein-Smulian Theorem). A convex subset C in B∗ is ∗-
weakly closed if and only if its intersection with the balls {φ ∈ B∗ ; ‖φ‖ ≤ r}
of B∗ are ∗-weakly closed.
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3.1.2 Bochner Measurability

Before entering into the construction of the Bochner integral we shall establish
a few technical lemmas concerning the notion of measurability we shall use
for defining these integrals.

The general setup in which we shall be interested is the following. We
consider a measured space (E, E , µ), with the measure µ being σ-finite. We
consider a Banach space B and a function f from E to B.

Definition 3.10. We say that the function f is weakly measurable if, for all
φ ∈ B∗, the mapping x 7→ 〈φ , f(x)〉 is measurable from (E, E) to C.

We say that the function f has a separable range if its range f(E) is a
separable subset of B.

There are two cases for which this second property is satisfied and which will
be very useful for us.

Proposition 3.11.

1) If B is a separable Banach space, then any function f : E 7→ B has a
separable range.

2) Whatever is the Banach space B, if E is a separable topological space and
if the function f : E 7→ B is continuous, then f has a separable range.

Proof. The proof of 1) is immediate for any subset of a separable metric space
is separable (exercise). The proof of 2) is also immediate for the continuous
image of a separable space is always separable (exercise). ut

Remark: Actually all the discussion that we shall have here does not exactly
needs f to have a separable range, but an almost surely separable range, that
is, there exists N ∈ E such that µ(N) = 0 and such that the set f(E \N) ⊂ B
is separable. If the function f from E to B has an almost surely separable
range, then we can change f on the null set N into a function f̃ which has
full range being separable. But it is easy to check that the constructions and
the theorems which follow concerning the Bochner integral of f with respect
to µ are not affected by this change on a null set.

Definition 3.12. From now on, a function f from E to B which is weakly
measurable and has a separable range is called a Bochner measurable func-
tion.

We now prove a kind of separability property of B∗, when B is separable.
Put

C1 = {φ ∈ B∗ ; ‖φ‖ = 1}

Lemma 3.13. If B is a separable Banach space, then there exists a countable
set Y included in C1 such that, for all φ ∈ C1, there exists a sequence (φn) in
Y satisfying
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lim
n→+∞

〈φn , y〉 = 〈φ , y〉

for all y ∈ B.

Proof. Let X = {yn ; n ∈ N} be a countable dense subset of B. For every
n ∈ N∗ consider the mapping Φn from C1 to Rn defined by

Φn(φ) = (〈φ , y1〉 , . . . , 〈φ , yn〉) .

As Rn is a separable metric space then Φn(C1) ⊂ Rn is also separable.
Hence, for all n ∈ N∗, there exists {φn,k ∈ C1 ; k ∈ N} such that the set
{Φn(φn,k) ; k ∈ N} is dense in Φn(C1). In particular, for every φ ∈ C1 there
exists a sequence {φn,kn ; n ∈ N} such that

|〈φn,kn , yi〉 − 〈φ , yi〉| ≤
1

n

for all i = 1, . . . , n. In particular, limn 〈φn,kn , yi〉 = 〈φ , yi〉 for all i ∈ N. This
implies easily that limn 〈φn,kn , y〉 = 〈φ , y〉 for all y ∈ B. ut

This lemma has the following useful consequence.

Lemma 3.14. If f is a Bochner measurable function from E to B then the
function x 7→ ‖f(x)‖ is measurable from E to R.

Proof. For a > 0 and φ ∈ B∗ consider the sets

A = {x ∈ E ; ‖f(x)‖ ≤ a}

and
Aφ = {x ∈ E ; |〈φ , f(x)〉| ≤ a} .

We obviously have

A ⊂
⋂
φ∈C1

Aφ .

By the Hahn-Banach Theorem, for every x ∈ E there exists φ0 ∈ C1 such
that 〈φ0 , f(x)〉 = ‖f(x)‖; this implies that⋂

φ∈C1

Aφ ⊂ A

and hence the two sets are equal.
Consider the closure X of the linear span of the range of f . It is a separable

Banach space by hypothesis. Let Y be the countable set associated to X by
Lemma 3.13. We claim that we have

A =
⋂
φ∈C1

Aφ =
⋂
φ∈Y

Aφ .
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Indeed, one inclusion is obvious and, for the converse inclusion, consider
x ∈ E such that |〈ψ , f(x)〉| ≤ a for all ψ ∈ Y. By Lemma 3.13 every
〈φ , f(x)〉, with φ ∈ C1, is a limit of a sequence 〈ψn , f(x)〉), with (ψn) ⊂ Y.
Hence, we have |〈φ , f(x)〉| ≤ a for all φ ∈ C1. This proves the announced
equality of sets.

Finally, as f is weakly measurable, the sets Aφ are measurable, hence so
is A. This proves the measurability of x 7→ ‖f(x)‖. ut

3.1.3 Construction of the Bochner Integral

We can now pass to the construction of the Bochner integral. Let f be
Bochner measurable function from E to B. By Lemma 3.14 the function
x 7→ ‖f(x)‖ is measurable from E to R.

Definition 3.15. We say that f is Bochner integrable if furthermore∫
E

‖f(x)‖ dµ(x) <∞ .

We wish to show that f being Bochner integrable is a sufficient condition
for the integral ∫

E

f(x) dµ(x)

to be a well-defined and to be an element of B.

The construction actually follows the usual construction of real-valued
integrals. First of all, assume that f is a simple function, that is, f is of the
form

f(x) =
∑
n∈N

fn 1lAn(x)

for some measurable partition (An) ⊂ E of E and some fn ∈ B. Clearly such
a function f is Bochner measurable. If f is furthermore Bochner integrable,
that is, if ∑

n∈N
‖fn‖ µ(An) <∞ ,

we put ∫
E

f(x) dµ(x) =
∑
n∈N

µ(An) fn .

This way we have defined an element of B and clearly we have∥∥∥∥∫
E

f(x) dµ(x)

∥∥∥∥ ≤ ∫
E

‖f(x)‖ dµ(x) .
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The difference with the usual integration theory for real-valued functions
is that, in the general Banach context, approximating measurable functions
by simple functions is not obvious.

Lemma 3.16. Let f be a Bochner measurable function from E to B, then
there exists a sequence (fn) of simple functions from E to B such that

lim
n→+∞

sup
x∈E
‖f(x)− fn(x)‖ = 0 .

Proof. Let X be the closure of the range of f . As X is separable by hypothesis
there exists a countable subset Y = {yn ; n ∈ N} ⊂ X which is dense in X .
For all n ∈ N define the function gn from E to R by

gn(x) = ‖f(x)− yn‖ .

As f is weakly measurable all the functions x 7→ f(x)− yn are weakly mea-
surable. They also obviously have separable range. Hence, by Lemma 3.14,
the functions gn are measurable.

For all n ∈ N and all k ∈ N∗ define the sets Ank = {x ∈ E ; gn(x) ≤ 1/k} .
They are measurable subsets of E. As Y is dense in X, for every x ∈ E, every
k ∈ N∗ there exists at least a yn ∈ Y such that ‖f(x)− yn‖ ≤ 1/k. Hence we
have E = ∪nAnk , for all k ∈ N∗.

For all fixed k ∈ N∗ define for all n ≥ 1

B0
k = A0

k and Bnk = Ank \
⋃
j<n

Ajk .

They are measurable subsets of E and, for each fixed k ∈ N∗, the family
(Bnk )n∈N forms a partition of E. Define the functions

fk(x) =
∑
n∈N

yn1lBn
k

(x) .

We clearly have

‖f(x)− fk(x)‖ ≤ 1

k
,

for all x ∈ E. We have proved the uniform approximation property. ut

Corollary 3.17. If f is a Bochner integrable function from E to B then there
exists a sequence (fn) of simple and Bochner integrable functions from E to
B such that

lim
n→+∞

∫
E

‖f(x)− fn(x)‖ dµ(x) = 0 .

Proof. As µ is σ-finite and ‖f(·)‖ is integrable, for every ε > 0 there exists a
measurable set K ∈ E such that µ(K) <∞ and
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E\K
‖f(x)‖ dµ(x) ≤ ε .

Consider a sequence (fk) such as given by Lemma 3.16. We have∫
E

‖f(x)− fk1lK(x)‖ dµ(x) ≤
∫
E

‖f(x)− f(x)1lK(x)‖ dµ(x)+

+

∫
E

‖f(x)− fk(x)‖ 1lK(x) dµ(x)

≤ ε+
1

k
µ(K) .

It is easy to conclude now. ut

In particular, the sequence (
∫
E
fn(x) dµ(x))n∈N is Cauchy in B for∥∥∥∥∫

E

(
fn(x)− fm(x)

)
dµ(x)

∥∥∥∥ ≤ ∫
E

‖fn(x)− fm(x)‖ dµ(x)

which tends to 0 when n and m tend to +∞. Hence this sequence converges
in B.

Definition 3.18. We denote by∫
E

f(x) dµ(x)

its limit in B. This integral is called the Bochner integral of f with respect to
the measure µ.

Note that this limit does not depend on the choice of the sequence (fn)
(exercise). This limit obviously satisfies the inequality∥∥∥∥∫

E

f(x) dµ(x)

∥∥∥∥ ≤ ∫
E

‖f(x)‖ dµ(x) . (3.1)

We now give a useful characterization of the Bochner integral in terms of
the action of elements of B∗

Theorem 3.19. Let f be a Bochner measurable and Bochner integrable func-
tion from (E, E , µ) to B. Then its Bochner integral

∫
E
f(x) dµ(x) is the unique

element of B which satisfies〈
φ ,

∫
E

f(x) dµ(x)

〉
=

∫
E

〈φ , f(x)〉 dµ(x) , (3.2)

for all φ ∈ B∗.

Proof. Let us first check that the integrals
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E

〈φ , f(x)〉 dµ(x)

are well-defined. As f is Bochner measurable, the function x 7→ 〈φ , f(x)〉 is
measurable from E to C. It is also absolutely integrable for∫

E

|〈φ , f(x)〉| dµ(x) ≤
∫
E

‖φ‖ ‖f(x)‖ dµ(x) .

Hence the integral above is well-defined.
We claim that the mapping λ : φ 7→

∫
E
〈φ , f(x)〉 dµ(x) is *-weakly-

continuous. Indeed, if (φn) converges *-weakly to φ ∈ B∗ then 〈φn , f(x)〉
converges to 〈φ , f(x)〉 for all x (by hypothesis) and the sequence (φn) is
bounded (by the Uniform Boundedness Principle). By Lebesgue’s Theorem
this shows that λ(φn) converges to λ(φ). This proves that λ is *-weakly-
continuous.

By Theorem 3.7 this proves that there exists a unique element g ∈ B such
that

λ(φ) = 〈φ , g〉 .

The fact the the Bochner integral g =
∫
E
f(x) dx satisfies the relation

(3.2) is obtained easily for simple functions. One then passes to the limit for
general Bochner integrable functions. ut

In the case of separable Hilbert spaces the definition of the Bochner inte-
gral becomes much simpler. This result is an easy consequence of the results
established previously, we leave the proof to the reader.

Theorem 3.20. Let H be a separable Hilbert space and let f be a function
from E to H.

1) The function f is Bochner measurable if and only if, for all φ ∈ H, the
function x 7→ 〈φ , f(x)〉 is measurable from E to C.

2) If f is Bochner integrable then, for all φ ∈ H, we have∫
E

|〈f(x) , φ〉| dµ(x) <∞

and the Bochner integral
∫
E
f(x) dµ(x) is the unique element of H which

satisfies 〈∫
E

f(x) dµ(x) , φ

〉
=

∫
E

〈f(x) , φ〉 dµ(x) (3.3)

for all φ ∈ H.
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3.1.4 Actions of Operators

The usual properties of Integration Theory, such as additivity, linearity,
Change of Variable Formula (when E = Rn), Fundamental Theorem of Cal-
culus (when E = R), Lebesgue’s Dominated Convergence Theorem, ... remain
valid in the context of Banach-valued functions. We shall not develop these
results here. In this subsection we concentrate only on results which are spe-
cific to Bochner integrals and which admit no interesting equivalent result
for usual integrals in finite dimension: the behavior of Bochner integrals with
respect to the action of linear operators.

Proposition 3.21. If f is a Bochner integrable function from E to B and
if T is a bounded operator on B, then x 7→ Tf(x) is Bochner integrable too.
Furthermore we have

T

∫
E

f(x) dµ(x) =

∫
E

Tf(x) dµ(x) . (3.4)

Proof. If φ is a continuous linear form on B then φ ◦ T is also a continuous
linear form on B. This shows that Tf is weakly measurable. The range of
Tf is the continuous image by T of the range of f , hence it is separable
too. The norm-integrability of Tf is obvious. This proves that Tf is Bochner
integrable.

The identity (3.4) is immediate when f is simple. We then conclude easily
in the general case, using an approximation by simple functions (Corollary
3.17) and using the continuity of T. ut

In the case of Hilbert spaces we have an extension of Proposition 3.21, but
first of all we need a little lemma on measurability.

Lemma 3.22. Let T be a closable operator from DomT ⊂ H to H and let f
be a Bochner measurable function from E to H such that f(x) ∈ DomT for
all x ∈ E. Then the function x 7→ Tf(x) is Bochner measurable.

Proof. As T is closable it admits a densely defined adjoint T∗. For all ψ ∈
DomT∗ and all x ∈ E we have

〈ψ , Tf(x)〉 = 〈T∗ψ , f(x)〉 .

In particular, for all ψ ∈ DomT∗, the function x 7→ 〈ψ , Tf(x)〉 is measurable
(by Proposition ??). As DomT∗ is dense in H, it is easy to see that the
mapping x 7→ 〈ψ , Tf(x)〉 is measurable from E to C, for all ψ ∈ H. This
gives the Bochner measurability of Tf , by Proposition ?? again. ut

Proposition 3.23. Let f be a Bochner integrable function from E to a sep-
arable Hilbert space H. Let T be a closable operator on H, with closure T,
such that f(x) belongs to DomT for all x ∈ E and such that
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E

‖Tf(x)‖ dµ(x) <∞ .

Then
∫
E
f(x) dµ(x) belongs to DomT and

T

∫
E

f(x) dµ(x) =

∫
E

Tf(x) dµ(x) . (3.5)

Proof. By Lemma 3.22 the function Tf is Bochner measurable. By hypothesis
it is also norm-integrable, hence the Bochner integral

∫
E
Tf(x) dµ(x) is well-

defined.
As T is closable it admits a densely adjoint T∗. Let ψ ∈ DomT∗, then〈
T∗ψ ,

∫
E

f(x) dµ(x)

〉
=

∫
E

〈T∗ψ , f(x)〉 dµ(x) (by Theorem 3.20)

=

∫
E

〈ψ , Tf(x)〉 dµ(x)

=

〈
ψ ,

∫
E

Tf(x) dµ(x)

〉
(by Theorem 3.20) .

This proves that
∫
E
f(x) dµ(x) belongs to the domain of T∗∗ = T and that

T

∫
E

f(x) dµ(x) =

∫
E

Tf(x) dµ(x) .

This proves the announced relation (3.5). ut

3.2 Operator Semigroups

We now discuss the basic properties of operator semigroups and in particular
their different notions of continuity.

3.2.1 Definitions

Definition 3.24. Let B be a Banach space. An operator semigroup, or simply
a semigroup, on B is a family (Tt) of bounded linear operators on B, indexed
by t ∈ R+, such that

i) T0 = I,

ii) Ts Tt = Ts+t for all s, t ∈ R+.
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In general these two conditions are far too general and a continuity as-
sumption has to be added. There are several types of continuity conditions
that are usually considered.

Definition 3.25. A semigroup (Tt) on B is

– uniformly continuous if t 7→ Tt is continuous for the operator-norm,

– strongly continuous if, for all f ∈ B, the mapping t 7→ Tt f is continuous
from R+ to B,

– weakly continuous if, for all f ∈ B, all φ ∈ B∗, the mapping t 7→ 〈φ , Tt f〉
is continuous from R+ to C,

– continuous if the mapping (t, f) 7→ Tt f is continuous from R+× B to B.

Clearly the uniform continuity implies the strong continuity, which itself
implies the weak continuity. The continuity implies the strong continuity. We
shall see later on more relations between these different continuity notions
for semigroups.

3.2.2 Uniform Continuity

The case of uniformly continuous semigroups is the simplest one and is easy
to characterize. But, first of all, let us make clear some properties of the
Bochner integral in this context.

Proposition 3.26. Let (Tt) be a uniformly continuous semigroup of opera-
tors on B. Then the mapping t 7→ Tt , from R+ to the space of bounded opera-
tors on B, is Bochner integrable on any compact interval. For all f ∈ B, the
mapping t 7→ Tt f , from R+ to B, is also Bochner integrable on any compact
interval. The Bochner integral

∫ t
0
Ts ds defines a bounded operator on B which

satisfies (∫ t

0

Ts ds

)
f =

∫ t

0

Ts f ds (3.6)

for all f ∈ B.
Furthermore, if H is any bounded operator on B then (HTt)t∈R+ and

(Tt H)t∈R+ are Bochner integrable on any compact interval and we have

H

(∫ t

0

Ts ds

)
=

∫ t

0

HTs ds , (3.7)

(∫ t

0

Ts ds

)
H =

∫ t

0

Ts H ds . (3.8)

Proof. The mapping t 7→ Tt is continuous by hypothesis, hence it is weakly-
measurable and by Proposition 3.11 it has separable range. This means that
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it is Bochner measurable. By the continuity of t 7→ ‖Tt‖, this mapping is also
Bochner integrable on all compact interval.

Exactly the same arguments show that t 7→ Tt f is Bochner integrable on
any compact interval.

The identity (3.6) is obvious when t 7→ Tt is a simple function, it is then
rather easy to see that it remains true in the general case, by an approxima-
tion argument.

The fact that (HTt)t∈R+ and (Tt H)t∈R+ are Bochner integrable on any
compact interval is immediate. Now, we have, by (3.6)(∫ t

0

Ts ds

)
H f =

∫ t

0

Ts H f ds =

(∫ t

0

Ts H ds

)
f ,

for all f ∈ B. This gives (3.8).
On the other hand, by Proposition 3.21 and Equation (3.6), we have

H

(∫ t

0

Ts ds

)
f = H

(∫ t

0

Ts f ds

)
=

(∫ t

0

HTs f ds

)
=

(∫ t

0

HTs ds

)
f ,

for all f ∈ B. This proves (3.7). ut

We can now pass to the main characterization theorem concerning uni-
formly continuous semigroups.

Theorem 3.27. Let (Tt) be a semigroup on B. Then the following assertions
are equivalent.

i) The semigroup (Tt) is uniformly continuous.

ii) There exists a bounded operator Z on B such that

Tt = et Z

for all t ∈ R+.

In this holds, then the operator Z is given by

Z = lim
h→0

1

h
(Th − I) ,

on all B.

Proof. If Z is a bounded operator on B then the series

et Z =
∑
n∈N

tnZn

n!

is convergent in operator norm. This defines a bounded operator et Z on B
and obviously we have ∥∥et Z

∥∥ ≤ et‖Z‖ .
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It is also easy to check that Tt = et Z, t ∈ R+, defines a uniformly continuous
semigroup (proof left to the reader). We have proved that ii) implies i).

Assume that i) is satisfied. The mapping t 7→ Tt is Bochner integrable on
any compact interval and by the Fundamental Theorem of Calculus, one can
choose h small enough such that∥∥∥∥∥h−1

∫ h

0

Ts ds− I

∥∥∥∥∥ < 1 .

This means that the operator X =
∫ h
0
Ts ds is invertible, for the inverse series

1

h

∑
n∈N

(
I− 1

h
X

)n
converges in operator norm. In particular X has a bounded inverse X−1. Put

Z = (Th − I)X−1 .

We have, using Proposition 3.21 and the Change of Variable Formula,

(Tt − I)X =

∫ t+h

t

Ts ds−
∫ h

0

Ts ds

=

∫ t+h

h

Ts ds−
∫ t

0

Ts ds

= (Th − I)

∫ t

0

Ts ds .

As all the operators above commute, we get by Proposition 3.26

Tt − I =

∫ t

0

Ts Z ds.

In particular d
dt Tt exists and is equal to Tt Z. This means that

d

dt

(
Tt e−t Z

)
= 0

and hence Tt = et Z. ut

Definition 3.28. The operator Z given by the theorem above is called the
generator of (Tt).
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3.2.3 Strong and Weak Continuity

We have seen that the uniform continuity for the semigroup is the signature of
a bounded generator. Outside of this case, the strong continuity assumption
is a very reasonable assumption and it has many consequences.

Before hand, we need to recall (without proof) a famous theorem of Func-
tional Analysis (proofs may be found in any textbook in Functional Analysis,
such as [RS80]).

Theorem 3.29 (Uniform Boundedness Principle). Let (Ti)i∈I be any
family of bounded operators from a Banach space B to a normed linear space
A. If for each x ∈ B the set {‖Ti x‖ ; i ∈ I} is bounded, then the set
{‖Ti‖ ; i ∈ I} is bounded.

We can now state our theorem on strong continuity.

Theorem 3.30. Let (Tt) be a semigroup on B. Then the following assertions
are equivalent.

i) The semigroup (Tt) is strongly continuous.

ii) The semigroup (Tt) is strongly continuous at 0+.

iii) The semigroup (Tt) is continuous.

In that case there exist positive constants M and β such that

‖Tt‖ ≤M eβt (3.9)

for all t ∈ R+.

Proof. It is obvious that i) implies ii) and that iii) implies i). We have only
have to prove that ii) implies iii).

Assume that (Tt) is strongly continuous at 0+, that is, limt→0 Tt f = f ,
for all f ∈ H. We claim that there exists a n ∈ N∗ such that

Cn = sup{‖Tt‖ ; 0 ≤ t ≤ 1/n}

is finite. Indeed, if this were not true one could construct a sequence (tn)
tending to 0 such that ‖Ttn‖ tends to +∞. By the Uniform Boundedness
Principle (Theorem 3.29), this would mean the existence of x ∈ B such that
(Ttn x)n∈N is unbounded. This would contradict the strong continuity in 0+.

Put C = Cnn , then, by the semigroup property of (Tt) we have ‖Tt‖ ≤ C
for all t ∈ [0, 1]. As a consequence, for all t ∈ R+, we have

‖Tt‖ ≤ C [t]+1 ≤ C t+1 .

This gives (3.9).
In particular, if limn tn = t in R+ and limn fn = f in B then
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‖Ttn fn − Tt f‖ ≤ ‖Ttn(fn − f)‖+ ‖Ttn f − Tt f‖
≤M eβtn ‖fn − f‖+M eβmin(tn,t)

∥∥T|t−tn| f − f∥∥ .
In particular, limn ‖Ttn fn − Tt f‖ = 0. This proves that (Tt) is continuous.
ut

Note that St = e−βt Tt, t ∈ R+, is also a semigroup, from which (Tt) is
easily deduced. This semigroup is uniformly bounded, that is, ‖St‖ ≤M for
all t. Hence, multiplying by M−1, one can easily reduce the study of strongly
continuous semigroups to the case of contraction semigroups, that is, such
that ‖Tt‖ ≤ 1 for all t.

We end up this discussion with an important result: another improvement
of the strong continuity condition.

Theorem 3.31. Let (Tt) be a semigroup on B. Then the following assertions
are equivalent.

i) (Tt) is strongly continuous.

ii) (Tt) is weakly continuous.

iii) (Tt) is weakly continuous at 0+.

Proof. Obviously i) implies ii) and ii) implies iii). The only non trivial di-
rection to prove is that iii) implies i). Even better, the semigroup property
shows easily that iii) implies ii). There just remains to prove that ii) implies
i).

The main argument for proving (3.9) in Theorem 3.30 was the fact that

Cn = sup{‖Tt‖ ; 0 ≤ t ≤ 1/n}

is finite, by an application of the Uniform Boundedness Principle (Theo-
rem 3.29). The rest was just applying the semigroup property. If (Tt) is only
weakly continuous at 0+ then, for all f ∈ B and φ ∈ B∗, the quantity 〈φ , Tt f〉
tend to 〈φ , f〉 when t tends to 0, hence t 7→ 〈φ , Tt f〉 is bounded in a neigh-
borhood of 0. By the Uniform Boundedness Principle applied to the linear
form φ 7→ 〈φ , Tt f〉, the mapping t 7→ Tt f is then bounded in a neighborhood
of 0. By the Uniform Boundedness Principle again we have that t 7→ Tt is
bounded near 0. Hence, developing the same argument as in Theorem 3.30,
we get that (3.9) holds true if (Tt) is weakly continuous at 0+.

If (Tt) is weakly continuous, then the closed linear span of the set {Tt f ; t ∈
R+} (which we denote by R) is invariant under Tt and separable, for it is
the weak (and hence the strong) closure of the linear space generated by
{Tt f ; t ∈ Q+} (see Proposition 3.6).

Let f ∈ B and φ ∈ B∗, by the above arguments and by the weak continu-
ity we see that t 7→ 〈φ , Ttf〉 is locally bounded and measurable, hence the
integral
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1

ε

∫ ε

0

〈φ , Tt f〉 dt

converges and the linear form

λ : φ 7→ 1

ε

∫ ε

0

〈φ , Tt f〉 dt

is clearly a continuous linear form on B∗.
The mapping t 7→ Tt f is weakly measurable and has a separable range

R (as proved above), it is then Bochner measurable and hence t 7→ ‖Tt f‖
is measurable by Lemma 3.14. We have also seen that this map is locally
bounded near 0. If (φn) is a sequence in the unit ball of B∗ converging ∗-
weakly to φ ∈ B∗, then by the Banach-Alaoglu Theorem (Theorem 3.8) the
mapping φ belongs to the unit ball of B∗ too. Furthermore, by the Dominated
Convergence Theorem we have that

1

ε

∫ ε

0

〈φn , Tt f〉 dt

converges to
1

ε

∫ ε

0

〈φ , Tt f〉 dt .

Hence the linear form λ is ∗-weakly continuous on the unit ball of B∗. This
means that the intersection of the kernel of λ with the unit ball of B∗ is
∗-weakly closed. By the Krein-Smulian Theorem (Theorem 3.9) this implies
that the kernel of λ is ∗-weakly closed, hence λ is ∗-weakly continuous. This
means (Theorem 3.7) that there exists fε ∈ B such that

〈φ , fε〉 =
1

ε

∫ ε

0

〈φ , Tt f〉 dt ,

for all φ ∈ B∗.
As a consequence we have

|〈φ , Th fε − fε〉| = |〈T∗h φ , fε〉 − 〈φ , fε〉|

=
1

ε

∣∣∣∣∫ ε

0

〈T∗h φ , Tt f〉 dt−
∫ ε

0

〈φ , Tt f〉 dt

∣∣∣∣
=

1

ε

∣∣∣∣∣
∫ ε+h

h

〈φ , Tt f〉 dt−
∫ ε

0

〈φ , Tt f〉 dt

∣∣∣∣∣
=

1

ε

∣∣∣∣∣
∫ ε+h

ε

〈φ , Tt f〉 dt−
∫ h

0

〈φ , Tt f〉 dt

∣∣∣∣∣
≤ ‖f‖ ‖φ‖

ε

(∫ ε+h

ε

M eβt dt−
∫ h

0

M eβt dt

)
.
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Since φ is arbitrary, this means that

lim
h→0
‖Th fε − fε‖ ≤ lim

h→0

‖f‖
ε

(∫ ε+h

ε

M eβt dt−
∫ h

0

M eβt dt

)
= 0 .

Let L be the set of all g ∈ B such that limh→0 Th g = g. It is a subspace and
it is norm-closed by (3.9). In particular it is weakly closed. Now, note that
the weak limit of fε is f , when ε tends to 0. Hence L = B and the proof is
complete. ut

3.3 Generators

We have seen in Theorem 3.27 that uniformly continuous semigroups admit
bounded generators. In the case of strongly continuous semigroups there still
exists a good notion of associated generator.

3.3.1 Definition

Definition 3.32. Let (Tt) be a strongly continuous semigroup on B. We de-
fine the generator of (Tt) to be the operator Z on B such that

DomZ =

{
f ∈ B ; lim

t→0

1

t
(Tt − I) f exists

}
and

Z f = lim
t→0

1

t
(Tt − I) f

for all f ∈ DomZ.

Definition 3.33. Recall that, in the same way as for operators on Hilbert
space, an operator T on a Banach space is a closed operator if it is densely
defined operator and if, for all sequence (fn) ⊂ DomT which converges to
some f in B and such that (Tfn) converges in B then f ∈ DomT and Tf =
limTfn.

The following result shows that the operator Z defined this way is always
an “interesting” operator.

Proposition 3.34. The space DomZ is dense in B and the operator Z is
closed.

Proof. Set Zh f = 1
h (Th f−f) and Ys f = 1

s

∫ s
0
Tu f du. The operators Zh and

Ys are bounded and
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ZhYs = Ys Zh = ZsYh = Yh Zs ,

as can be checked easily (making use of Proposition 3.26). In particular, for
every s > 0 and f ∈ B we have

lim
h→0

ZhYs f = lim
h→0

Zs(Yh f) = Zs f .

Therefore Ys f belongs to DomZ and since lims→0 Ys f = f we get that DomZ
is dense.

Now, if (fn) is a sequence in DomZ converging to f in B and such that
(Z fn)n∈N converges to g ∈ B, then

Ys g = lim
n

Ys Z fn = lim
n

Ys

(
lim
h

Zh fn

)
= lim

n
lim
h

Zs(Yh fn) = lim
n

Zs fn = Zs f .

It follows that lims→0 Zs f exists, hence f ∈ DomZ and Z f = lims→0 Zs f =
g. We have proved that Z is closed. ut

The following is a set of important relations relating the generator and its
semigroup.

Proposition 3.35. If f ∈ DomZ then the following holds.

1) For all t ∈ R+ we have Tt f ∈ DomZ .

2) The function f 7−→ Tt f is strongly differentiable in B and

d

dt
Tt f = ZTt f = Tt Z f . (3.10)

3) We have

Tt f − f =

∫ t

0

Ts Z f ds =

∫ t

0

ZTs f ds . (3.11)

Proof. We have, for f ∈ DomZ,

lim
s→0

1

s
[Ts(Tt f)− Tt f ] = lim

s→0
Tt

[
1

s
(Ts f − f)

]
= Tt Z f.

This proves 1) and ZTt f = Tt Z f . This also proves that t 7→ Tt f has right-
hand derivative equal to Tt Z f , in each point t ∈ R. This right-hand derivative
is continuous in t, hence it is a classical theorem of real analysis (see for
example [Rud87], Theorem 8.21, to be adapted here to the case of Banach-
valued functions) that this implies that t 7→ Tt f is differentiable at every
point.

Thus Tt f = f +
∫ t
0
Ts Z f ds. This proves 2) and 3). ut
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In Theorem 3.31 we have seen that the weak continuity of the semigroup
is sufficient for proving its strong continuity. In the same spirit, the following
result shows that weak and strong generators coincide.

Proposition 3.36. Let (Tt) be a weakly continuous semigroup on B. Con-
sider the operator L on B defined by

Dom L =

{
f ∈ B ; weak - lim

t→0

1

t
(Tt − I)f exists

}
and

L f = weak - lim
t→0

1

t
(Tt − I)f

for all f ∈ Dom L . Then L coincides with the generator Z of (Tt) .

Proof. As the norm convergence implies the weak convergence, we obviously
have DomZ ⊂ Dom L and Z = L on DomZ. Now we just need to prove that
Dom L ⊂ DomZ.

For all f ∈ Dom L, all φ ∈ B∗ put

F(t) =

〈
φ , (Tt − I)f −

∫ t

0

Ts L f ds

〉
.

We have

lim
h→0

1

h
(F(t+ h)− F(t)) = lim

h→0

〈
T∗t φ ,

1

h
(Th f − f)

〉
− lim
h→0

〈
φ ,

1

h

∫ t+h

t

Ts L f ds

〉
= 〈T∗t φ , L f〉 − 〈φ , Tt L f〉 = 0 .

This proves that F(t) = 0 for all t. As this is true for all φ ∈ B∗, this shows
that

(Tt − I)f =

∫ t

0

Ts L f ds

so that

lim
t→0

1

t
(Tt − I)f = L f .

In other words f belongs to DomZ and Z f = L f . ut

3.3.2 Spectrum

Consider the generator Z of a strongly continuous semigroup (Tt) satisfying
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‖Tt‖ ≤M eβt

for all t (Theorem 3.30). The following theorem gives information on the
spectrum σ(Z) of Z and the resolvent operators Rλ(Z) = (λI− Z)−1.

Theorem 3.37. If (Tt) is a strongly continuous semigroup on B, with gen-
erator Z and satisfying (3.9), then the spectrum of Z is included in the set
{λ ∈ C ; Re(λ) ≤ β}. Moreover, for all λ such that Re(λ) > β we have

Rλ(Z) =

∫ ∞
0

e−λt Tt dt .

Proof. If Re(λ) > β, the integral

Yλ =

∫ ∞
0

e−λt Tt dt

is convergent in operator norm, by (3.9). Put g = Yλ f , we have, by Propo-
sition 3.26,

1

h
(Th g − g) =

1

h

(∫ ∞
0

e−λt Tt+h f dt−
∫ ∞
0

e−λt Tt f dt

)
=

1

h

(∫ ∞
h

e−λ(t−h) Tt f dt−
∫ ∞
0

e−λt Tt f dt

)
=

1

h

(
(eλh − 1)

∫ ∞
0

e−λt Tt f dt− eλh
∫ h

0

e−λt Tt f dt

)
.

Passing to the limit h→ 0, we get λg − f on the right hand side.
This proves that g belongs to DomZ and (λI−Z)g = f , hence g = Rλ(Z)f .

ut

3.3.3 Dual Semigroup

It is very useful, in particular for semigroups of operators acting on Hilbert
spaces, to consider the dual of operator semigroups. We study here their main
properties.

First recall the definition of adjoint operators on Banach spaces.

Definition 3.38. Let B be a Banach space and let B∗ be its dual. Let Z be a
densely defined operator on B, with domain DomZ. One defines the operator
Z∗ on B∗ as follows. Consider the set

DomZ∗ = {φ ∈ B∗ ; f 7→ 〈φ , Z f〉 is continuous on DomZ} .
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For every φ ∈ DomZ∗, the mapping λ : f 7→ 〈φ , Z f〉 is continuous on DomZ
which is dense. Hence λ extends to a unique continuous linear functional on
B, that is, λ belongs to B∗. We denote by Z∗φ this unique element of B∗. To
be clear, the element Z∗φ is characterized by the relation

〈φ , Z f〉 = 〈Z∗ φ , f〉

for all f ∈ DomZ, φ ∈ DomZ∗.

Definition 3.39. If (Tt) is a strongly continuous semigroup of operators on a
Banach space B, one can consider the dual semigroup (T∗t ) on B∗. Clearly it is
a semigroup of operators on B∗. The point is that, in general, the semigroup
(T∗t ) may not be strongly continuous. Let us see that with a counter-example.

Consider the operators Tt on L1(R) defined by (Tt f)(s) = f(s+ t) for all
s, t ∈ R. Clearly the Tt’s are norm 1 operators and they form a semigroup. Let
us show that they constitute a strongly continuous semigroup. The fact that
limh→0 ‖Tt f − f‖1 = 0 is clear on the dense subspace of continuous functions
with compact support, by Lebesgue’s Theorem. As the norm of Tt is uniformly
bounded in t, it is easy to show that the property limh→0 ‖Tt f − f‖1 = 0
extends to all f ∈ L1(R).

The dual semigroup of (Tt) is the semigroup (T∗t f)(s) = f(s − t) defined
on L∞(R). It is not strongly continuous on L∞(R), as can be seen easily by
taking for f any indicator function.

Definition 3.40. The dual semigroup (T∗t ) is not strongly continuous in gen-
eral, but it is always *-weakly continuous, for

〈Thφ− φ , f〉 = 〈φ , Thf − f〉

for all φ ∈ B∗, all f ∈ B, and hence the limit is 0 when h tends to 0.
One defines the *-weak generator Z′ of (T∗t ) as follows

DomZ′ =

{
φ ∈ B∗ ; ∗-weak - lim

h→0

1

h
(T∗hφ− φ) exists

}
and

Z′φ = ∗-weak - lim
h→0

1

h
(T∗hφ− φ)

for all φ ∈ DomZ′.

We now wish to prove the following theorem characterizing Z′.

Theorem 3.41. Let (Tt) be a strongly continuous semigroup of operators on
B with generator Z. The *-weak generator Z′ of (T∗t ) and its domain DomZ′

coincide with the operator Z∗ and its domain DomZ∗.

The proof of this theorem will be achieved in several steps. The first step
is the definition of a *-weak integral on B∗.
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Definition 3.42. Let φ be a function from (E, E) to B∗. We say that φ is
*-weakly-measurable if x 7→ 〈φ(x) , f〉 is measurable for all f ∈ B.

If φ is *-weakly measurable and if we have∫
E

|〈φ(x) , f〉| dµ(x) <∞

for all f ∈ B, we shall say that φ is *-weakly integrable.

Proposition 3.43. If φ is a *-weakly integrable function from (E, E , µ) to
B∗ then the mapping

f 7→
∫
E

〈φ(x) , f〉 dµ(x)

is a continuous linear form on B.

Proof. Let T be the operator from B to L1(E, E , µ) defined by

(Tf)(x) = 〈φ(x) , f〉 .

We claim that T is a closed operator. Indeed, if (fn) converges to f in B and if
(Tfn) converges to y in L1(E), then there exists a subsequence (fnk

)k∈N such
that Tfnk

tends to y almost surely. But Tfnk
(x) = 〈φ(x) , fnk

〉 converges to
〈φ(x) , f〉 for all x ∈ E. Hence y = T f and T is closed.

By the Closed Graph Theorem this means that T is bounded, for it is
everywhere defined and closed.

The linear form of the proposition is the composition of T and of the
mapping f 7→

∫
E
f dµ from L1(E) to C. One concludes easily. ut

The linear form above is thus an element of B∗. This allows the following
definition.

Definition 3.44. One defines the *-weak-integral

*-w-

∫
E

φ(x) dµ(x)

as being the unique element of B∗ which satisfies〈
*-w-

∫
E

φ(x) dµ(x) , f

〉
=

∫
E

〈φ(x) , f〉 dµ(x)

for all f ∈ B.

As a second step of the proof of Theorem 3.41 we derive useful identities
for the semigroup (T∗t ), using the *-weak integral. They are the one for (T∗t )
corresponding to the (3.11) for (Tt).

Proposition 3.45. Let (T∗t ) be the dual semigroup of a strongly continuous
semigroup (Tt) on B. Then for all φ ∈ B∗ we have
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*-w-

∫ t

0

T∗s φ ds ∈ DomZ∗

and

Z∗
(

*-w-

∫ t

0

T∗s φ ds

)
= T∗t φ− φ . (3.12)

Furthermore, if φ belongs to DomZ∗ then

Z∗
(

*-w-

∫ t

0

T∗s φ ds

)
= *-w-

∫ t

0

T∗s Z∗φ ds . (3.13)

Proof. For all f ∈ DomZ we have〈
*-w-

∫ t

0

T∗s φ ds , Z f

〉
=

∫ t

0

〈T∗s φ , Z f〉 ds

=

∫ t

0

〈φ , Ts Z f〉 ds

=

〈
φ ,

∫ t

0

Ts Z f ds

〉
= 〈φ , Ttf − f〉
= 〈T∗t φ− φ , f〉 .

This proves that *-w-
∫ t
0
T∗s φ ds belongs to DomZ∗ and this proves (3.12).

If furthermore φ belongs to DomZ∗ then the same computation gives〈
Z∗
(

*-w-

∫ t

0

T∗s φ ds

)
, f

〉
=

∫ t

0

〈φ , Ts Z f〉 ds

=

∫ t

0

〈T∗s Z∗φ , f〉 ds

=

〈
*-w-

∫ t

0

T∗s Z∗φ ds , f

〉
.

This proves (3.13). ut

We can now conclude for the proof of Theorem 3.41; this is our third step.

Proof (of Theorem 3.41). Let φ belong to DomZ∗ and f ∈ B. We have, by
Proposition 3.45

1

h
〈T∗hφ− φ , f〉 =

1

h

〈
Z∗

(
*-w-

∫ h

0

T∗s φ ds

)
, f

〉

=
1

h

∫ h

0

〈T∗s Z∗ φ , f〉 ds .
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Taking the limit when h tends to 0 we obtain 〈Z∗ φ , f〉. This proves that φ
belongs to DomZ′ and that Z′φ = Z∗φ. We have proved that Z∗ ⊂ Z′.

Conversely, if φ belongs to DomZ′ and if f ∈ DomZ, then

〈Z′ φ , f〉 = lim
h→0

1

h
〈T∗h φ− φ , f〉

= lim
h→0

1

h
〈φ , Thf − f〉

= 〈φ , Z f〉 .

This proves that φ belongs to DomZ∗ and that Z∗φ = Z′φ. The theorem is
proved. ut

The case of reflexive Banach space is much more easy. The following the-
orem is now easy to prove and left to the reader.

Theorem 3.46. If (Tt) is a strongly continuous semigroup on a reflexive
Banach space B, with generator Z, then (T∗t )t∈R+ is a strongly continuous
semigroup on B∗, with generator Z∗.

3.3.4 Predual Semigroups

Another situation which is very useful is the case where the Banach B admits
a predual space.

Definition 3.47. The predual of a Banach space B, when it exists, is a Ba-
nach space B∗ such that B is the dual of B∗.

This is typical of the situation where B is B(H) and B∗ = L1(H) or more
generally when B is a, so-called, von Neumann algebra.

Lemma 3.48. If L is a bounded operator on B and if L is also ∗-weakly
continuous, then there exists a unique bounded operator L∗ on B∗ such that

〈L f , φ〉 = 〈f , L∗ φ〉

for all φ ∈ B∗, all f ∈ B. In particular L is the adjoint of L∗ .

Proof. The linear form λ : f 7→ 〈L f , φ〉 is ∗-weakly continuous on B, by
the ∗-weak continuity of L. Hence by Theorem 3.7, there exists an element
φ∗ ∈ B∗ such that λ(f) = 〈f , φ∗〉 for all f ∈ B. The element φ∗ depends
linearly on φ, we denote it by L∗ φ. The mapping L∗ is bounded on B∗ for

|〈f , L∗ φ〉| = |〈L f , φ〉| ≤ ‖φ‖ ‖L‖ ‖f‖ .

Uniqueness is obvious and the relation L = (L∗)
∗ is also immediate now. ut
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Definition 3.49. The map L∗ is call the predual map of L.

Theorem 3.50. Let B be a Banach space which admits a predual B∗. Let
(Tt) be a strongly continuous semigroup of operators on B such that all the
mappings Tt are ∗-weakly continuous. Consider the semigroup (T∗t) on B∗,
defined by

〈f , T∗t φ〉 = 〈Tt f , φ〉 ,

for all φ ∈ B∗ and all f ∈ B. Then (T∗t) is a strongly continuous semigroup
of bounded operators on B∗. The semigroup (Tt) is the dual of the semigroup
(T∗t).

Proof. By Lemma 3.48 each of the maps Tt admit a predual map T∗t. It is
easy to check that (T∗t) is a semigroup on B∗ . Furthermore, for all f ∈ B
and all φ ∈ B∗ we have

〈Tt f − f , φ〉 = 〈f , T∗t φ− φ〉 .

Hence the semigroup (T∗t) is weakly continuous. By Theorem 3.31 it is
strongly continuous. The rest of the properties have been already proved
in Lemma 3.48. ut

3.3.5 Stone’s Theorem

We end this section and this lecture with the very important theorem of
Stone, characterizing unitary groups of operators.

Definition 3.51. On a Hilbert space H, consider a strongly continuous uni-
tary semigroup, that is, a strongly continuous semigroup of operators (Ut)t∈R+

on H such that each of the operators Ut is unitary. For every t ∈ R+, put

U−t = U−1t = U∗t . (3.14)

Then it is very easy to check that the family (Ut)t∈R now satisfies

Ut Us = Us+t

for all s, t ∈ R. That is, the unitary semigroup can be extended into a unitary
group, indexed by R now.

Conversely, if (Ut)t∈R is a unitary group then the relation

U−t Ut = U0 = I

leads to
U−t = U−1t = U∗t (3.15)

for all t ∈ R.
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Theorem 3.52 (Stone’s Theorem). A family (Ut)t∈R of operators on H
is a strongly continuous unitary (semi)group if and only its generator is of
the form iH where H is self-adjoint.

In that case we have
Ut = eitH ,

for all t ∈ R, in the sense of the functional calculus for self-adjoint operators.

Proof. Let H be a self-adjoint operator on H. If, for each t ∈ R we put
Ut = eitH for some self-adjoint operator H, in the sense of the functional
calculus of self-adjoint operators, then (Ut)t≥0 is clearly a unitary group
by the functional calculus. It is strongly continuous for, using the spectral
measure µϕ associated to H, we have

‖Ut ϕ− ϕ‖2 =

∫
R
|eitλ − 1|2 dµϕ(λ)

which converges to 0 as t tends to 0. Finally, if ϕ is such that

lim
t→0

Ut ϕ− ϕ
t

exists then define the operator B by

Bϕ =
1

i
lim

Ut ϕ− ϕ
t

.

We then easily check that

〈ϕ,Bψ〉 = 〈Bϕ,ψ〉

and thus B is symmetric.
Now, if ϕ belongs to DomH we have by the Spectral Theorem again∥∥∥∥Uhϕ− ϕh

− iHϕ

∥∥∥∥2 =

∫
R

∣∣∣∣eihλ − 1

h
− iλ

∣∣∣∣ dµϕ(x) .

The right-hand side converges to 0 by Lebesgue’s Theorem (use |ex − 1| ≤
|x|). This proves that H ⊂ B. As B is symmetric, this gives finally B = H.

Conversely, let (Ut)t≥0 be a strongly continuous unitary semigroup. It has
a generator K which is a closed operator (Proposition 3.34).

Put Vt = U∗t for all t ∈ R+. This defines another semigroup, the dual
semigroup of (Ut), with generator equal to K∗ by Theorem 3.46. If f belongs
to DomK∗ then, for all t > h > 0, we have

1

h
(Uh − I)Vt f =

1

h
(Vt−h − Vt)f .
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Hence, when h tends to 0, the limit of the above exists and is equal to−K∗Vt f .
This proves that Vt DomK∗ ⊂ DomK and that K = −K∗ on Vt DomK∗.

Every g ∈ DomK∗ can be written as g = Ut Vt g. Hence Vt g belongs to
DomK and finally g = Ut Vt g belongs to DomK by Proposition 3.35. We
have proved that DomK∗ ⊂ DomK.

Inverting the roles of (Ut) and (Vt), that is, considering the relation Ut =
V∗t we would obtain in the same way: DomK ⊂ DomK∗.

We have proved that K = −K∗, that is, K = iH for some self-adjoint
operator H. The theorem is proved. ut

Notes

In order to write this chapter we have used the following famous reference
books on Functional Analysis and Operator Semigroups: the book by Davies
[Dav80] on semigroups, Dunford-Schwarz’s famous bible on linear operators
[DS88], the book by Yosida [Yos80]. Complements, in particular on weak
topologies for Banach spaces, can be found in Rudin’s book [Rud91] or Con-
way’s book [Con85].

There are other references that may be consulted on the subject of Opera-
tor Semigroups. The first volume of Bratelli-Robinson’s book [BR87] contains
a nice chapter on semigroups. The book by Clement et al [CHA+87] is quite
advanced in the subject. The second volume of Reed-Simon’s series [RS75]
contains a summary of the main results.
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