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motion and the Poisson processes. We end up this lecture with the very prob-
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We assume that the reader is familiar with the general Measure and In-
tegration Theory. We start this lecture with those notions which are really
specific to Probability Theory.

4.1 Monotone Class Theorems

Before entering into the basic concepts of Probability Theory, we want to put
the emphasis on a particular set of results: the Monotone Class Theorems.
These theorems could be classified as being part of the general Measure and
Integration Theory, but they are used so often in Probability Theory that
it seemed important to state them properly. It is also our experience, when
teaching students or discussing with colleagues, that these theorems are not
so much well-known outside of the probabilist community.

4.1.1 Set Version

Definition 4.1. Let Ω be a set, we denote by P(Ω) the set of all subsets of
Ω. A collection S of subsets of Ω is a δ-system (on Ω) if
i) Ω ∈ S,
ii) if A,B belong to S with A ⊂ B then B \A belongs to S,
iii) if (An) is an increasing sequence in S then ∪n An belongs to S.

A collection C of subsets of Ω is a π-system (on Ω) if it is stable under
finite intersections.
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The following properties are immediate consequences of the definitions, we
leave the proofs to the reader.

Proposition 4.2.

1) δ-systems are stable under passage to the complementary set.
2) The intersection of any family of δ-systems on Ω is a δ-system on Ω.
3) A collection of subsets is a σ-field if and only if it is a δ-system and a
π-system.

Definition 4.3. A consequence of Property 2) above is that, given any collec-
tion C of subsets of Ω, there exists a smallest δ-system S on Ω which contains
C. This δ-system is simply the intersection of all the δ-systems containing C
(the intersection is non-empty for P(Ω) is always a δ-system containing C ).
We call it the δ-system generated by C.

Theorem 4.4 (Monotone Class Theorem, Set Version). Let Ω be a
set and S be a δ-system on Ω. If S contains a π-system C, then S contains
the σ-field σ(C) generated by C. More precisely, the δ-system generated by C
coincides with σ(C).

Proof. Let δ(C) be the δ-system generated by C. We have C ⊂ δ(C) ⊂ S. For
any A ∈ δ(C) define δ(C)A = {B ∈ δ(C) ; A ∩B ∈ δ(C)} . It is easy to check
that δ(C)A is a δ-system (left to the reader), contained in δ(C).

If A belongs to C we obviously have C ⊂ δ(C)A, for C is a π-system. By
minimality of δ(C) we must have δ(C) ⊂ δ(C)A. Hence δ(C)A = δ(C). This is
to say that A ∩B belongs to δ(C) for all A ∈ C and all B ∈ δ(C).

Now, take B ∈ δ(C) and consider the collection δ(C)B . We have just proved
that δ(C)B contains C. Hence it contains δ(C), hence it is equal to δ(C). This
is to say that A ∩ B belongs to δ(C) for all A ∈ δ(C), all B ∈ δ(C). In other
words, δ(C) is a π-system.

By Property 3) in Proposition 4.2 the collection δ(C) is a σ-field. As δ(C)
contains C, it contains σ(C). This proves the first part of the theorem.

A σ-field is a δ-system, hence σ(C) is a δ-system containing C. As a con-
sequence σ(C) contains the minimal one δ(C) and finally σ(C) = δ(C). ut

Let us mention here an important consequence of Theorem 4.4.

Corollary 4.5. Let C be a π-system of subsets of Ω. Then any probability
measure P on σ(C) is determined by its values on C only.

Proof. Let P and P′ be two probability measures on σ(C) such that P(A) =
P′(A) for all A ∈ C. The set S of all A ∈ σ(C) satisfying P(A) = P′(A) is a
δ-system (proof left to the reader). It contains C, hence by Theorem 4.4 it
contains σ(C). ut
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Note that the above corollary ensures that a measure on σ(C) is determined
by its value on C. The important point here is that one already knows that
there exists a measure on σ(C) which extends P on C. This is the place here
to recall the Carathéodory Extension Theorem which gives a condition for
the existence of such an extension. We do not prove here this very classical
result of Measure Theory.

Definition 4.6. A collection A of subsets of Ω is called a field if
i) Ω ∈ A
ii) A is stable under passage to the complementary set
iii) A is stable under finite unions.

A measure on a field A is a map µ : A 7→ R+∪ {+∞} such that

µ

( ⋃
n∈N

An

)
=
∑
n∈N

µ(An)

for any sequence (An) of two-by-two disjoint elements of A, such that ∪nAn
belongs to A. The measure µ is called σ-finite if Ω can be written as the
union of a sequence of sets (En), each of which belonging to A and satisfying
µ(En) <∞ .

Theorem 4.7 (Carathéodory’s Extension Theorem). Let A be a field
on a set Ω. If µ is a σ-finite measure on A, then there exists a unique exten-
sion of µ as a σ-finite measure on σ(A).

4.1.2 Functional Versions

There are very useful forms of the Monotone Class Theorem which deal with
bounded functions instead of sets.

Definition 4.8. A monotone vector space on a set Ω is a family H of
bounded real-valued functions on Ω such that
i) H is a (real) vector space,
ii) H contains the constant functions,
iii) if (fn) is any increasing sequence in H of positive functions, converging
to a bounded function f = supn fn , then f belongs to H.

The first functional version of the Monotone Class Theorem is an easy
application of Theorem 4.4.

Theorem 4.9 (Monotone Class Theorem, Functional Version 1). Let
H be a monotone vector space on Ω and let C be a π-system on Ω such that
1lA belongs to H for all A ∈ C. Then H contains all the real-valued, σ(C)-
measurable, bounded functions on Ω.
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Proof. Let S = {A ⊂ Ω ; 1lA ∈ H}. Then, by the properties of H, it is easy
to check that S is a δ-system. As S contains C by hypothesis, it contains σ(C)
by Theorem 4.4.

If f is a real-valued, bounded, σ(C)-measurable function on Ω, then it can
be decomposed as f = f+−f−, for some positive functions f+ and f− which
are also bounded and σ(C)-measurable. In particular these two functions are
limit of increasing sequences of positive simple bounded functions of the form∑k
i=1 ai 1lAi , with Ai ∈ σ(C) for all i . This implies that f+ and f− belong to

H and hence f belongs to H. ut

There exists a stronger version of this functional form of the Monotone
Class Theorem. Before proving it we need a technical lemma.

Lemma 4.10. Every monotone vector space is stable under uniform limit.

Proof. Let H be a monotone vector space and let (fn) be a sequence in
H converging uniformly to f∞. Up to considering the sequence (fn − f0)
and, up to extracting a subsequence, we can assume that f0 = 0 and∑
k∈N ‖fk+1 − fk‖∞ <∞ .
For all n ∈ N, put an =

∑
k≥n ‖fk+1 − fk‖∞ and gn = fn − an1l. The

function gn belongs to H, for H is a monotone vector space. Furthermore, we
have

gn+1 − gn = fn+1 − fn + ‖fn+1 − fn‖∞ 1l .

As a consequence, the function gn+1 − gn is positive and belongs to H. This
is to say that the sequence (gn) is increasing, it converges to f∞, which is a
bounded function for it is dominated by a0. Hence f∞ belongs to H. ut

Theorem 4.11 (Monotone Class Theorem, Functional Version 2).
Let H be a monotone vector space on Ω. If C ⊂ H is stable under pointwise
multiplication then H contains all the real-valued, σ(C)-measurable, bounded
functions on Ω.

Proof. Let f1, . . . , fn ∈ C and let Φ : Cn 7→ C be a continuous function.
We claim that Φ(f1, . . . , fn) belongs to H. Indeed, by the Stone-Weierstrass
Theorem, on any compact set the function Φ is uniform limit of a sequence
(Rm) of polynomial functions in n variables. In particular, if we put M =
max1≤i≤n ‖fi‖∞ , then Φ is the uniform limit of (Rm) on {‖x‖ ≤ M}. By
hypothesis on C and H, all the functions Rm(f1, . . . , fn) belong to H and, by
Lemma 4.10, the function Φ(f1, . . . , fn) belongs to H. Take

Φ(x1, . . . , xn) =
∏

1≤i≤n

min
(
1 , r (xi − ai)+

)
for r > 0 and a1, . . . , an ∈ R. The (increasing) limit of Φ(x1, . . . , xn) when
r tends to +∞ is

∏
1≤i≤n 1l(xi>ai) . Hence, if f1, . . . , fn belong to C the

function
∏

1≤i≤n 1l(fi>ai) belongs to H, for all a1, . . . , an ∈ R.
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The collection of sets of the form ∩1≤i≤n (fi > ai) constitutes a π-system
D on Ω, whose indicator functions all belong to H. By Theorem 4.9, the space
H contains all the σ(D)-measurable bounded functions. But clearly σ(D) is
equal to σ(C), this gives the result. ut

Let us end up this section with a direct application of Theorem 4.11.

Corollary 4.12. Let E be a metric space together with its Borel σ-field
Bor(E). If P and P′ are two probability measures on (E,Bor(E)) such that∫

E

f dP =
∫
E

f dP′

for all continuous bounded function f from E to R , then P = P′.

Proof. Put H to be the space of bounded Borel functions f from E to R
such that

∫
E
f dP =

∫
E
f dP′. Then clearly H is a monotone vector space.

Put C to be the algebra of bounded continuous functions from E to R. Our
hypothesis implies that C is included in H, and clearly C is stable under
pointwise product. By Theorem 4.11 the space H contains all the bounded
σ(C)-measurable functions. But it is easy to check that σ(C) coincides with
Bor(E), hence the conclusion. ut

Note that the above corollary remains true if we replace “continuous
bounded functions” by any set C of Borel bounded functions which is stable
under pointwise product and which satisfies σ(C) = Bor(E). For example this
is true for bounded C∞-functions, for compactly supported C∞-functions,
etc.

It is also easy to check that this corollary extends to the case where P and
P′ are locally bounded measures on E. We leave this extension as an exercise
for the reader.

4.2 Random Variables

In this section we give a very quick overview of the main definitions and con-
cepts attached to the notion of random variable: their law, their characteristic
function, the notion of independence etc.

4.2.1 Completion of Probability Spaces

Definition 4.13. A probability space is a triple (Ω,F ,P) where Ω is a set, F
is a σ-field of subsets of Ω and P is a probability measure on F .
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A subset A of Ω is negligible if there exists B ∈ F such that A ⊂ B
and P(B) = 0. Note that this notion is relative to F and P but we shall
not mention them. The probability space (Ω,F ,P) is called complete if F
contains all the negligible sets (relative to P).

An incomplete probability space (Ω,F ,P) can be easily completed in the
following way. Let N denote the set of all negligible sets of (Ω,F ,P). Put
F to be the σ-field generated by F and N . We leave to the reader to prove
the following results, they are all very easy except the last property which
requires a little more carefulness.

Proposition 4.14.
1) The σ-field F coincides with the set of subsets of Ω which are of the form
B ∪N for some B ∈ F and some N ∈ N .
2) The probability measure P extends to a probability measure P on F by
putting P(B ∪N) = P(B), for all B ∈ F , all N ∈ N .
3) The probability space (Ω,F ,P) is complete.
4) A subset A ⊂ Ω belongs to F if and only if there exist B1, B2 ∈ F such
that B1 ⊂ A ⊂ B2 and P(B2 \B1) = 0 .
5) A function f from Ω to R is measurable for F if and only if there exist two
F-measurable functions g and h such that g ≤ f ≤ h and

∫
Ω

(h− g) dP = 0 .

Definition 4.15. The complete probability space (Ω,F ,P) is called the com-
pletion of (Ω,F ,P).

From now on, all our probability spaces are supposed to be complete, we
drop the notations F and P and write F and P instead.

4.2.2 Laws of Random Variables

Definition 4.16. Let (Ω,F ,P) be a probability space. A random variable on
Ω is a measurable map X : Ω 7→ R, where R is equipped with its Borel σ-field
Bor(R).

The law, or distribution, of a random variableX is the measure µX = X◦P ,
image of P under X, that is,

µX(A) = P
(
X−1(A)

)
for all A ∈ Bor(R). It is a probability measure on R.

In Probability Theory one commonly uses notations such as P(X ∈ A)
instead of P

(
X−1(A)

)
, or P(X ≤ t) instead of P

(
X−1(]−∞, t])

)
, etc.

We recall here the Transfer Theorem, which is very useful when dealing
with image measures. This is a very classical theorem of Measure and Inte-
gration Theory, we do not prove it here.
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Theorem 4.17 (Transfer Theorem). Let (Ω,F ,P) be a probability space
and let (E, E) be a measurable space. Let X be a measurable map from (Ω,F)
to (E, E) and let µX be the measure on (E, E) which is the image of P under
X. Then a measurable function f : E → R is µX-integrable if and only if the
(measurable) function f ◦X : Ω→ R is P-integrable.

In that case we have∫
Ω

f ◦X(ω) dP(ω) =
∫
E

f(x) dµX(x) . (4.1)

Definition 4.18. The expectation of an integrable random variable X is the
integral

E[X] =
∫

Ω

X(ω) dP(ω) =
∫

R
xdµX(x) .

The variance of a square integrable random variable X is the quantity

Var(X) = E
[
(X − E[X])2

]
= E[X2]− E[X]2 .

The quantity
σX =

√
Var(X)

is the standard deviation of X.
More generally, when then are defined, the quantities E[Xk], k ∈ N, are

called the moments of X.

Definition 4.19. We have defined random variables as being real-valued
only, but in Quantum Probability Theory one often considers complex-valued
functions of random variables. If X is a real-valued random variable and if
f = g+ ih is a measurable function from R to C (where g and h are the real
and the imaginary parts of f respectively), then one extends the expectation
linearly by

E[f(X)] = E[g(X)] + iE[h(X)] ,

when this is well-defined.

Definition 4.20. The characteristic function of a random variable X is the
Fourier transform of its law, that is, the function µ̂X on R defined by

µ̂X(t) = E
[
eitX

]
=
∫

R
eitx dµX(x) ,

for all t ∈ R.

The well-known invertibility of the Fourier transform has the following
important consequence.

Proposition 4.21. The characteristic function of a random variable com-
pletely determines its law.
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4.2.3 Vector-Valued Random Variables

Definition 4.22. Let n > 1 be an integer. A n-tuple of random variables
(one says pair, triple when n = 2, 3 respectively) is a family (X1, . . . , Xn) of n
random variables defined on a common probability space (Ω,F ,P). One often
speaks of a vector-valued random variable by considering X = (X1, . . . , Xn)
as a random variable with values in Rn.

The law, or distribution, of a n-tuple (X1, . . . , Xn) is the probability mea-
sure µ(X1,..., Xn) on Rn, image of P under the mapping (X1, . . . , Xn) from Ω
to Rn. By Corollary 4.5, this measure is characterized by

µ(X1,..., Xn)(A1 × · · · ×An) = P

(
n⋂
i=1

X−1
i (Ai)

)

for all A1, . . . , An in Bor(R).

Definition 4.23. The Transfer Theorem 4.17 applies to the case of vector-
valued random variables, by taking E = Rn. Hence, the Transfer Formula
(4.1) becomes

E [f(X1, . . . , Xn)] =
∫

Ω

f (X1(ω), . . . , Xn(ω)) dP(ω)

=
∫

Rn
f(x1, . . . , xn) dµ(X1,..., Xn)(x1, . . . , xn) . (4.2)

For a n-tuple X = (X1, . . . , Xn) of random variables (or a n-dimensional ran-
dom variable), we let E[X] be the n-dimensional vector (E[X1], . . . ,E[Xn]),
if well-defined.

We also denote by Cov(X) the covariance matrix of X, that is, the matrix(
E
[

(Xi − E[Xi]) (Xj − E[Xj ])
])n
i,j=1

=
(
E[XiXj ]− E[Xi] E[Xj ]

)n
i,j=1

,

if it is well-defined (i.e. all the random variables Xi are square integrable).
The matrix Cov(X) is always real (symmetric) positive, as can be easily

checked by the reader.

Definition 4.24. The characteristic function of a n-tuple (X1, . . . , Xn) is the
Fourier transform of its law, that is, the function µ̂(X1,..., Xn) on Rn defined
by

µ̂(X1,..., Xn)(t1, . . . , tn) = E
[
ei(t1X1+···+tnXn)

]
.

In the same way as for Proposition 4.21 we have a uniqueness property.

Proposition 4.25. The characteristic function of a n-tuple completely de-
termines its law. ut
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Definition 4.26. For a n-tuple (X1, . . . , Xn), we call marginal laws, or
simply marginals, the laws of the (strict) sub-families (Xi1 , . . . , Xip) of
(X1, . . . , Xn).

Proposition 4.27. The law of a n-tuple (X1, . . . , Xn) completely determines
its marginals.

Proof. Consider a sub-family (Xi1 , . . . , Xip) taken from (X1, . . . , Xn). For
any family of Borel sets Ai1 , . . . , Aip , define the sets B1, . . . , Bn by Bj = Aik
if j = ik for some k and Bj = R otherwise. We then have

µ(Xi1 ,...,Xip )(Ai1 × · · · ×Aip) = µ(X1,...,Xn)(B1 × · · · ×Bn) ,

that is, the claim. ut

Note that the converse of Proposition 4.27 is not true: the marginal laws
do not determine the law of the whole n-tuple, in general.

4.2.4 Independence

Definition 4.28. If one knows that an event A ∈ F (with P(A) 6= 0) is
already realized, then the probability to obtain the realization of an event B
is not P(B) anymore, it is given by the quantity

P(B |A) =
P(A ∩B)

P(A)
, (4.3)

that is, the (normalized) restriction of the measure P to the set A. The above
quantity is called conditional probability of B knowing A.

Definition 4.29. We say that two events A,B ∈ F are independent if

P(B |A) = P(B) ,

that is, if knowing that one of the events is realized has no impact on the
probability of the other one to occur. Clearly, by (4.3) this property is equiv-
alent to the relation

P(A ∩B) = P(A) P(B)

and it is then equivalent to P(A |B) = P(A).
A family of events {A1, . . . , An} is said to be an independent family of

events if

P

(
k⋂
i=1

Ani

)
=

k∏
i=1

P(Ani)

for any subset {n1, . . . , nk} of {1, . . . , n}.
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We say that n random variables X1, . . . , Xn are independent of each other
if for any B1, . . . , Bn ∈ Bor(R), the events

{
X−1

1 (B1), . . . , X−1
n (Bn)

}
form

an independent family of events.

Proposition 4.30. The random variables X1, . . . , Xn are independent if and
only if the law µ(X1,..., Xn) of the n-tuple (X1, . . . , Xn) is the product measure
µX1 ⊗ · · · ⊗ µXn .

Proof. If µ(X1,..., Xn) = µX1 ⊗ · · · ⊗ µXn , then clearly

µ(Xn1 ,..., Xnk ) = µXn1
⊗ · · · ⊗ µXnk

for any subset {n1, . . . , nk} of {1, . . . , n}. In particular

P
(
X−1
n1

(Bn1) ∩ . . . ∩X−1
nk

(Bnk)
)

= µ(Xn1 ,..., Xnk )(Bn1 × . . .×Bnk)

= µXn1
(Bn1) . . . µXnk (Bnk)

= P
(
X−1
n1

(Bn1)
)
. . . P

(
X−1
nk

(Bnk)
)
.

This gives the independence.
Conversely, if the random variables X1, . . . , Xn are independent, then we

get
µ(X1,..., Xn)(B1 × . . .×Bn) = µX1(B1) . . . µXn(Bn)

with the same kind of computation as above. Hence the probability measures
µ(X1,..., Xn) and µX1 ⊗ · · · ⊗ µXn coincide on the product sets B1 × . . .×Bn .
By Corollary 4.5 they are equal. ut

This proposition shows that in the case of independence the individual laws
of the Xi’s determine the law of the n-tuple (X1, . . . , Xn). This property is
in general false without the independence hypothesis.

There exists a very useful functional characterization of independence.

Proposition 4.31. Let X1, . . . , Xn be random variables on (Ω,F ,P). Then
they are independent if and only if

E [f1(X1) . . . fn(Xn)] = E [f1(X1)] . . .E [fn(Xn)] (4.4)

for all bounded Borel functions f1, . . . , fn from R to R.

Proof. If (4.4) holds true for all bounded Borel functions f1, . . . , fn on R then
taking fi = 1lAi , for all i, gives

µ(X1,..., Xn)(A1 × . . .×An) = P
(
X−1

1 (A1) ∩ . . . ∩X−1
n (An)

)
= E [1lA1(X1) . . . 1lAn(Xn)]
= E [1lA1(X1)] . . .E [1lAn(Xn)]

= P
(
X−1

1 (A1)
)
. . .P

(
X−1
n (An)

)
= µX1(A1) . . . µXn(An) .
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This proves the “if” part.
Conversely, if X1, . . . , Xn are independent then, by the same computation

as above, we get that (4.4) holds true for f1, . . . , fn being indicator func-
tions. By linearity this remains true for f1, . . . , fn being simple functions.
By Lebesgue’s Theorem, Equation (4.4) holds true for any bounded Borel
functions f1, . . . , fn , approximating them by simple functions. ut

Definition 4.32. We are given a probability space (Ω,F ,P). A family (Fn)
of sub-σ-fields of F is independent if

P (Ai1 ∩ . . . ∩Ain) =
n∏
k=1

P(Aik)

for all {i1, . . . , in} ⊂ N and all Aik ∈ Fik , respectively.

Lemma 4.33. Let (An) be π-systems which generate the σ-fields (Fn) re-
spectively. Then the family (Fn) is independent if and only if

P (Ai1 ∩ . . . ∩Ain) =
n∏
k=1

P(Aik) (4.5)

for all {i1, . . . , in} ⊂ N and all Aik ∈ Aik , respectively.

Proof. There is only one direction to prove. Assume that (4.5) holds on the
An’s then consider the following measures on Fin :

A 7→ P
(
Ai1 ∩ . . . ∩Ain−1 ∩A

)
and

A 7→
n−1∏
k=1

P(Aik)× P(A) .

They coincide on Ain , hence they coincide on Fin by Corollary 4.5. Repeating
this procedure while exchanging the roles of i1, . . . , in gives (4.5) easily. ut

Definition 4.34. In the following, if X1, . . . , Xn are random variables on
(Ω,F ,P), we denote by σ(X1, . . . , Xn) the σ-field generated by X1, . . . , Xn.

Proposition 4.35. If (X1, . . . , Xn) are independent random variables then,
for any k ∈ {1, . . . , n − 1}, the σ-field σ(X1, . . . , Xk) is independent of
σ(Xk+1, . . . , Xn).

Proof. By hypothesis we have, for all A1, . . . , An ∈ Bor(R)

P (X1 ∈ A1, . . . , Xn ∈ An) =
= P(X1 ∈ A1, . . . , Xk ∈ Ak) P (Xk+1 ∈ Ak+1, . . . , Xn ∈ An) .
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The set of events of the form X−1
1 (A1) ∩ . . . ∩X−1

k (Ak) is a π-system which
generates σ(X1, . . . , Xk). The set of events X−1

k+1(Ak+1) ∩ . . . ∩ X−1
n (An) is

a π-system which generates σ(Xk+1, . . . , Xn). We can apply Lemma 4.33 to
these two σ-fields. ut

Be aware that if a random variable Z is independent of a random vari-
able X and also of a random variable Y , then σ(Z) is not independent of
σ(X,Y ) in general. The proposition above needs the triple (X,Y, Z) to be
independent, which is a stronger condition. As a counter-example (and as an
exercise) take X and Y to be two independent Bernoulli random variables
(cf next section) with parameter p = 1/2 and take Z = XY .

4.2.5 Different Types of Convergence

In Probability Theory we make use of many modes of convergence for random
variables. Let us list them here.

Definition 4.36. Let (Xn) be a sequence of random variables on (Ω,F ,P)
and let X be a random variable on (Ω,F ,P).

We say that (Xn) converges almost surely to X if (Xn(ω)) converges to
X(ω) for almost all ω ∈ Ω.

For 1 ≤ p < ∞, we say that (Xn) converges in Lp to X if the random
variables |Xn|p and |X|p are all integrable and if E[ |Xn −X|p ] converges to
0.

We say that (Xn) converges toX in probability if, for all ε > 0, the quantity
P(|Xn −X| > ε) tends to 0 when n tends to +∞.

We say that (Xn) converges to X in law if, for all A ∈ Bor(R), the quantity
P(Xn ∈ A) converges to P(X ∈ A).

Here is a list of results to be known about these convergences. We do not
prove them and we convey the interested reader to reference books for the
proofs (see a list in the Notes).

Theorem 4.37.

1) The almost sure convergence implies the convergence in probability.
2) The convergence in probability implies the existence of a subsequence which
converges almost surely.
3) The Lp-convergence implies the convergence in probability.
4) The convergence in probability implies the convergence in law.
5) The convergence in law is equivalent to the pointwise convergence of the
characteristic function.
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4.2.6 Uniform Integrability

We concentrate here on a notion which is very important, for it has many
applications in more advanced problems concerning stochastic processes. It
is a notion which relates the almost sure convergence and the L1-convergence
for sequences of random variables.

Definition 4.38. Let U = {Xi ; i ∈ I} be any family of integrable random
variables on (Ω,F ,P), one can think of U as a subset of L1(Ω,F ,P). The
family U is uniformly integrable if

lim
a→+∞

sup
X∈U

E
[
|X| 1l|X|≥a

]
= 0 . (4.6)

Proposition 4.39. Let U be a subset of L1(Ω,F ,P). The following asser-
tions are equivalent.
i) The family U is uniformly integrable.
ii) One has

a) supX∈U E [|X|] <∞
and

b) for all ε > 0, there exists δ > 0 such that A ∈ F and P(A) ≤ δ imply
E [|X| 1lA] ≤ ε, for all X ∈ U .

Proof. If U is uniformly integrable and A ∈ F then

sup
X∈U

E [|X| 1lA] = sup
X∈U

E
[
|X| 1l|X|≥a1lA

]
+ sup
X∈U

E
[
|X| 1l|X|<a1lA

]
≤ sup
X∈U

E
[
|X| 1l|X|≥a

]
+ a sup

X∈U
E
[
1l|X|<a1lA

]
.

Let c be such that the first term above is smaller than ε/2 for all a ≥ c. We
then have supX∈U E [|X| 1lA] ≤ ε/2 + cP(A). Taking A = Ω gives a). Taking
δ = ε/2c gives b). We have proved that i) implies ii).

Conversely, assume that ii) is satisfied. Let ε > 0 and let δ > 0 be as
described in b). Let c = supX∈U E[|X|]/δ <∞. Let A be the event (|X| ≥ c).
We have P(A) ≤ E[|X|]/c ≤ δ. Thus E [|X| 1lA] ≤ ε for all X ∈ U . ut

The main use of the notion of uniform integrability is the following result.

Theorem 4.40. Let (Xn) be a sequence of random variables belonging to
L1(Ω,F , P ). Suppose that (Xn) converges almost surely to a random variable
X∞ ∈ L1(Ω, F , P ). Then (Xn) converges to X∞ in L1(Ω,F ,P) if and only
if the family (Xn) is uniformly integrable.

Proof. If (Xn) converges to X∞ in L1(Ω,F ,P) we then have

sup
n

E[|Xn|] ≤ sup
n

E[|Xn −X∞|] + E[|X∞|] < +∞
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and
E[|Xn| 1lA] ≤ E[|X∞| 1lA] + E[|Xn −X∞| 1lA] .

The second term of the right hand side is dominated by ε for n large enough
(independently of A); as any finite sequence of random variables is always
uniformly integrable, the conclusion follows by Proposition 4.39.

Conversely, if (Xn) is uniformly integrable, let ε > 0 and δ be such that if
a ≥ δ then supn E[|Xn| 1l|Xn|≥a] ≤ ε/3. Consider the function

φa(x) =



0 , if x ≤ −a− ε ,
−aε (x+ a+ ε) , if x ∈ [−a− ε,−a] ,
x , if x ∈ [−a, a] ,
−aε (x− a− ε) , if x ∈ [a, a+ ε] ,
0 , if x ≥ a+ ε .

By Fatou’s lemma we have E[|X∞| 1l|X∞|≥a] ≤ ε/3 and

E [ |Xn −X∞| ] ≤ E [ |Xn − φa(Xn)| ] + E [ |φa(Xn)− φa(X∞)| ]
+ E [ |φa(X∞)−X∞| ]

≤ E
[
|Xn| 1l|Xn|≥a

]
+ E [ |φa(Xn)− φa(X∞)| ]

+ E
[
|X∞| 1l|X∞|≥a

]
.

As E[|φa(Xn) − φa(X∞)|] tends to 0 by Lebesgue’s theorem, this gives the
result. ut

4.3 Basic Laws

In this section we describe some basic examples of laws of random variables.
They are the most common and useful probability distributions: Bernoulli,
binomial, Poisson, exponential and Gaussian. They are the typical distribu-
tions that we meet in Quantum Mechanics, in Quantum Probability.

4.3.1 Bernoulli, Binomial

Definition 4.41. The very first non-trivial probability laws are the Bernoulli
laws. This term is characteristic of any probability law µ on R which is sup-
ported by the set {0, 1}. That is, probability measures µ such that µ({1}) = p
and µ({0}) = q = 1 − p for some p ∈ [0, 1]. The measure µ is called the
Bernoulli law with parameter p.
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One often also calls “Bernoulli” any probability measure on R supported
by two points. But generally, when these two points are not {0, 1}, one should
precise “Bernoulli random variable on {a, b}” etc.

Definition 4.42. If X1, . . . , Xn are n independent Bernoulli random vari-
ables, with parameter p, and if we put Sn = X1 + . . . + Xn then we easily
get the following probabilities

P(Sn = i ) = Cin p
i qn−i ,

for i = 0, . . . , n. The law of Sn is called the binomial distribution with pa-
rameter n and p, denoted B(n, p).

4.3.2 Exponential, Poisson

Another fundamental law in Probability Theory is the exponential law and its
naturally associated Poisson law. The exponential law is the “memory-lack
law”. Consider a positive random variable T which is a waiting time, say.
Assume that, knowing that a period of duration s has passed without the
expected event occurring, does not change the law of the remaining time to
wait. In other words, the probability that T > s+ h, knowing that T > s al-
ready, should be the same as the probability that T > h . The first probability
is

P(T > s+ h |T > s) =
P(T > s+ h)

P(T > s)

and thus our assumption is

P(T > s+ h) = P(T > s) P(T > h)

for all s, h ≥ 0. The function f(s) = ln P(T > s) satisfies f(s+h) = f(s)+f(h)
for all s, h ∈ R+ As it is right-continuous, increasing and f(0) = 0, it must
be a linear function with positive slope. Thus the distribution of our waiting
time, if non-trivial, shall be of the form

P(T > t) = 1lR+(t)λ e−λt

for some λ > 0. This is to say that the law of T is the measure

1lR+(t)λ e−λt dt .

Definition 4.43. This is the exponential law with parameter λ. We shall
denote it by E(λ).

Now, consider a sequence of independent random variables X1, X2, . . .,
each of which follows the exponential law with parameter λ. We think of this
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sequence as successive intervals of time for the occurrences of some events
(clients arriving, phone calls etc ...). Define the random variable

N = sup{n ; X1 +X2 + . . .+Xn ≤ 1} ,

that is, the number of arrivals during the time interval [0, 1].

Proposition 4.44. For every k ∈ N, we have

P(N = k) =
λk

k!
e−λ .

Proof. The probability P(N = k) is equal to

P(X1 + . . .+Xk ≤ 1 < X1 + . . . Xk+1) .

By the independence of the Xi’s the law of (X1, . . . , Xn) is the product
measure of the laws of the Xi’s (Proposition 4.30). By the Transfer Theorem
4.17, the probability P(N = k) is equal to∫
x1+...+xk≤1<x1+...+xk+1

1lR+(x1, . . . , xn)λk+1 e−λx1 . . . e−λxk+1 dx1 . . . dxk+1 .

With the change of variables s1 = x1, s2 = x1+x2, . . . , sk+1 = x1+. . .+xk+1

this gives

λk
∫

0≤sk≤1<sk+1

λ e−λsk+1 ds1 . . . dsk+1 =
λk

k!
e−λ . ut

Definition 4.45. The law we have obtained for N above is called the Poisson
law with parameter λ. We shall denote it by P(λ).

A similar computation shows that the random variable Nt representing
the number of arrivals during the interval [0, t] follows a Poisson law with
parameter λt.

4.3.3 Gaussian laws

Definition 4.46. The last fundamental law we shall describe here is the
Normal law, or Gaussian law. A random variable is said to follow the normal
law N (m,σ) if its probability law is of the form

1
σ
√

2π
exp

(
− (x−m)2

2σ2

)
dx
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for some m ∈ R and σ > 0. The expectation of such a random variable is m
and its variance is σ2, as can be checked easily.

It is sometimes useful to consider the Dirac masses δm as being special
cases of Gaussian laws, they correspond to the limit case σ = 0.

Note that, very often in the literature, the same law is denoted by
N (m,σ2), that is, the second parameter is the variance instead of the stan-
dard deviation. Here we shall follow our notation N (m,σ).

Here follow some useful results concerning Gaussian laws. We do not de-
velop their proofs, for they are rather easy and standard.

Proposition 4.47.

1) A Gaussian random variable X with expectation m and variance σ2 has
the following characteristic function

µ̂X(t) = eitm−σ2t2/2 .

2) The sum of independent Gaussian random variables is again a Gaussian
random variable.
3) If a sequence of Gaussian random variables (Xn) converges in L2 to a ran-
dom variable X, then X is also Gaussian. The expectation and the variance
of X are the limits of the expectation and variance of Xn.

A simple computation gives the moments of the Gaussian law.

Proposition 4.48. If X is a random variable with law N (0, σ), then

E[X2p] =
(2p)!
2p p!

σ2p .

The odd moments E[X2p+1] all vanish.

Proof. The odd moments vanish by a parity argument. For the even moments,
this is a simple induction. Put

α2p = E[X2p] =
1

σ
√

2π

∫
R
x2p e−

x2

2σ2 dx .

By a simple integration by part we get

α2p = (2p− 1)σ2 α2p−2 .

The result is then easily deduced by induction. ut
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4.3.4 Gaussian Vectors

The Normal distributions are central in Probability Theory for they have
many interesting properties and they are the laws to which one converges
by the Central Limit Theorem. We do not wish (and do not need) to de-
velop all these properties here; the only point we want to develop now is the
multidimensional extension of the notion of Gaussian random variable.

There are many different ways of defining Gaussian vectors, they lead to
many equivalent characterizations. In fact, the most practical approach is
to start with a rather abstract definition. We shall come to more explicit
formulas later on in this subsection.

Definition 4.49. A family (X1, . . . , Xn) of random variables on (Ω,F ,P) is
a Gaussian family , or a Gaussian vector , if every real linear combination∑n
i=1 αiXi is a Gaussian random variable in R.

In particular this definition implies that each random variable Xi has to
be a Gaussian random variable, but this is not enough in general. Though,
note that, by Proposition 4.47, any family (X1 . . . , Xn) of independent Gaus-
sian random variables is a Gaussian family. This is far not the only case of
Gaussian vectors, as we shall see along this subsection.

Proposition 4.50. Let X = (X1, . . . , Xn) be a Gaussian vector in Rn, with
expectation vector m and covariance matrix D. Then its characteristic func-
tion is

µ̂X(t) = exp (i 〈t , m〉 − 〈t , D t〉 /2) , (4.7)

for all t ∈ Rn.
In particular the law of a Gaussian vector is completely determined by its

expectation vector and its covariance matrix.

Proof. Let 〈t , X〉 =
∑n
k=1 tkXk be any (real) linear combination of the

Xi’s. By hypothesis it is a Gaussian random variable. Its expectation is∑n
k=1 tk E[Xk] = 〈t , m〉 . Let us compute its variance. We have

E
[
〈t , X〉2

]
=

n∑
i,j=1

titj E[XiXj ]

and

〈t , m〉2 =
n∑

i,j=1

titj E[Xi] E[Xj ] .

This gives
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Var (〈t , X〉) = E
[
〈t , X〉2

]
− 〈t , m〉2

=
n∑

i,j=1

titj (E[XiXj ]− E[Xi] E[Xj ])

= 〈t , D t〉 .

By Proposition 4.47 the characteristic function of 〈t , X〉 is

φ(x) = exp
(
ix 〈t , m〉 − x2 〈t , D t〉 /2

)
.

Specializing the above to x = 1 gives the result. ut

Independence can be read very easily on Gaussian vectors.

Theorem 4.51. A Gaussian family (X1, . . . , Xn) is made of independent
random variables if and only if its covariance matrix is diagonal.

Proof. One direction is easy: if the random variables Xi are independent then
the covariances E

[
XiXj ] − E[Xi] E[Xj ] vanish for all i 6= j, by Proposition

4.31.
Conversely, if Cov(X) is diagonal then, by Proposition 4.50, the charac-

teristic function of X = (X1, . . . , Xn) factorizes into

µ̂X(t) =
n∏
k=1

exp
(
itkE[Xk]− t2k Var(Xk)/2

)
.

It is the same characteristic function as the one of a family of independent
Gaussian random variables with same respective expectations and variances.
By uniqueness of the characteristic function (Proposition 4.25), we conclude.
ut

Gaussian vectors behave very well with respect to linear transforms.

Proposition 4.52. Let X be a Gaussian vector in Rn, with expectation vec-
tor m and covariance matrix D. Consider a linear application A from Rn to
Rd. Then the d-dimensional random variable Y = AX is also a Gaussian
vector. Its expectation vector is A m and its covariance matrix is A D A∗.

Proof. For all t ∈ Rd the random variable 〈t , Y 〉 = 〈t , AX〉 = 〈A∗ t , X〉
is Gaussian, for it is a linear combination of the coordinates of X. By
Proposition 4.50 its expectation is 〈A∗ t , m〉 = 〈t , A m〉 and its variance
is 〈A∗ t , D A∗t〉 = 〈t , A D A∗ t〉. We now conclude easily with Proposition
4.50 again and the uniqueness of the characteristic function. ut

Corollary 4.53. For any vector m ∈ Rn and any real positive n× n-matrix
D, there exists a Gaussian vector X in Rn with expectation m and covariance
matrix D.
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Proof. As D is a positive matrix it admits a square root A, that is a positive
matrix A such that A2 = D. Let U = (U1, . . . , Un) be a family of indepen-
dent Gaussian random variables with law N (0, 1) respectively. Then U is a
Gaussian vector, with expectation 0 and covariance matrix I. By Proposition
4.52, the random variable X = AU + m has the required law. ut

We end up this subsection with an important result which gives the explicit
density of the laws of Gaussian vectors.

Theorem 4.54. Let X be a Gaussian vector in Rn with expectation vector
m and covariance matrix D. If Det D 6= 0 then the law of X admits a density
with respect to the Lebesgue measure of Rn. This density is

1√
(2π)n Det D

exp
(
−1

2
〈
(x−m) , D−1(x−m)

〉)
.

Proof. Let A be the square root of D, that is, the matrix A is positive and
A2 = D. In particular Det A =

√
Det D and A is invertible too. Let Y =

(Y1, . . . , Yn) be a family of independent Gaussian random variables with law
N (0, 1) respectively. Then the gaussian vector W = m + AY has the same
law as X, by Proposition 4.52. In particular, for any bounded Borel function
f on Rn we have, by the Transfer Theorem 4.17

E[f(X)] = E[f(m + AY )] =
1√

(2π)n

∫
Rn
f(m + A y) exp

(
−1

2
〈y , y〉

)
dy .

Consider the change of variable x = m + A y in Rn . We get

E[f(X)] =

=
1√

(2π)n

∫
Rn
f(x) exp

(
−1

2
〈
A−1(x−m) , A−1(x−m)

〉)
×

×Det A−1 dx

=
1√

(2π)n Det D

∫
Rn
f(x) exp

(
−1

2
〈
(x−m) , D−1(x−m)

〉)
dx .

It is easy to conclude now. ut

4.4 Conditioning

In this section we present several really non-trivial probabilistic notions,
which are all of main importance. They are all linked to the idea of con-
ditioning, that is, to give the best estimate possible on the law of a random
variable, given some information on another random variable.
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4.4.1 Conditional Laws

Definition 4.55. Consider two random variables X and Y defined on the
probability space (Ω,F ,P) and taking values in measurable spaces (E, E)
and (F,F) respectively. Assume first that E is at most countable. Then, for
all A ∈ F and for all i ∈ E, consider the conditional probability

P(i, A) = P(Y ∈ A |X = i) .

Note that we assume that P(X = i) > 0, for all i, for otherwise we reduce E
to the set of “true” values of X. Clearly P is a mapping from E ×F to [0, 1]
such that:
i) for each fixed A ∈ F , the mapping i 7→ P(i, A) is a function on E,
ii) for each fixed i ∈ E, the mapping A 7→ P(i, A) is a probability measure
on (F,F).

The probability measure above is called the conditional law of Y knowing
X = i.

A mapping P from E×F to [0, 1] satisfying the conditions i) and ii) above
is called a transition kernel. When it is associated to random variables X and
Y as above, is also simply called the conditional law of Y knowing X.

Proposition 4.56. Let X and Y be two random variables on (Ω,F ,P), tak-
ing values in (E, E) and (F,F) respectively, with E being at most countable.
Let P be a transition kernel on E × F . Then P is the conditional law of Y
knowing X if and only if

E[f(X,Y )] =
∫
E

∫
F

f(x, y) P(x,dy)µX(dx) , (4.8)

for all bounded measurable function f from E × F to R.

Proof. If P is the transition kernel associated to the conditional law of Y
knowing X, then

P(X ∈ A, Y ∈ B) =
∑
i∈A

P(X = i, Y ∈ B)

=
∑
i∈A

P(Y ∈ B |X = i) P(X = i)

=
∫
A

P(x,B)µX(dx)

=
∫
A

∫
B

P(x,dy)µX(dx) .

Hence Equation (4.8) is valid for f of the form f(x, y) = 1lA(x)1lB(y). It is
now easy to conclude, by an approximation argument, that Equation (4.8) is
valid for all bounded f .
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Conversely, assume Equation (4.8) is satisfied for all bounded f . Take
f(x, y) = 1lA(x)1lB(y), then we have

P(X ∈ A, Y ∈ B) =
∫
A

∫
B

P(x, dy)µX(dx) .

In particular,

P(Y ∈ B |X = i) =
P(X = i, Y ∈ B)

P(X = i)

=

∫
B

P(i,dy)µX({i})
P(X = i)

= P(i, B) .

This proves that P is the conditional law of Y knowing X. ut

In a general situation, where X takes values in a non-discrete measurable
set (E, E), the problem of defining a conditional law is more delicate. One
cannot directly consider conditional probabilities such as

P(x,B) = P(Y ∈ B |X = x) ,

for the event (X = x) is in general a null set for µX .
The idea, in order to define the conditional law of Y knowing X in a

general situation, is to keep Identity (4.8) as a general definition.

Definition 4.57. A transition kernel on E ×F is a mapping

P : E ×F → [0, 1]
(x , A) 7→ P(x,A)

such that:
i) for each fixed A ∈ F , the mapping x 7→ P(x,A) is a measurable function
on E,
ii) for each fixed x ∈ E, the mapping A 7→ P(x,A) is a probability measure
on F .

We say that a transition kernel P is the conditional law of Y knowing X
if P satisfies

E[f(X,Y )] =
∫
E

∫
F

f(x, y) P(x,dy)µX(dx) , (4.9)

for all bounded measurable function f on E × F .

The question of existence of such a general conditional law is much less
trivial than in the discrete case. In full generality it is actually a very difficult
theorem, which is a particular case of the so-called measure desintegration
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property. We do not need to enter into the details of such a theory and we
state without proof the main existence theorem (see [Vil06] for a complete
proof). Note that the theorem we write here is not the one with the largest
conditions possible, but it is simply stated and sufficient for our use.

Theorem 4.58. Let X,Y be random variables with values in Polish spaces
E and F , respectively, equipped with their Borel σ-field E and F , respectively.
Then there exists a transition kernel P on E × F , unique µX-almost surely,
such that

E[f(X,Y )] =
∫
E

∫
F

f(x, y) P(x, dy)µX(dx)

for all bounded measurable function f on E × F .

This theorem is much easier to prove when specializing to particular cases.
We have seen that X being valued in a discrete set is one easy situation; here
is another one.

Theorem 4.59. Let X,Y be random variables whose law µ(X,Y ) admits a
density h(x, y) with respect to the Lebesgue measure on R2. Then the law
µX of X admits a density k(x) with respect to the Lebesgue measure on R.
Furthermore the conditional law of Y knowing X exists, it is given by the
transition kernel

P(x,dy) = p(x, y) dy

where

p(x, y) =

{
h(x,y)
k(x) if k(x) 6= 0,

0 if k(x) = 0 .

Proof. The fact that the law of X admits a density is very easy and left as
an exercise, the density of X is given by

k(x) =
∫

R
h(x, y) dy .

Note that k(x) = 0 implies h(x, y) = 0 for almost all y.
Define the function

p(x, y) =

{
h(x, y)/k(x) if k(x) 6= 0,
0 if k(x) = 0 .

Clearly P(x,dy) = p(x, y) dy defines a transition kernel P.
By definition of the law µ(X,Y ) we have, for all bounded Borel function f

on R2
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E[f(X,Y )] =
∫

R

∫
R
f(x, y)µ(X,Y )(dx,dy)

=
∫

R

∫
R
f(x, y)h(x, y) dx dy

=
∫

R

∫
R
f(x, y)h(x, y) 1lk(x) 6=0 dx dy+

+
∫

R

∫
R
f(x, y)h(x, y) 1lk(x)=0 dx dy

=
∫

R

∫
R
f(x, y)

h(x, y)
k(x)

k(x) 1lk(x)6=0 dxdy + 0

=
∫

R

∫
R
f(x, y) p(x, y) k(x) 1lk(x)6=0 dxdy+

+
∫

R

∫
R
f(x, y) p(x, y) k(x) 1lk(x)=0 dxdy

=
∫

R

∫
R
f(x, y) p(x, y) k(x) dxdy

=
∫

R

∫
R
f(x, y) P(x, dy)µX(dx) .

This proves that P(x,dy) = p(x, y) dx is indeed the conditional law of Y
knowing X. ut

4.4.2 Conditional Expectations

The conditional expectation is an operation which has to do with condition-
ing, but it is more general than the conditional law. Conditional expectations
are defined with respect to a σ-field, instead of a random variable. The idea
is that a σ-field, in general a sub-σ-field of F , represents some partial infor-
mation that we have on the random phenomenon we study. The conditional
expectation is then the best approximation one can have of a random vari-
able, given the knowledge of this σ-field. We now turn to the definitions and
properties of conditional expectations.

Theorem 4.60. Let (Ω,F ,P) be a probability space. Let G ⊂ F be a sub-
σ-field of F . Let X be an integrable random variable on (Ω,F ,P). Then
there exists an integrable random variable Y which is G-measurable and which
satisfies

E[X1lA] = E[Y 1lA] for all A ∈ G . (4.10)

Any other G-measurable integrable random variable Y ′ satisfying (4.10) is
equal to Y almost surely.
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Proof. Assume first thatX is square integrable, that is,X ∈ L2(Ω,F ,P). The
space L2(Ω,G,P) is a closed subspace of L2(Ω,F ,P). Let Y be the orthogonal
projection of X onto L2(Ω,G, P ). Then Y belongs to L2(Ω,G, P ) and satisfies,
for all Z ∈ L2(Ω,G, P )

E[XZ ] =
〈
Z , X

〉
L2(Ω,F,P)

=
〈
Z , Y

〉
L2(Ω,F,P)

= E[Y Z ] . (4.11)

In particular E[X 1lA] = E[Y 1lA] for all A ∈ G. This implies that Y is real-
valued (almost surely) for its integral against any set A ∈ G is real. This also
implies that if X is positive then so is Y almost surely, for Y has a positive
integral on any set A ∈ G.

Now, assume X is only integrable. Its positive part X+ is also inte-
grable. For all n, the random variable X+ ∧ n is square integrable. Let
Y +
n be associated to X+ ∧ n in the same way as above. Then, by the re-

mark above on positivity, we have that Y +
n is positive and that the sequence

(Y +
n ) is increasing. The random variable Y + = limn Y

+
n is integrable, for

E[Y +
n ] = E[X+∧n] ≤ E[X+] and by Fatou’s Lemma. In the same way, asso-

ciate Y − to X−. The random variable Y = Y +−Y − answers our statements.
Note that if X is positive then so is Y , almost surely.
Uniqueness is easy for the relation E[(Y −Y ′)1lA] = 0 for all A ∈ G implies

that Y − Y ′ = 0 almost surely. ut

Definition 4.61. The almost sure equivalence class of integrable, G-measu-
rable, random variables Y such that (4.10) holds is called the conditional
expectation of X with respect to G. It is denoted by E[X | G]. We may also
denote by E[X | G] a representative of the equivalence class E[X | G].

Here are the main properties of conditional expectations.

Theorem 4.62. Let (Ω,F ,P) be a probability space, let G be a sub-σ-field of
F and X be an integrable random variable on (Ω,F ,P).
1) The mapping X 7→ E[X | G] is linear.
2) We have

E [ E[X | G] ] = E[X] . (4.12)

3) If X is positive then so is E[X | G] .
4) (Monotone Convergence) If (Xn) is an increasing sequence of positive
random variables a.s. converging to an integrable random variable X then
E[Xn | G] converges a.s. to E[X | G] .
5) (Fatou’s Lemma) If (Xn) is a sequence of positive random variables then

E
[

lim inf
n

Xn

∣∣∣G ] ≤ lim inf
n

E [Xn | G ] .

6) (Dominated Convergence) If (Xn) is a sequence of integrable random
variables a.s. converging to an integrable random variable X and such that
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|Xn| ≤ G for all n, where G is an integrable random variable, then E[Xn | G]
converges a.s. to E[X | G] .
7) (Jensen’s Inequality) If f is a convex function on R and if f(X) is inte-
grable then

f ( E[X | G] ) ≤ E[ f(X) | G] a.s. (4.13)

8) If X is G-measurable then E[X | G] = X a.s. The converse is true if G is
complete.
9) If G1 ⊂ G2 ⊂ F are σ-fields then

E [E [X | G2] | G1] = E[X | G1] a.s. (4.14)

10) If Y is G-measurable and XY is integrable then

E[XY | G] = Y E[X | G] a.s. (4.15)

11) If X belongs to Lp(Ω,F ,P), for some 1 ≤ p ≤ ∞ , then E[X | G] belongs
to Lp(Ω,G, P ) and

‖E[X | G] ‖p ≤ ‖X‖p .

Proof. Property 1) is obvious. For property 2) take A = Ω in (4.10). Property
3) has been already proved.
4) Let Y = limn E[Xn | G] (this limit exists for the sequence (E[Xn | G]) is
increasing). Then∣∣E[Y 1lA]− E[X 1lA]

∣∣ ≤ ∣∣E[Y 1lA]− E [ E[Xn | G] 1lA ]
∣∣+

+
∣∣E [ E[Xn | G] 1lA ]− E[X 1lA]

∣∣
≤ E [ |Y − E[Xn | G]| 1lA] + E [ |Xn −X| 1lA] .

Both terms in the right hand side tend to 0 as n goes to +∞. This gives the
result.
5) For all n ∈ N, put Yn = infp≥n Xp. Then (Yn) is an increasing sequence,
converging to lim infn Xn. For all p ≥ n we have Yn ≤ Xp. Taking the
conditional expectation with respect to G, we get

E[Yn | G] ≤ E[Xp | G] .

In particular

E[Yn | G] ≤ inf
p≥n

E[Xp | G] ≤ lim inf
n

E[Xn | G] .

Now, applying the Monotone Convergence Property 4), we get

E[ lim inf
n

Xn | G] = lim
n

E[Yn | G] ≤ lim inf
n

E[Xn | G] .
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6) Consider the sequence (G−Xn). It is positive and it converges to G−X.
By Fatou’s Lemma 5) we have

E[G−X | G] = E[ lim inf
n

(G−Xn) | G] ≤ lim inf
n

E[G−Xn | G] ,

that is,
E[X | G] ≥ lim sup

n
E[Xn | G] .

Applying the same argument to the positive sequence (G+Xn), we get

E[G+X | G] = E[ lim inf
n

(G+Xn) | G] ≤ lim inf
n

E[G+Xn | G] ,

this is to say,
E[X | G] ≤ lim inf

n
E[Xn | G] .

This proves the convergence of E[Xn | G] to E[X | G].
7) The fact that f is convex is equivalent to

f(t)− f(s)
t− s

≤ f(u)− f(t)
u− t

for all s < t < u. Put T = E [X | G] and put

B = sup
{
f(T )− f(s)

T − s
; s < T

}
.

We have that

B ≤ f(u)− f(T )
u− T

for all u > T . Altogether, for all s we have

f(s)− f(T ) ≥ B(s− T ) .

Applying this inequality to s = X and taking the conditional expectation
with respect to G gives

E [f(X) | G]− f (E [X | G]) ≥ 0 ,

for f(E[X | G]) is G-measurable.
8) If X is already G-measurable, then, obviously from the definition, we have
E[X | G] = X a.s. .

Conversely, if E[X | G] = X a.s. and G is complete, then X is a.s. equal to
a G-measurable random variable, hence it is G-measurable.
9) Take A1 ∈ G1. Then A1 belongs to G2 too and

E[ E[X | G2] 1lA1 ] = E[X 1lA1 ] = E[ E[X | G1] 1lA1 ] .
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This proves the result.
10) For all A,B ∈ G we have

E[X 1lB1lA] = E[1lB E[X | G] 1lA] .

Hence E[X1lB | G] = 1lB E[X | G]. The result therefore holds true for Y being
a simple random variable. For a general Y one takes a monotone limit of
simple random variables.
11) This is Jensen inequality applied to the convex functions f = ‖ · ‖p . ut

We end up this subsection on conditional expectations with a useful result
concerning conditional expectations and uniform integrability.

Proposition 4.63. Let X be an integrable random variable. The set of ran-
dom variables E[X |R], where R runs over all the sub-σ-fields of F , is a
uniformly integrable family.

Proof. Let R be a sub-σ-field of F . Put Y = E[X |R]. We have

E[|Y | 1l|Y |≥a] ≤ E
[
E[|X| |R] 1l|Y |≥a

]
= E

[
|X| 1l|Y |≥a

]
.

Furthermore we have

P(|Y | ≥ a) ≤ a−1E[|Y |] ≤ a−1E[|X|] .

The family reduced to the random variable |X| alone is uniformly integrable,
hence by Proposition 4.39, for all ε > 0 there exists a δ > 0 such that
P(A) ≤ δ implies E[|X| 1lA] ≤ ε.

One can choose a large enough such that a−1E[|X|] ≤ δ. For this a we
have E

[
|Y | 1l|Y |≥a

]
≤ ε, independently of R. This proves the proposition.

ut

4.4.3 Conditional Expectations and Conditional Laws

We shall now present some formulas connecting conditional expectations to
conditional laws.

First of all note that transition kernels act naturally on bounded functions.
The proof of the following is easy and left to the reader.

Proposition 4.64. Let P(x, dy) be a transition kernel on E ×F . Let f be a
bounded (resp. positive) measurable function on F . Then the function

Pf(x) =
∫
F

f(y) P(x,dy)

is also bounded ( resp. positive) and measurable on E.
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In some sense, we have

Pf(x) = E[f(Y ) |X = x] . (4.16)

This has no direct rigorous meaning, for (X = x) may be an event with null
probability. There are many ways to understand this intuitive relation more
rigorously. The following result is one of them.

Proposition 4.65. For every bounded measurable function f on F we have

E[f(Y ) |σ(X)] = Pf(X) .

Proof. For all bounded function g we have

E[ g(X)f(Y )] = E [ E[ f(Y ) |σ(X)] g(X)]

by Theorem 4.62. But the left hand side is equal to∫
E

∫
F

g(x)f(y)µ(X,Y )(dx,dy) =
∫
E

∫
F

g(x)f(y) P(x, dy)µX(dx)

by definition of the conditional law. Consider the (measurable and bounded)
function

h(x) =
∫
F

f(y) P(x, dy) = Pf(x) .

Then∫
E

∫
F

g(x) f(y) P(x, dy)µX(dx) =
∫
E

g(x)h(x)µX(dx) = E[ g(X)h(X)] .

We have established the identity

E[ g(X) f(Y )] = E[ g(X)h(X)]

which shows that
E[f(Y ) |σ(X)] = h(X)

almost surely (take g(X) = 1lA(X)). ut

Transition kernels also act naturally on probability measures. The follow-
ing is trivial and left to the reader.

Proposition 4.66. Let P be a transition kernel on E×F and µ a probability
measure on (E, E). Then the mapping µP, from F to [0, 1], defined by

A 7→ µP(A) =
∫
E

P(x,A)µ(dx) ,

is a probability measure on (F,F).
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The connection with conditional laws is the following.

Corollary 4.67. If P(x, dy) is the conditional law of Y knowing X and if
µX is the law of X, then the law of Y is µXP.

Proof. By definition of the conditional law we have

E[f(Y )] =
∫
E

∫
F

f(y) P(x, dy)µX(dx) =
∫
F

f(y)µXP(dy) .

This clearly means that µXP is the law of Y . ut

Definition 4.68. We end up this section with some notations that are
very often used in Probability Theory. The notation P(Y ∈ A | G) means
E[ 1l(Y ∈A) | G]. We denote by E[Y |X] the conditional expectation E[Y |σ(X)].

4.5 Stochastic Processes

The main goal of Stochastic Process Theory is to study the behavior of fami-
lies (Xt)t∈I of random variables Xt indexed by a subset I of R and defined on
a common probability space (Ω,F ,P). In the sequel we shall mainly consider
the cases where I is R+ or an interval of R+. In the discrete time setup we are
interested in I = N. We shall give here a rigorous framework for the study of
stochastic processes and their laws.

4.5.1 Products of measurable spaces

Definition 4.69. Let (E, E) be a measurable space and let T be a set. On the
set ET of all functions ω : T → E, we consider, for all t ∈ T , the evaluation
maps

Πt : ET → E
ω 7→ ω(t) .

We denote by ET the σ-field generated by the evaluation maps {Πt ; t ∈ T}.
For any non-empty S ⊂ T we denote by ΠS the restriction map

ΠS : ET → ES

ω 7→ ω|S .

In the same way, for U ⊂ V ⊂ T we denote by ΠVU the restriction map from
EV onto EU .

A subset F of ET is a finite cylinder if it is of the form F = Π−1
S (A) =

A× ET\S for some finite S ⊂ T and some A ∈ ES . It is a σ-cylinder if it is
of the same form but with S countable.
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The following characterization is easy to prove and left to the reader.

Proposition 4.70. The σ-field ET is generated by the finite cylinders. It
exactly coincides with the set of all σ-cylinders of ET .

4.5.2 Generalities

Definition 4.71. Let T be a subset of R. A process (or stochastic process)
indexed by T is a family (Xt)t∈T of random variables defined on a common
probability space (Ω,F ,P). When T is R+ one simply says a process and
(Xt)t∈T may be denoted by X simply. The random variables Xt may be
valued in any measurable space (E, E). If E is not mentioned then the process
X is understood to be valued in R.

Definition 4.72. Let X = (Xt)t∈T be a process valued in (E, E). The law
of X is the measure µX on (ET , ET ) given by

µX = P ◦X−1 ,

the image of P under the mapping X : ω 7→ (Xt(ω))t∈T from Ω to ET .
The process X has finite dimensional distributions. Indeed, for each finite

subset S = {t1, . . . , tn} of T one denotes by µX,S the law of the n-tuple
(Xt1 , . . . , Xtn) on (ES , ES). That is,

µX,S = µX ◦ Π−1
S = P ◦ (ΠS ◦X)−1

.

Clearly, the measures µX,S satisfy the compatibility condition

µX,U = µX,V ◦
(
ΠVU
)−1

for all finite U ⊂ V ⊂ T .

Proposition 4.73. The law µX of a process X = (Xt)t∈T is determined by
its finite dimensional marginals

{µX,S ; S ⊂ T , S finite} .

Proof. The restriction of µX to ES is the measure µX,S . Hence, the finite di-
mensional marginals determine the values of µ on finite cylinders. By Propo-
sition 4.70 the finite cylinders generate ET . The finite cylinders clearly form
a π-system C. By Corollary 4.5, the measure µX is determined by its values
on C. ut
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4.5.3 Daniell-Kolmogorov Theorem

More interesting is the converse property. When is a given family (µS) of finite
dimensional distributions on (ES , ES), respectively, determining a measure
on (ET , ET )? This is an interesting question for in general it is difficult to
describe a process by specifying its law µX . It is much easier to describe the
finite dimensional distributions of X and pray for they determine a true pro-
cess. The answer to this reciprocal is given by the famous Daniell-Kolmogorov
Theorem, also often called Kolmogorov Consistency Theorem.

Definition 4.74. Let T be a subset of R. Suppose we are given for any finite
subset S of T a probability measure µS on RS . The family

{µS ; S finite subset of T}

is called compatible if, for all finite subsets U, V of T such that U ⊂ V , we
have

µU = µV ◦
(
ΠVU
)−1

.

Definition 4.75. A measurable space (E, E) is a Lusin space if it is homeo-
morphic to the Borel subset of a compact metrisable space J . Note that the
spaces Rn are obviously Lusin spaces.

We can now give the famous theorem. We shall not develop the proof
here, it is rather long. But the attentive reader would have easily guessed
that it consists in an application of Carathéodory’s Extension Theorem 4.7:
the compatible measures µS determine an additive measure µ0 on the finite
cylinder field C, the only difficulty is to prove that µ0 is σ-additive on C. We
refer to [RW00], Theorem II.31.1 for a complete proof.

Theorem 4.76 (Daniell-Kolmogorov Theorem). Let (E, E) be a Lusin space
together with its Borel σ-field. Let T be a subset of R. If for all finite sub-
sets S of T there exists a probability measure µS on (ES , ES) such that the
family {µS ; S finite subset of T} is compatible, then there exists a unique
probability measure µ on (ET , ET ) such that µS = µ ◦ Π−1

S , for all finite
S ⊂ T .

4.5.4 Canonical Version

Definition 4.77. If (Xt)t∈I and (Yt)t∈I are two processes indexed by the
same set I and if µX,T = µY,T for all finite subsets T of I, we say that
(Xt)t∈I and (Yt)t∈I are versions of each other.

As a consequence of Proposition 4.73 we get the following.



34 Stéphane ATTAL

Proposition 4.78. Two processes (Xt)t∈T and (Yt)t∈T are versions of each
other if and only if they have the same law.

Definition 4.79. Let (Xt)t∈T be a process on (Ω,F ,P), valued in (E, E).
For all t ∈ T , consider the evaluation maps Πt from ET to E (recall that
Πt(ω) = ω(t)). They define a process Π = (Πt)t∈T on the new probability
space (Ω′,F ′,P′) = (ET , ET , µX) and we have, for S = {t1, . . . , tn} ⊂ T

µΠ,S(At1 × · · · ×Atn) = µX
(
Π−1
t1 (At1) ∩ · · · ∩ Π−1

tn (Atn)
)

= µX
(
{x ∈ RT ; x(t1) ∈ At1 , . . . , x(tn) ∈ Atn}

)
= µX,S(At1 × · · · ×Atn) .

Thus (Πt)t∈T is a version of (Xt)t∈T . We call it the canonical version of
(Xt)t∈T .

The probability space (ET , ET , µX) is called the canonical space of (Xt)t∈T .

4.5.5 Modifications

From now on, unless otherwise stated, all the processes are indexed by R+.

Definition 4.80. Two processes X and Y defined on the same probability
space are modifications of each other if, for all t ∈ R+, Xt equals Yt almost
surely.

They are indistinguishable if, for almost all ω ∈ Ω, Xt(ω) equals Yt(ω) for
all t.

Note the subtle difference between the two definitions. “Modification” and
“indistinguishable” both mean that Yt = Xt for all t and almost all ω, but
in the first case the null set of ω may depend on t, whereas in the second
defintion it does not depend on t.

Definition 4.81. A subset A of R+×Ω is evanescent if there exists a negli-
gible subset B of Ω such that A ⊂ R+×B.

From all these definitions one can check easily the following properties (left
to the reader).

Proposition 4.82.

1) If X and Y are indistinguishable then they are modifications of each other.
2) If X and Y are modifications of each other then they are versions of each
other.
3) X and Y are indistinguishable if and only if the set of (ω, t) such that
Xt(ω) 6= Yt(ω) is evanescent.
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Definition 4.83. Let X be a process. For all ω ∈ Ω, the mapping t 7→ Xt(ω)
defines a function on R+. These functions are called the paths of the process
X.

One says that the process X has continuous paths (or simply, is continu-
ous) if for almost all ω ∈ Ω the path X·(ω) is continuous on R+.

In the same way one defines right-continuous processes, left-continuous
processes (we take the convention that any process is left-continuous at 0).

A process is said to be càdlàg1 if its paths are right-continuous and admit
left limits at all points.

Proposition 4.84. Let X and Y be two right-continuous (resp. left-conti-
nuous) processes. If they are modifications of each other then they are indis-
tinguishable.

Proof. There exists a negligible set N such that for all ω 6∈ N the paths
X·(ω) and Y·(ω) are right-continuous and Xt(ω) = Yt(ω) for all t rational.
Thus passing to the limit we have Xt(ω) = Yt(ω) for all t. ut

Definition 4.85. A process X is measurable if it is measurable as a mapping
from R+×Ω to R, where R+×Ω is equipped with the σ-algebra R(R+)⊗F .

4.5.6 Regularization

At that stage of the lecture we have to discuss a rather fine point about the
definition of the canonical version of a stochastic process. This section can
be avoided at first reading. We do not give all details.

There is quite an important problem attached to the way the canonical
space of a process X has been constructed. Indeed, the canonical space fur-
nished by Kolmogorov’s Theorem 4.76 is not good enough, for the σ-field
F = EI associated to this construction is too poor. Recall that this σ-algebra
is the one generated by finite support cylinders in Ω = EI . We have shown
that the events of E are those which depend only on a countable set of coor-
dinates of ω ∈ Ω. As a consequence, one cannot “ask” if the process we are
interested in is continuous or not. Indeed, the set

{ω ; t 7→ Xt(ω) is continuous }

has no reason in general to be in F , for it cannot be expressed by a countable
number of constraints of the Xt’s.

The same problems hold when one wants to study simple objects such as

1 The name càdlàg comes from the french “continu à droite avec des limites à gauche”
which means “right-continuous with left-limits” (the english version of càdlàg should
then be “rcll”. It has also been sometimes called “corlol” for “continuous on the right
with limits on the left, but “càdlàg” is clearly much easier to pronounce!
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inf{t;Xt(ω) > 0} , lim
s→t

Xs(ω) , sup
s≤t
|Xs| ... (4.17)

This clearly implies strong restrictions for whom wants to study the properties
of a given stochastic process!

The way this problem is solved in general follows the following path. For
most of the processes one is interested in (for example martingales, ...) we are
able to prove that the process in question X admits a modification Y which
is càdlàg (or sometimes better: continuous). Denote by D the set of càdlàg
functions from R+ to R. This is a subset of E = RR+

which is not measurable
for the cylinder σ-field F = Bor(R)R+

.

Lemma 4.86. If a process X admits a càdlàg version then the measure PX
of any F-measurable set F such that F ⊃ D is equal to 1.

In general measure theory, the property described above means that the
outer measure of P is equal to 1 on D.

Proof. Assume that on some probability space (Ω′,F ′,P′) there exists a pro-
cess Y which is a version of X and which has almost all its paths càdlàg.

Let F be a F-measurable set such that F contains D. The probability
PX(F ) is the probability that a certain countable set of constraints on Xt,
t ∈ R+, is satisfied. It is then equal to the probability P′(F ′) of the same set
of constraints applied to Yt, t ∈ R+. But the fact that F contains D implies
that F ′ is the whole of Ω′ (up to a null set maybe). Hence the probability is
equal to 1. ut

Let us give an example in order to make the proof above more clear. Let
F be for example the set

F = {ω ∈ Ω; lim
s→0
s∈Q

ω(s) = ω(0)} .

This set is F-measurable, for it can be written as

F =
⋂
ε>0
ε∈Q

⋃
η>0
η∈Q

⋂
s>0
s∈Q

{ω ∈ Ω; |ω(s)− ω(0)| ≤ ε} .

Hence we have
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PX(F ) = PX

⋂
ε>0
ε∈Q

⋃
η>0
η∈Q

⋂
s>0
s∈Q

{ω ∈ Ω; |ω(s)− ω(0)| ≤ ε}


= P

⋂
ε>0
ε∈Q

⋃
η>0
η∈Q

⋂
s>0
s∈Q

{ω ∈ Ω; |Xs(ω)−X0(ω)| ≤ ε}


= P′

⋂
ε>0
ε∈Q

⋃
η>0
η∈Q

⋂
s>0
s∈Q

{ω′ ∈ Ω′; |Ys(ω′)− Y0(ω′)| ≤ ε}


= P′({ω′ ∈ Ω′; lim

s→0
s∈Q

Ys(ω′) = Y0(ω′)}) .

But as the path of Y are almost all càdlàg we have lim s→0
s∈Q

Ys(ω′) = Y0(ω′)
to be satisfied by almost all ω′. Hence the above probability is equal to 1.

When the situation P(F ) = 1 for all F ∈ F , F ⊃ D, occurs we have the
following result, whose easy proof is left to the reader.

Lemma 4.87. On the space D define the coordinate mappings Yt(ω) = ω(t).
Then the σ-algebra FD generated by the Yt, t ∈ R+ coincides with F ∩ D.
Furthermore, putting, for all F ∈ FD

Q(F ) = PX(F̂ )

for any F̂ ∈ F such that F = F̂∩D, defines a probability measure on (D,FD).

Hence we have defined a version (D,FD,Q, Y ) of X whose paths are all
càdlàg. On that probability space, elements such as in (4.17) are now all
well-defined and measurable.

Actually the σ-algebra FD is much richer than was F . One can for ex-
ample prove the following. The space D admits a natural topology, called
the Skorohod topology, that we shall not describe here. Let C be the space
of continuous functions from R+ to R. The Skorohod topology coincides on
C with the topology of uniform convergence on compact sets. Both D and C
are Polish spaces with these topologies.

Theorem 4.88. On D (resp. C) the σ-algebra FD (resp. FC) coincide with
the Borel σ-algebra Bor(D) (resp. Bor(C)) associated to the Skorohod topol-
ogy.
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4.6 Brownian Motion

In this section and in the next one, we shall consider two fundamental ex-
amples of stochastic processes: Brownian motion Brownian motion and the
Poisson process. They are fundamental for they are cornerstones of classical
Stochastic Calculus, but they also appear to be key processes in the proba-
bilistic interpretations of Quantum Stochastic Calculus. We first start with
the Brownian motion.

4.6.1 Construction

Definition 4.89. A Brownian motion is a process (Wt)t∈R+ with values in
R such that:
i) for all s < t, the random variable Wt −Ws is independent of the random
variables Wu, u ≤ s,
ii) for all t ≥ 0, the random variable Wt follows the Gaussian N (0, t) proba-
bility law,
iii) a.s. the paths t 7→Wt are continuous.

The question of existence of such a process is not trivial, let us construct
it.

We start with the following, which is an easy application of Daniell-
Kolmogorov (Theorem 4.76).

Theorem 4.90. For any given probability measure µ on R, there exists a
probability space (Ω,F ,P) and a sequence (Xn) of random variables on Ω
such that the random variables Xn are independent of each other and all
have the same individual law µ. ut

We can now prove the following.

Theorem 4.91. Let H be a separable Hilbert space. There exists a probability
space (Ω,F ,P) and a family X(h), h ∈ H, of random variables on Ω such
that
i) the mapping h 7−→ X(h) is linear,
ii) each random variable X(h) follows the Gaussian law N (0, ‖h‖).

Proof. Let (en) be an orthonormal basis of H. By Theorem 4.90, there exists
a probability space (Ω,F ,P) and a sequence (Zn) of independent random
variables on Ω, with individual law N (0, 1).

For any h ∈ H, put X(h) =
∑
n〈en , h〉Zn. This series is convergent in

L2(Ω,F ,P) and defines a random variable X(h) on Ω. The family X(h),
h ∈ H, satisfies the assumptions of the theorem, as can be easily checked. ut
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Note that, as a consequence of the properties i) and ii) above, we have

〈X(h′) , X(h)〉L2(Ω,F,P) = 〈h′ , h〉 ,

as can be checked easily by computing E[X(h+ h′)2] in two different ways.
Also note that the set {X(h), h ∈ H} is a Gaussian subspace of L2(Ω,F ,P),

that is, any linear combination of the X(h) is a Gaussian random variable. In
other words, this means that every finite family (X(h1) . . . X(hn)) is Gaussian
vector.

Now we can start the construction of a Brownian motion. Take H =
L2(R+) and construct a family X(h), h ∈ H, such as in Theorem 4.91. We
claim that the process Wt = X(1l[0,t]), t ∈ R+, is a Brownian motion. Indeed,
the random variable Wt follows the law N (0, t) by Property ii) of Theorem
4.91 and thus satisfies condition ii) in the definition of Brownian motion.
Furthermore, we have, for all u ≤ s ≤ t

〈Wt −Ws , Wu〉L2(Ω,F,P ) = 〈1l[s,t] , 1l[0,u]〉H = 0 .

But the pair (Wt −Ws,Wu) is Gaussian, hence by Theorem 4.51 they are
independent random variables. This gives the condition i) in the definition of
a Brownian motion.

We still need to prove that the process we obtained is continuous, or at
least can be modified into a continuous process.

4.6.2 Regularity of the Paths

Actually, we shall establish a stronger property for the paths: the Hölder
continuity of order α for every α < 1/2. This property is based on a general
criterion due to Kolmogorov that we state here without proof, for it is rather
long and would take us too far here (see [RY99], Theorem 2.1).

Theorem 4.92. [Kolmogorov criterion] Let X be a process such that there
exists strictly positive constants γ, C and ε such that

E[|Xt −Xs|γ ] ≤ C |t− s|1+ε ,

for all s, t ∈ R+. Then there exists a modification of X whose paths are Hölder
continuous of order α for every α ∈ [0, ε/γ]. ut

Once this is admited, the fact that the increments of the Brownian motion
are Gaussian gives

E
[
(Wt −Ws)2p

]
= Cp |t− s|p

for every integer p > 0 (by Proposition 4.48). This immediately yields the
following.
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Theorem 4.93. Up to modification, the paths of Brownian motion are lo-
cally Hölder continuous of order α for every α < 1/2. In particular they are
continuous. ut

We have proved that the process we have constructed admits a continuous
modification. Up to the change of probability space described in Subsection
4.5.6, we have constructed a Brownian motion.

4.6.3 Quadratic Variations

Another very important property of the Brownian motion is that it admits a
non-trivial quadratic variation.

Theorem 4.94. For any t ∈ R+, the quantity∑
i;ti≤t

(
Wti+1 −Wti

)2
converges to t in L2(Ω,F ,P), when the diameter δ of the partition {ti ; i ∈ N}
tends to 0.

Proof. Let us compute the L2-norm of the difference (for simplicity, we as-
sume that the partition ends at t):∥∥∥∥∥∥

∑
i; ti≤t

(Wti+1 −Wti)
2 − t

∥∥∥∥∥∥
2

= E


 ∑
i; ti≤t

(Wti+1 −Wti)
2 − (ti+1 − ti)

2


=
∑
i; ti≤t

E
[(

(Wti+1 −Wti)
2 − (ti+1 − ti)

)2]
,

where we used the independence of the increments and the fact that

E[(Wti+1 −Wti)
2 − (ti+1 − ti)] = 0 .

Furthermore, for a Gaussian random variable Y with mean 0, we have
E[Y 4] = 3E[Y 2]2. This gives∥∥∥∥∥∥

∑
i; ti≤t

(Wti+1 −Wti)
2 − t

∥∥∥∥∥∥
2

= 2
∑
i; ti≤t

(ti+1 − ti)2

which converges to 0 with the diameter of the partition. ut

It is actually possible to prove the same result for almost sure convergence,
but we do not give a proof of this fact here.
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This quadratic variation property has many important consequences that
we shall not develop in this lecture, but one very important application of it
is the following.

Theorem 4.95. The paths of the Brownian motion are almost surely of in-
finite variation on any interval.

The paths of the Brownian motion are almost surely nowhere locally Hölder
continuous of order α for α > 1/2.

In particular, the paths of the Brownian motion are almost surely nowhere
differentiable.

Proof. Note that almost surely we have∑
i; ti≤t

(
Wti+1(ω)−Wti(ω)

)2 ≤
≤
(

sup
i; ti≤t

∣∣Wti+1(ω)−Wti(ω)
∣∣)  ∑

i; ti≤t

∣∣Wti+1(ω)−Wti(ω)
∣∣ .

The first term in the right hand side converges to 0 by the continuity of
Brownian motion. The second term is dominated by the total variation of
the Brownian path. As the left hand side converges to a finite quantity, this
forces the total variation to be infinite.

The case of the non-Hölder property is treated following a similar idea: for
all α > 1/2 we have∑

i;ti≤t

(Wti+1(ω)−Wti(ω))2 ≤

≤ t
(

sup
i;ti≤t

|ti+1 − ti|2α−1

) (
sup
i;ti≤t

|Wti+1(ω)−Wti(ω)|2

|ti+1 − ti|2α

)
.

If the Brownian paths were Hölder of order α the last term above would be
dominated independently of the partition. The rest of the right hand side
converges to 0. This contradicts the fact that the left hand side converges to
t. This proves the non Hölderian character of Brownian motion for α > 1/2.

Non-differentiability is immediate now. ut

We have not yet said if the Brownian paths are Hölder-continuous of order
exactly 1/2 or not. It so happens that they are not, but this result needs
further developments; we just mention it as a remark.
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4.7 Poisson Processes

4.7.1 Definition

We now get interested in our second fundamental stochastic process, the
Poisson process.

Definition 4.96. Let (Ω,F ,P) be a probability space. Let (Tn) be a strictly
increasing sequence of positive random variables. The Tn’s are thought as
arrival times. A process X such that, for all t ∈ R+

Xt =
∑
n

1lTn≤t

is called a counting process associated to (Tn). It is valued in N ∪ {+∞}. If
supn Tn =∞ a.s. one says that X is a non-exploding counting process.

A Poisson process is a non-exploding counting process N whose increments
are independent and stationary. That is,
i) Nt −Ns is independent of all the random variables Nu, u ≤ s
ii) Nt −Ns has the same law as Nt+h −Ns+h for all t ≥ s ≥ 0 and h ≥ 0.

4.7.2 Existence

Theorem 4.97. Poisson processes exist and they are all of the following
form: there exists λ ∈ R+ such that

P(Nt = n) =
(λt)n

n!
e−λt (4.18)

for all n ∈ N, all t ∈ R+. In other words, the associated sequence (Tn) consists
of sums of independent times each of which follows an exponential distribution
with parameter λ.

Proof. One direction is easy. If (Tn) is the sequence given by Tn =
∑
m≤n Sm

where the Sm’s are independent, identically distributed random variables
following the exponential law with parameter λ ≥ 0, we have already seen in
Subsection 4.3.2 that the associated counting process

Nt =
∞∑
n=0

1lTn≤t

is a Poisson process and follows the Poisson law (4.18).
The converse is more difficult. From the hypothesis we have
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P(Nt = 0) = P(Ns = 0) P(Nt −Ns = 0) = P(Ns = 0) P(Nt−s = 0)

and thus
P(Nt = 0) = e−λt

for some λ ≥ 0 and for all t ∈ R+.
We now claim that P(Nt ≥ 2) = o(t). Indeed, divide [0, 1] into n intervals

of the same length. Let Sn be the number of subintervals which contain at
least two times of the sequence (Tm). Clearly Sn has a binomial distribution
B(n,P(N1/n ≥ 2)). Therefore E[Sn] = nP(N1/n ≥ 2). For a fixed ω, for
n sufficiently large there is no interval with more than one random time
Ti. Thus limn→+∞ Sn(ω) = 0 a.s. We now wish to apply the dominated
convergence theorem in order to conclude that limn→+∞ E(Sn) = 0 and hence
the announced estimate. As we clearly have Sn ≤ N1, we just need to prove
that E[N1] <∞. The intervals Tn+1−Tn between the jumps are independent
random variables, with the same law: the one of T1. Hence

E[e−Tn ] = E[e−T1 ]n = αn.

This proves that

P(|Nt| > n) ≤ P(Tn < t) ≤ E[e−Tn ]
e−t

≤ etαn.

That is, Nt admits exponential moments and we have proved our claim.
Now, we have

P(Nt = 1) = 1− P(Nt = 0)− P(Nt ≥ 2)

and thus

lim
t→0

1
t
P (Nt = 1) = lim

t→0

1− e−λt + o(t)
t

= λ .

Finally, for β ∈ [0, 1] put f(t) = E[βNt ]. Clearly f(t+ s) = f(t)f(s) and f is
of the form f(t) = et g(β). But, we also have

f(t) =
∞∑
n=0

βn P(Nt = n)

= P(Nt = 0) + β P(Nt = 1) +
∞∑
n=2

βn P(Nt = n)

and g(β) = f ′(0). This gives

g(β) = lim
t→0

P(Nt = 0)− 1
t

+
β P(Nt = 1)

t
+

1
t
o(t)

= −λ+ λβ,
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so

f(t) = e−λt
∞∑
n=0

(λt)nβn

n!

and the required result follows. ut

Definition 4.98. The parameter λ is called the intensity of N . In particular
we have

E[Nt] = λt

Var[Nt] = λt .

We shall finish this lecture with two fundamental notions which are at the
heart of Stochastic Process Theory. They are very specific to this domain
of mathematics, they have now true equivalent in other domains. They are
rather connected and both deal with a notion of information growing with
time.

4.7.3 Filtrations

When discussing the conditional expectations, we have already discussed the
fact that sub-σ-fields G of F represent a certain information one has gained
on some random event, for example by knowing a certain random variable
(G = σ(X)). The notion of filtration is in the same spirit but one step further:
one is speaking here of information browning with time.

Recall that all our processes are indexed by R+ here.

Definition 4.99. Let (Ω,F ,P) be a probability space. A filtration of the
space (Ω,F ,P) is a family (Ft) of sub-σ-algebras of F such that Fs ⊂ Ft for
all s ≤ t.

We shall denote the filtration by (Ft) simply (we cannot simplify the
notation to F as for processes, because there would be too much confusion
with the σ-algebra F).

The quadruple (Ω,F , (Ft),P) is called a filtered probability space.
A filtration (Ft)t≥0 on (Ω,F ,P) is called complete if F0 (and hence each

Ft, t ∈ R+) contains the negligible sets of (Ω,F ,P). If it is not the case we
make it complete by adding the negligible sets to F0 in the same way as in
Section 4.2.

Definition 4.100. Let (Ω,F , (Ft),P) be a filtered probability space. For all
t ≥ 0 one defines

Ft− =
∨
s<t

Fs, Ft+ =
⋂
s>t

Fs

with the convention F0− = F0. One also puts
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F∞ =
∨
t≥0

Ft.

This way one defines two new filtrations of (Ω,F ,P), namely (Ft−)t∈R+ and
(Ft+)t∈R+.

A filtration F is right-continuous if Ft = Ft+ for all t ≥ 0. The filtration
(Ft+)t∈R+ is always right-continuous. In the same way one can speak of left-
continuous filtrations or continuous filtrations.

From now on, all the filtered probability spaces are supposed to be com-
plete and right-continuous (one replaces (Ft) by (Ft+)t∈R+ if necessary).

Definition 4.101. A process X, defined on a filtered probability space
(Ω,F , (Ft),P), is adapted if Xt is Ft-measurable for all t ∈ R+.

The natural filtration of a process X is the filtration generated by X, that
is, the filtration (Ft) where Ft = σ{Xs ; s ≤ t} is the σ-algebra generated
by all the random variables Xs, s ≤ t.

Once again, the natural filtration of a process is understood to be made
complete and right-continuous.

The natural filtration of a process is the smallest (complete and right-
continuous) filtration that makes this process measurable and adapted (ex-
ercise).

Definition 4.102. A process X is progressive if for all t ∈ R+ the mapping
(s, ω) 7→ Xs(ω) on [0, t]× Ω is measurable for Bor([0, t])⊗Ft.

A subset A of R+× Ω is progressive if (s, ω) 7→ 1lA(s, ω) is a progressive
process.

The progressive subsets of R+× Ω form a σ-algebra of R+× Ω. This σ-
algebra is called the progressive σ-algebra. A process is progressive if and only
if it is measurable with respect to this σ-algebra.

It is clear that a progressive process is measurable and adapted, but the
converse is not true (cf [Del72], p. 47), one needs a little more regularity.

Proposition 4.103. An adapted process with right-continuous paths (or with
left-continuous paths) is progressive.

Proof. For all n ∈ N let

Xn
t =

∞∑
k=0

X(k+1)2−n1l[k2−n,(k+1)2−n[(t).

As X is right-continuous, Xn
t converges to Xt for all t. But the process Xn is

clearly progressive with respect to the filtration (Ft+2−n)t∈R+. Consequently
X is progressive with respect to the filtration (Ft+ε)t∈R+ for any ε > 0.

For all s ≤ t we have

Xs = lim
ε→0

Xs1l[0,t−ε](s) +Xt1l{t}(s).
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The term within the limit symbol is measurable with respect to Bor([0, t])⊗
Ft, thus so is Xs. This proves that X is progressive.

The case where X has left-continuous paths is treated in the same way.
ut

4.7.4 Stopping Times

In the theory of stochastic processes some random times occur very often
and very naturally. For example “the time when the process reaches a cer-
tain value, or the boundary of a certain domain”. The point is that among
all random times associated to a filtered probability space, only a certain
family of random times have a nice behavior, in particular when stopping the
processes at these times. They are the stopping times.

Definition 4.104. Let (Ω,F , (Ft),P) be a filtered probability space. A stop-
ping time is a measurable map T : Ω 7→ R+∪ {+∞} such that for all t ∈ R+

the event (T ≤ t) belongs to Ft.
As the filtration (Ft) is right-continuous one may equivalently replace the

condition “(T ≤ t) ∈ Ft for all t” by the condition“(T < t) ∈ Ft for all t”
(exercise).

The constant times: T (ω) = t for all ω, are stopping times. More generally,
for any stopping time T and any t ∈ R+, then T + t is a stopping time.

Definition 4.105. Let T be a stopping time. The set of A ∈ F such that

A ∩ (T ≤ t) belongs to Ft for all t

is a σ-algebra (exercise). We denote it by FT and call it the σ-algebra of
events anterior to T . This σ-algebra coincides with the σ-algebra of A ∈ F
such that

A ∩ (T < t) belongs to Ft for all t .

The terminology for FT comes from the fact that its definition generalizes the
idea that Ft is the σ-algebra of events occurring before the time t. Indeed,
the constant stopping time T (ω) = t has its anterior σ-algebra FT which
coincides with Ft.

Definition 4.106. One denotes by FT− the σ-algebra generated by F0 and
the events of the form

A ∩ (T > t), t ≥ 0, A ∈ Ft.

The σ-algebra FT− is called the σ-algebra of events strictly anterior to T .
When T (ω) = t, then clearly FT− coincides with Ft−.
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Definition 4.107. A stopping time is discrete if the set of its values is (at
most) countable.

Proposition 4.108. Every stopping time is the limit of a decreasing sequence
of discrete stopping times.

Proof. Let T be a stopping time. For all n ∈ N put

Sn = +∞ 1lT=+∞ +
∑
k∈N

k2−n 1l(k−1)2−n<T≤k2−n .

Then the sequence (Sn) satisfies the statements. ut

Here is a list of the main properties of stopping times and of their associ-
ated σ-algebras. Note that some of them generalize to stopping times some
properties that were known for constant times.

Theorem 4.109.

1) If S, T are stopping times then so are S ∧ T and S ∨ T .
2) Let (Sn) be a monotonic sequence of stopping times and put S = limn→∞ Sn,
then S is also a stopping time.
3) For all stopping time T we have FT− ⊂ FT and T is FT−-measurable.
4) If S, T are two stopping times and if S ≤ T then FS ⊂ FT and FS− ⊂
FT−; if S < T then FS ⊂ FT− .
5) For all stopping times S, T and all A ∈ FS we have A∩ (S ≤ T ) ∈ FT and
A ∩ (S < T ) ∈ FT− . In particular (S ≤ T ) belongs to FS and FT , the event
(S = T ) belongs to FS and FT , finally the event (S < T ) belongs to FS and
FT− .

Proof. All the proofs are easy from the definitions and left to the reader.
We just precise that for proving d) and e) it is useful to notice the following
identities:

(S < T ) =
⋃
r∈Q+

(S < r) ∩ (r < T ) (4.19)

(S ≤ T ) =
⋂
r∈Q+

(S ≤ r) ∪ (r ≤ T ). ut (4.20)

Proposition 4.110. For all A ∈ F∞ and all stopping time T , the set A ∩
(T =∞) belongs to FT−. In particular the events (T =∞), (T <∞) belong
to FT−.

Proof. As the set of A ∈ F∞ such that A ∩ (T = ∞) belongs to FT− is a
σ-algebra, it is sufficient to prove the result for all A ∈ Fn, n ∈ N. But, in
this case, A∩ (T =∞) is equal to ∩m≥n{A∩ (T > m)} which clearly belongs
to FT−. ut
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Theorem 4.111. Let (Tn) be a monotonic sequence of stopping times. Let
T = limn Tn.
1) If (Tn) is decreasing then

FT =
⋂
n

FTn .

2) If (Tn) is increasing then

FT− =
∨
n

FTn− .

Proof. 1) Clearly FT ⊂ ∩nFTn . Now let A ∈ ∩nFTn . We have A∩ (T < t) =
∪nA ∩ (Tn < t), which is an element of Ft. Thus A belongs to FT .

2) Clearly FT− contains ∨nFTn−. Now consider A∩ (t < T ), with A ∈ Ft,
a typical generator of FT−. This set also writes as ∪nA ∩ (t < Tn), thus it
belongs to ∨nFTn−. ut

Definition 4.112. Let S, T be two stopping times such that S ≤ T . One
denotes by [[S, T ]] the following subset of R× Ω:

{(t, ω) such that t ∈ [S(ω), T (ω)]}. (4.21)

One defines in an analogous way the intervals [[S, T [[, ]]S, T ]], ]]S, T [[. All these
particular subsets of R× Ω are called stochastic intervals.

The stochastic interval [[S, S]] is denoted [[S]] and is called the graph of S;
it corresponds to the set of (t, ω) in R× Ω such that S(ω) = t.

Proposition 4.113. Every stochastic interval is a progressive subset of R+×
Ω.

Proof. The indicator function of [[S, T [[ is adapted and right-continuous, thus
progressive. The indicator function of ]]S, T ]] is adapted and left-continuous,
thus progressive. Furthermore ]]S, T [[ = [[S, T [[∩ ]]S, T ]] and [[S, T ]] = [[0, S[[c ∩
]]T,+∞[[c. Thus every stochastic interval is progressive. ut

Definition 4.114. On a filtered probability space (Ω,F ,P), if X is a stochas-
tic process and T is a stopping time, we define the random variable XT by

[XT ] (ω) = XT (ω)(ω) ,

for all ω ∈ Ω.

Proposition 4.115. If X is a progressive process and T is a finite stopping
time, then XT is FT -measurable.

Proof. We have to prove that for every Borel set A the set (XT ∈ A)∩(T ≤ t)
belongs to Ft. But this set is equal to (XT∧t ∈ A) ∩ (T ≤ t). Let us consider
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the stopping time S = T ∧ t, it is Ft-measurable. As X is progressive then
XS is Ft-measurable for it is the composition of the mappings ω 7→ (S(ω), ω)
and (s, ω) 7→ Xs(ω). ut

4.8 Markov Chains

In this section we just give an introduction to Markov chains. These discrete
time stochastic processes are the simplest ones and certainly the most studied
of all stochastic processes. The basic theory of Markov chains is rather simple,
but some of its developments may give rise to very deep results.

4.8.1 Basic definitions

Definition 4.116. A random process (Xn)n∈N, defined on probability space
(Ω,F ,P) and with values in (E, E) is a Markov chain if, for all n ∈ N and all
A ∈ E , we have, putting Fn = σ(X0, . . . , Xn)

P(Xn+1 ∈ A | Fn) = P(Xn+1 ∈ A |Xn) .

Denote by Pn the conditional law of Xn+1 knowing Xn. An easy conse-
quence of the above is that, if µ is the law of X0, then the law of (X0, . . . , Xn)
is the measure

νn(dx0,dx1, . . . ,dxn) = µ(dx0)P0(x0,dx1) . . .Pn−1(xn−1,dxn) .

Definition 4.117. In this introduction we are interested only in the case of
homogeneous Markov chains that is, such that Pn does not depend on n. In
that case we put

Pn(x, dy) = P(x, dy)

for all n.

An homogeneous Markov chain is thus determined by a single transition
kernel P; this transition kernel is the conditional law of X1 knowing X0.

Definition 4.118. If P and Q are two transition kernels, then one can check
easily that

PQ(x, dy) =
∫
E

P(x, dz) Q(z,dy)

defines a new transition kernel on E × E . This way, one can speak of Pn in
the sense of this composition.

All the definitions and notations we put above are resumed in the following
proposition whose proof is almost immediate.
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Proposition 4.119. Let (Xn) be a homogeneous Markov chain with transi-
tion kernel P and initial measure µ. The law of Xn is then µPn and for every
bounded measurable function f on E, all n,m ∈ N, we have

E[f(Xn+m) |Xn] = Pmf(Xn) .

4.8.2 Existence

Consider a given transition kernel P and a measure µ, it is natural to wonder
if it is always possible to construct a homogeneous Markov chain (Xn) for
which P would be the transition kernel and µ the initial measure. The answer
is actually an easy application of Daniell-Kolmogorov Theorem. Indeed, the
family of measures

νn(dx0, . . . ,dxn) = µ(dx0) P(x0,dx1) . . . P(xn−1,dxn)

is consistant. We thus get the following result.

Theorem 4.120. If E is countable or is a locally compact topological space,
equipped with its Borel σ-field, then on the space (EN, EN) there exists a unique
measure Pµ such that the coordinate process (Xn) is a Markov chain with
initial measure µ and transition kernel P. In other words

Pµ (X0 ∈ A0, . . . , Xn ∈ An) =
∫
A0×...×An

µ(dx0) P(x0,dx1) . . . P(xn−1,dxn) .

Definition 4.121. The above construction is called the canonical version of
the Markov chain with kernel P and initial measure µ.

When the initial measure is µ = δx, the process starts with a deterministic
initial value. We denote by Px the associated canonical measure.

These measures Px are enough to determine the measures Pµ, as appears
clearly with the following result.

Proposition 4.122. If µ is some initial measure and if A ∈ EN, then

Pµ(A) =
∫
E

Px(A)µ(dx) .

Proof. By definition we have

Px(A0 × . . .×An) = 1lA0(x)
∫
En

1lA1×...×An P(x, dx1) . . . P(xn−1,dxn)

and
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Pµ(A0 × . . .×An) =
∫
En+1

1lA0×A1×...×An µ(dx)P(x, dx1) . . . P(xn−1,dxn).

One can easily conclude now. ut

Definition 4.123. In what follows we denote by Eµ the expectation with
respect to Pµ and by Ex the expectation with respect to Px.

If X and F are random variables the notation

EX [F ]

means the random variable

ω 7→ EX(ω)[F ] .

Theorem 4.124. If (Xn) is a Markov chain, on its canonical space (EN, EN,Pµ)
and canonical filtration (Fn), if f is any bounded measurable function on
Em+1, then for all n ∈ N we have

Eµ [f(Xn, . . . , Xn+m) | Fn] = EXn [f(X0, . . . , Xm)] .

Proof. In the case f is of the form

f(x0, . . . , xm) = f0(x0) . . . f(xm)

we get

Eµ [f(Xn, . . . , Xn+m) | Fn]
= E [f0(Xn) . . . fm−1(Xn+m−1)E [fm(Xn+m) | Fn+m−1] | Fn]
= E [f0(Xn) . . . fm−1(Xn+m−1) Pfm(Xn+m−1) | Fn]

= E
[
f0(Xn) . . . f̃m−1(Xn+m−1) | Fn

]
.

Iterating this idea we finally obtain a certain explicit function h(Xn) at the
end. Had we computed

Ex [f(X0, . . . , Xm)]

with the same procedure, we would have obtained h(x). This proves the
theorem for such product functions. The conclusion comes easily by some
usual approximation argument. ut

4.8.3 Strong Markov Property

Definition 4.125. The canonical space (Ω,F ,P) = (EN, EN,Pµ) of (Xn) is
advantageous for it carries a natural shift . We put
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θ((ωn)n∈N) = (ωn+1)n∈N.

For every n ∈ N∗ we put θn = θn and θ0 = I. One can easily check that

θn(F) = σ(Xk; k ≥ n)

and
θn(Xp) = Xp+n .

For every stopping time T , we define on (T <∞) the operator θT by θT = θn
on (T = n).

In terms of θ, the Markov property reads as follows.

Theorem 4.126. Let (Xn) be a canonical Markov process, with initial mea-
sure µ. For every bounded ( resp. positive) measurable function F on Ω, we
have

Eµ[F ◦ θn | Fn] = EXn [F ] .

Proof. Let us denote by Fn the σ-field generated by X0, . . . , Xn. We have,
using Theorem 4.124

Eµ[1l(Xk1∈A1,...,Xkm∈Am) ◦ θn | Fn]

= Eµ[1l(Xn+k1∈A1,...,Xn+km∈Am) | Fn]

= EXn [1l(Xn+k1∈A1,...,Xn+km∈Am)] .

Hence the theorem is proved for those particular functions. We conclude by
a monotone class argument. ut

The main result of this subsection is that the above theorem extends to
stopping times. This is the so-called Strong Markov Property.

Theorem 4.127 (Strong Markov Property). Let (Xn) be a canonical
Markov chain, with initial measure µ and let T be a stopping time valued in
N ∩ {+∞}. For every bounded ( resp. positive) measurable function F on Ω,
we have

Eµ[1l(T<∞) F ◦ θT | FT ] = 1l(T<∞) EXT [F ].

Proof. We have

Eµ[1l(T<∞) F ◦ θT | FT ] =
∑
n∈N

Eµ[1l(T=n) F ◦ θn | FT ] .

We need here the following lemma.

Lemma 4.128. If F is an integrable random variable and if T is a discrete
stopping time, then

E[1l(T=a) F | FT ] = 1l(T=a) E[F | Fa] .
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Proof (of the lemma). If A is any event of FT then

E[1l(T=a) F 1lA] = E[1l(T=a)∩A F ] .

But (T = a) ∩A belongs to Fa and hence

E[1l(T=a)∩A F ] = E[1l(T=a)∩A E[F | Fa] ] = E[1lA 1l(T=a) E[F | Fa] ] .

But 1l(T=a) E[F | Fa] is FT -measurable and we have proved the lemma.

Coming back to the theorem, we have, using this lemma and Theorem 4.126

Eµ[1l(T<∞) F ◦ θT | FT ] =
∑
n∈N

1l(T=n) Eµ[F ◦ θn | Fn]

=
∑
n∈N

1l(T=n) EXn [F ]

= 1l(T<∞) EXT [F ] .

This proves the theorem. ut

Notes

The litterature on Probability Theory and Stochastic Processes Theory is
huge. Hundreds of new books are appearing every year. It is thus difficult to
guide the reader in this profusion.

For those interested in general books on probability theory we can rec-
ommend the two old volumes by Feller [Fel68] and [Fel71]. They are not so
modern in their presentation, but they stay an unavoidable reference. More
recent and considered as a must-have by most of the probabilists is the book
by Billingsley [Bil95]. Also very complete and pleasant to read, we recommend
Loeve’s book [Loè77].

For the reader willing to enter more deeply in the general theory of stochas-
tic processes, Brownian motion, Poisson process ... (but without entering into
stochastic calculus yet) once again the choice is incredible. Our favorites are
the very complete book by Roger and Williams [RW00] (not for an intro-
ductory book, but essential for a probabilist’s personal library), Karlin and
Taylor’s book [KT75] is also a reference.

Otherwise there are plenty of very famous references on stochastic pro-
cesses, but which include the theory of stochastic integration: Revuz-Yor
[RY99], Protter [Pro05] and the two first volumes of Dellacherie-Meyer
[DM75], [DM80].

However, when writing this lecture, we have been inspired by several refer-
ences that we quote here. We have used the chapter II of Roger and Williams
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[RW00] for the Monotone Class Theorems. Our presentation of Gaussian fam-
ilies is taken from Neveu [Nev68]. The section on conditional expectations is
inspired from Dellacherie-Meyer [DM75]. The discussion on regularization of
stochastic processes follows Revuz and Yor [RY99] and Roger and Williams
[RW00]. Our presentation of Brownian motion and its properties follows Re-
vuz and Yor [RY99], the presentation of Poisson processes is taken from
Protter [Pro05]. The section on filtrations takes a lot from Dellacherie-Meyer
[DM75], whereas for stopping times we have mainly followed the (must-have)
little book of Dellacherie [Del72].
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