Publications associated to the A.N.R. Project StoQ





1.     G. Aubrun, C. Lancien : "Locally restricted measuresments on a multipartite quantum system: data hiding is generic",  Quantum Information and Computation, Vol. 15, No. 5&6 (2015) 0513–0540


2.     G. Aubrun, C. Lancien : "Zonoids and sparsification of quantum measurements", Positivity 20, 1-23 (2016).


3.     B. Collins, P. Hayden, I. Nechita : "Random and free positive maps with applications to entanglement detection",  International Mathematics Research Notices, rnw054 (2016)


4.     M. Bauer, D. Bernard, A. Tilloy, "Computing the rates of measurement-induced quantum jumps",  J. Phys. A: Math. Theor. 48 25FT02 (2015), [arXiv :1410.7231]


5.     T. Benoist, V. Jaksic, A. Panati, Y. Pautrat, C.-A. Pillet, "Full statistics of energy conservation in two times measurement protocols", Phys. Rev. E 92 (2015) 032115


6.      T. Benoist, C. Pellegrini, F. Ticozzi : "Exponential Stability of Subspaces for Quantum Stochastic Master Equations", (2015) arXiv:1512.00732 (preprint)


7.     T. Benoist, V. Jaksic, Y. Pautrat, C.-A. Pillet : "On entropy production of repeated quantum measurements I. General theory", Commun. Math. Phys. (2017).


8.     T. Benoist, I. Nechita, "On bipartite unitary matrices generating subalgebra-preserving quantum operations”, Linear Algebra and its Applications 521, 70–103 (2017)


9.     I. Bardet, D. Bernard, Y. Pautrat : "Passage times, exit times and Dirichlet problems for open quantum walks", Journal of Statistical Physics (2016 ) ; [hal-01385287v1].


10.   S. Attal, I. Bardet : "Classical and Quantum Part of the Environment for Quantum Langevin Equations ", Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, to appear


11.   J. Deschamps, I. Nechita, C. Pellegrini : "On some classes of bipartite unitary operators" (2016) J. Phys. A: Math. Theor. 49 335301 (2016)


12.   S. Attal, J.Deschamps, C. Pellegrini : "Complex Obtuse Random Walks and their Continuous-Time Limit" (2016) Probability Theory and Related Fields, Juin 2016, Volume 165, Issue 1,


13.   M. Bauer, D. Bernard, A. Tilloy, "Spikes in quantum trajectories",  Phys. Rev. A 92, 052111 (2015), [arXiv :1510.01232].


14.   M. Bauer, D. Bernard, A. Tilloy : "Zooming in on quantum trajectories", , J. Phys. A: Math. Theor. 49 10LT01, (2016), [arXiv :1512.02861].


15.   T. Benoist, M. Fraas, Y Pautrat, C Pellegrini : "Invariant Measure for Quantum Trajectories", arXiv:1703.10773


16.   S. Attal, J. Deschamps, C. Pellegrini : "Classical noises from quantum bath", preprint


17.   . S. Andreys, S. Attal, D. Karevski, T. Platini : "Repeated Quantum Interactions and Thermalization for Fermionic Systems", preprint


18.   B. Collins, I. Nechita, "Random matrix techniques in quantum information theory", Journal of Mathematical Physics 57, 015215 (2016)


19.   T. Benoist, A. Panati, Y. Pautrat : "Energy conservation and fluctuation relations for open quantum systems", preprint


20.   M. Bauer, D. Bernard, « Stochastic spikes and strong noise limits of stochastic differential equations », to be published « Ann. H. Poincare », [arXiv :1705.08163].


21.   M. Bauer, D. Bernard, T. Jin, « Stochastic dissipative quantum spin chains (I) : Quantum fluctuating discrete hydrodynamics », submited to Sci-Post, [arXiv :1706.03984].


22.   T. Benoist,  F. Gamboa, C. Pellegrini :  « Quantum Non Demolition Measurements: parameter estimation for mixtures of multinomials », preprint

   
  23.      G. Aubrun, F. Sukochev, D. Zanin : "Catalysis in the trace class and weak trace class ideals", Proceedings AMS 144, 2461-2471 (2016).

24.     M. Fukuda,  I. Nechita : "Additivity rates and PPT property for random quantum channels", Ann. Math. Blaise Pascal 22, 1-72 (2015)


25.     M.-A. Jivulescu, N. Lupa, I. Nechita : "Thresholds for reduction-related entanglement criteria in quantum information theory", Quantum Information and Computation, Vol. 15, No. 13-14 (2015) 1165–1184


26.     O. Arizmendi, I. Nechita, C. Vargas : "On the asymptotic distribution of block-modified random matrices", arXiv:1508.05732


27.     D. Bernard, B. Doyon, J.Viti, "Non equilibrium conformal field theories with impurities", J. Phys. A48 (2015) 05FT01, [arXiv :1411.0470].


28.     R. Sweke, I Sinayskiy, D. Bernard,  F. Petruccione,  "Universal simulation of Markovian open quantum systems", Phys. Rev. A91, 062308 (2015), [arXiv :1503.05028].


29.     D. Bernard, B. Doyon, "A hydrodynamic approach to non-equilibrium conformal field theory", J. Stat. Mech. (2016) 033104 ; [arXiv:1507.07474]


30.     J. Deschamps, E. Hingant, R. Yvinec : " Quasi steady state approximation of the small clusters in Becker-Döring equations leads to boundary conditions in the Lifshitz-Slyozov limit", Comm. Math. Sci. 15 (2017), no. 5, 1353-1384.


31.     R. Carbone, Y. Pautrat, : "Open Quantum Random Walks: Reducibility, Period, Ergodic Properties", Annales Henri Poincaré, 2015, DOI 10.1007/s00023-015-0396-y


32.   R. Carbone, Y. Pautrat : "Homogeneous Open Quantum Random Walks on a Lattice", Journal of Statistical Physics, 2015, DOI 10.1007/s10955-015-1261-6


33.   R. Carbone, Y. Pautrat, "Irreducible decompositions and stationary states of quantum channels", Rep. Math. Phys. 77 (2016), no. 3, 293–313


34.   T. Benoist, M. Fraas, V. Jaksic, C.-A. Pillet, Full statistics of erasure processes: Isothermal adiabatic theory and a statistical Landauer principle, Rev. Roumaine Math. Pures Appl. 62 (2017) 259 – 286


35.   I. Bardet : "Classical and Quantum Parts of the Quantum Dynamics: the Discrete-Time Case", (accepté à Annales Henry Poincaré) 2016   hal-01234885v1


36.   I. Bardet : "Quantum extensions of dynamical systems and of Markov semigroups", (soumis à Stochastic analysis and application) 2015  hal-01199552v1


37.   H. Bringuier : "Central Limit Theorem and Large Deviation Principle for Continuous Time Open Quantum Walks", Annales Henri Poincaré, 18(10), 3167-3192


38.   A. Tilloy, L. Diosi : "Sourcing semiclassical gravity from spontaneously localized quantum matter", Phys. Rev. D 93, 024026


39.   A. Tilloy : "Efficient progressive readout of a register of qubits", , Phys. Rev. A 93, 052309,


40.   G. Aubrun and S. Szarek, "Dvoretzky's theorem and the complexity of entanglement detection", presented at QIP'16 ; published in Discrete Analysis 1, 20pp (2017)


41.   D. Bernard, B. Doyon, "Conformal field theory out of equilibrium: a review", J. Stat. Mech. 064005 (2016), [arXiv:1603.07765];


42.   B. Collins, J. Novak, P. Śniady, "Semiclassical asymptotics of $\operatorname{GL}_N(\mathbb{C})$ tensor products and quantum random matrices", arXiv:1611.01892


43.   K. Szymański, B. Collins, T. Szarek, K.l Życzkowski, "Convex set of quantum states with positive partial transpose analysed by hit and run algorithm" arXiv:1611.01194


44.   B. Collins, P.-Y. Gaudreau-Lamarre, "$*$-Freeness in Finite Tensor Products", Advances in Applied Mathematics 83 (2017)


45.   M. Brannan, B. Collins, "Dual bases in Temperley-Lieb algebras, quantum groups, and a question of Jones", arXiv:1608.03885


46.   B. Collins, "Haagerup's inequality and additivity violation of the Minimum Output Entropy", to appear in Houston Journal of mathematics


47.   B. Collins, T. Hasebe, N. Sakuma, "Free probability for purely discrete eigenvalues of random matrices", arXiv:1512.08975


48.   M. Brannan, B. Collins, R. Vergnioux, "The Connes embedding property for quantum group von Neumann algebras", arXiv:1412.7788


49.   M.-A. Jivulescu, I. Nechita, P. Gavruta,"On symmetric decompositions of positive operators", arXiv:1609.05060


50.   M. Fukuda, I. Nechita, "Enumerating meandric systems with large number of components", arXiv:1609.02756


51.   T. Banica, I. Nechita, "Flat matrix models for quantum permutation groups",  Adv. Appl. Math. 83 (2017), 24-46


52.   M.-A. Jivulescu, N. Lupa, I. Nechita, "Thresholds for reduction-related entanglement criteria in quantum information theory", Quantum Information and Computation, Vol. 15, No. 13&14 (2015), 1165-1184


53.   M. Fukuda, I. Nechita, "Additivity rates and PPT property for random quantum channels", Annales mathématiques Blaise Pascal, 22 no. 1 (2015), p. 1-72


54.   E. Hanson, A. Joye, Y. Pautrat, R. Raquépas, "Landauer's Principle in Repeated Interaction Systems", Communications in Mathematical Physics 349 (2017), no. 1, 285–327


55.   N. Datta, Y. Pautrat, C. Rouzé, "Second-order asymptotics for quantum hypothesis testing in settings beyond i.i.d. - quantum lattice systems and more", J. Math. Phys. 57, 062207 (2016)


56.   N. Datta, Y. Pautrat, C. Rouzé, "Contractivity properties of a quantum diffusion semigroup",Journal of Mathematical Physics 58 (2017), no. 1, 012205


57.   T. Banica, I. Nechita:  Almost Hadamard matrices with complex entries”, Adv. Oper. Theory 3, no. 1, 149–189 (2018)


58.   D. Bernard, B. Doyon, « Diffusion and signatures of localization in stochastic conformal fiedl theory », Phys. Rev. Lett. 119, 110201 (2017) ; [arXiv :1612.05956].


59.   I. Nechita, Z. Puchała, Ł. Pawela, K. Życzkowski: ”Almost all quantum channels are equidistant”, arXiv:1612.00401


60.   A. Muller-Hermes, I. Nechita:Restrictions on the Schmidt rank of bipartite unitary operators beyond dimension two”, arXiv:1612.07616


61.   M. Fukuda, I. Nechita:On the minimum output entropy of random orthogonal quantum channels”, arXiv:1703.08979

 

62.   E. Hanson, A. Joye, Y. Pautrat, R. Raquépas, "Landauer’s principle for trajectories of repeated interaction systems", arXiv:1705.08281


63.  A. Tilloy : « Time-local unraveling of non-Markovian stochastic Schrödinger equations », Quantum 1, 29 (2017)


64.  A. Tilloy : « Interacting quantum field theories as relativistic statistical field theories of local beables », arXiv:1702.06325


65. L. Diosi , A. Tilloy : « Principle of least decoherence in Newtonian semi-classical gravity », , arXiv:1706.01856


66.  A. Tilloy : « Ghirardi-Rimini-Weber model with massive flashes », arXiv:1709.03809


67.  T. Benoist, V. Jaksic and C.-A. Pillet, « Energy statistics in open harmonic networks », J. Stat. Phys. 168 (2017) 1016 – 1030

68.    G. Aubrun and S. Szarek, "Alice and Bob meet Banach. The Interface of Asymptotic Geometric Analysis and Quantum Information Theory". Mathematical Surveys and Monographs, Volume 223 (2017), American Mathematical Society, 414 pp
 

69. G. Aubrun, "Quantum Entanglement in high dimensions", book chapter in the volume "Quantum symmetries", Lecture Notes in Mathematics, to appear