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Two-point symmetrization and convexity

By

Guillaume Aubrun and Matthieu Fradelizi

Abstract. We prove a conjecture of R. Schneider: the spherical caps are the only spherically
convex bodies of the sphere which remain spherically convex after any two-point symmetrization.
More generally, we study the relationships between convexity and two-point symmetrization in the
Euclidean space and on the sphere.

Introduction In the following, n is an integer, n � 2, the Euclidean norm on R
n is

denoted by |.| and the Euclidean unit sphere by Sn−1. Let H be an affine hyperplane,
denote by σH the reflection (the orthogonal symmetry) with respect to H and by H+ and
H− the two closed half-spaces delimited by H . The two-point symmetrization τH K of a
subset K of R

n with respect to H is defined as follows (see Figure 1)

τH K = ((K ∩ σH K) ∩ H−) ∪ ((K ∪ σH K) ∩ H+).

The set obtained in this way does not look more symmetric than the original one, hence
the terminology “two-point symmetrization” may seem imperfect. Many other names have
been proposed, such as compression, two-point rearrangement or polarization (see [2], [4]
and [3]). It can also be defined in other settings like in discrete or hyperbolic spaces.

Note that if we switch H+ and H−, the result of the symmetrization is the same, up
to a reflection with respect to H . In particular, since we are only interested in geometric
properties of τH K , such as being convex, the choice of H+ and H− is never important.

If A ⊂ Sn−1 and 0 ∈ H then τH A ⊂ Sn−1 and we get the usual two-point symmetrization
on the sphere (see [1]). A subset A of Sn−1 is said to be spherically convex if the cone R

+A

generated by A is convex in R
n; if moreover R

+A is closed with nonempty interior we say
that A is a spherical convex body (recall that a convex body in R

n is a convex, compact set
with nonempty interior). Remark that if a proper subset of Sn−1 is a spherical convex body
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F i g u r e 1 Two-point symmetrization.

then it is contained in a hemisphere. Note that the two-point symmetrization with respect
to a hyperplane passing through 0 maps spherical caps to spherical caps.

Among many results, the two-point symmetrization was used to prove the isoperimetric
inequality on the sphere (see [1]). More recently it was used in [5] to prove a spherical
analogue of the Blaschke-Santaló inequality. The main purpose of this article is to prove
the following theorem, conjectured by R. Schneider ([7]).

Theorem 1. Let A be a spherical convex body of Sn−1such that for all hyperplanes H

through the origin, τH A is spherically convex. Then A is a spherical cap.

We also prove the analogous result in R
n.

Theorem 2. Let K be a closed n-dimensional convex proper subset of R
n, such that for

any affine hyperplane H , τH K is convex. Then K is either a Euclidean ball or a half-space.

Note that in both theorems, the reciprocal statement obviously holds. In the second part
of the article, we prove other results when the body is assumed to remain convex after
two-point symmetrizations with respect to smaller sets of hyperplanes.

After this note has been written, we learnt from R. Schneider that G. Bianchi had already
outlined to him a proof of his conjecture; actually his proof is closely related to part 2 of
our paper.

1. Proof of the main theorems. Let K be a closed convex set in R
n and ∂K its boundary.

For a point x of ∂K , we denote by NK(x) the set of outer unit normal vectors of K at x.
A point x of ∂K is said to be regular if NK(x) is a singleton. In this case we abusively
denote this unique vector by the same notation NK(x). Recall that the set of singular points
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(i.e. non-regular) has (n − 1)-dimensional Hausdorff measure zero (cf [5, p. 73]). In
particular, regular points are dense in ∂K .

We first prove the following proposition.

Proposition 1. Let K be a closed convex n-dimensional subset of R
n and H be an affine

hyperplane. Then τH K is convex if and only if given two distinct points of ∂K symmetric
with respect to H , there exist two supporting hyperplanes (one at each point) symmetric
with respect to H .

R e m a r k. If τH K is convex and the two points x and y = σH x from Proposition 1
are regular, it implies that NK(x) = σH0NK(y) where H0 = H − x+y

2 passes through the
origin.

P r o o f o f P r o p o s i t i o n 1. First note that ∂K ∩ ∂σH K ⊂ ∂τH K . Indeed, if K ⊂ H+
(or H−) then τH K = K (or σH K) and the inclusion is obvious. If not then K ∩ σH K

has a non empty interior. For x in ∂K ∩ ∂σH K there exist two supporting hyperplanes
T1 and T2 at x respectively of K and σH K , such that K ⊂ T +

1 and σH K ⊂ T +
2 . Hence

K ∩ σH K ⊂ T +
1 ∩ T +

2 . This implies that T +
1 ∪ T +

2 cannot be the whole space. Therefore
x ∈ ∂τH K because τH K ⊂ T +

1 ∪ T +
2 .

We first show the easiest part. Assuming that τH K is convex, let x and y be distinct
points in ∂K such that y = σH x, with x ∈ H+. We have x ∈ ∂K ∩ ∂σH K ⊂ ∂τH K . As
τH K is convex, it admits a supporting hyperplane T at x. Thus T supports K ∩ H+ and
σH K ∩H+ at x and this implies that T supports K and σH K at x. Hence σH T supports K

at y = σH x and we are done.
The converse is a direct consequence of the following characterization of convexity due

to Tietze (see Valentine [8, pp 51–53]): an open connected set C in R
n is convex if and

only if C admits a local supporting hyperplane at every point x of its boundary, i.e. there
is a neighbourhood V of x such that C ∩ V admits a supporting hyperplane at x.

Let x be a boundary point of τH K . Then either x belongs to ∂K and ∂σH K or it belongs
to only one of these sets. In the second case the existence of a local supporting hyperplane
is clear. Let us consider the first case, i.e. x ∈ ∂K ∩ ∂σH K .

If x ∈ H let u = NH−(x) be the unit outer vector of H− and take w ∈ NK(x). There
are again two subcases. If 〈u, w〉 � 0 then let us prove that x + w⊥ is a supporting
hyperplane of τH K . It is enough to prove that for all z ∈ K ∪ (σH K ∩ H+) we have
〈z−x, w〉 � 0. Since w ∈ NK(x) the inequality is satisfied for z ∈ K . For z ∈ σH K ∩ H+,
there exists α � 0 such that z − σH z = αu. Since 〈u, w〉 � 0 and σH z ∈ K , we get
〈z − x, w〉 = 〈z − σH z, w〉 + 〈σH z − x, w〉 � 0. Now if 〈u, w〉 � 0 then the same proof
gives that σH (x + w⊥) is a supporting hyperplane of τH K .

Notice that without using the hypothesis we already proved that the defaults of convexity
of the boundary of τH K can only occur at a point x of ∂K ∩ ∂(σH K)\H . But this case is
settled by the hypothesis since y := σH x ∈ ∂K , hence there exists a supporting hyperplane
of K at x such that σH T supports K at y. This means that T supports K ∪ σH K and
consequently τH K at x. Therefore K is convex.
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We now prove Theorem 2.

P r o o f o f T h e o r e m 2. Let K be a convex body satisfying the hypotheses of
Theorem 2. We know from the remark after Proposition 1 that for any couple (x, y) of
distinct regular points of ∂K , NK(x) = σH0NK(y), where H0 = (x − y)⊥. We can rewrite
this in the following form : NK(x) − NK(y) and x − y are collinear, hence there exists a
scalar λ(x, y) such that NK(x) − NK(y) = λ(x, y)(x − y). For three regular points x, y

and z of ∂K , we have



NK(x) − NK(y) = λ(x, y)(x − y)

NK(y) − NK(z) = λ(y, z)(y − z)

NK(z) − NK(x) = λ(z, x)(z − x).

Adding the three equalities we get (λ(x, y)−λ(z, x))x + (λ(y, z)−λ(x, y))y + (λ(z, x)−
λ(y, z))z = 0.

If all regular points of ∂K are collinear then K is a half-plane in R
2 and there is nothing to

prove. So we can assume that there exist three non-collinear (hence affinely independent)
regular points x, y and z; then the previous discussion implies that λ(x, y) = λ(y, z) =
λ(z, x), and necessarily the function λ is constant on couples of regular points; let λ be the
value of this constant. Going back to the definition of λ(x, y), this shows that the point
λx − NK(x) does not depend on the choice of the regular point x ; let e = λx − NK(x) be
this point. Then NK(x) = λx − e, hence |λx − e| = 1. By density of the regular points,
this is valid for any boundary point.

If λ = 0 then K has to be a half-space. Now assume λ �= 0. As K is an n-dimensional
convex set, it is necessarily the Euclidean ball of center e/λ and radius 1/|λ|. This concludes
the proof.

The proof of Theorem 1 follows exactly the same scheme. Here are the main points.

P r o o f o f T h e o r e m 1. Let A ⊂ Sn−1 be a subset satisfying the hypotheses of
Theorem 1. In the case A = Sn−1 or if n = 2 there is nothing to prove; thus in the
following we assume that n � 3 and that A is a spherical convex body contained in a
hemisphere. By ∂A, we mean the relative boundary of A in Sn−1. Let C = R

+A be the
cone generated by A ; C is convex and for any hyperplane H containing the origin, τH C

is convex. Let x and y be two distinct points from ∂A, regular as points of ∂C. The origin
belongs to the perpendicular bisector hyperplane H of the segment [x, y], hence from the
remark after Proposition 1 we have NC(x) = σH NC(y).

The remainder of the proof is identical: we get |λx − e| = 1 for all x in ∂A. Note that
the point e cannot be the origin, since NC(x) is orthogonal to x. Hence ∂A is included in
the intersection of two non-concentric spheres, therefore the spherical convex body A is
necessarily a spherical cap.

2. Smaller families of hyperplanes. The aim of this section is to characterize the set
of closed n-dimensional convex subsets of R

n which remain convex after the two-point
symmetrizations with respect to any hyperplane belonging to some fixed natural families
of hyperplanes.
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To state our result, we need the following notion. Let K be a closed subset of R
n and E

a subspace. We say that K has a revolution symmetry around E if every section of K with a
translate of E⊥ is a (possibly empty) Euclidean ball with center in E. This is equivalent to
saying that K is equal to its Schwarz-symmetral with respect to E and also to the existence
of a function f : E → R such that

K = {x ∈ R
n s.t. |x − PEx| � f (PEx)} .

Note that if E is a line of R
3, this is the usual notion of revolution body. If E is a

hyperplane, the revolution symmetry is just the usual orthogonal symmetry. If E is reduced
to a single point, only Euclidean balls centered at that point have a revolution symmetry
around E.

We will prove the following theorem.

Theorem 3. Let E be a subspace of R
n and K be a convex body in R

n. Then τH K is
convex for every affine hyperplane H containing a translate of E if and only if K has a
revolution symmetry around a translate of E.

P r o o f. If K has a revolution symmetry around a translate of E, then two-point sym-
metrizations with respect to a hyperplane H containing E either fix K or map it to σH K ,
so we obviously obtain a convex set.

Now we deal with the other direction: let K be a convex body in R
n satisfying the

hypotheses of Theorem 3.

C a s e 1. n = 2 and E is a line in R
2.

We have to prove that K is symmetric with respect to a line parallel to E. Using the decom-
position R

2 = E ⊕ E⊥, there exists a < b ∈ R and f, g : [a, b] → R, with f � g, f

concave and g convex such that we may write

K = {(t, s) ∈ [a, b] × R; g(t) � s � f (t), ∀t ∈ [a, b]}.
Let u be a point of (a, b) such that f and g are both differentiable at u. Then x = (u, f (u))

and y = (u, g(u)) are regular points of ∂K and their bisector line, D := {(t, f (u)+g(u)
2 );

t ∈ R}, is parallel to E. Hence by Proposition 1 the tangent lines of K at x and y are
symmetric with respect to D, which means that g′(u) = −f ′(u). Since g and −f are
convex on [a, b], we can write

g(t) − g(a) =
t∫

a

g′(u)du = −
t∫

a

f ′(u)du = f (a) − f (t) ∀ t ∈ [a, b].

Therefore K is symmetric with respect to the line {(t, f (a)+g(a)
2 ); t ∈ R}, which is parallel

to E.

C a s e 2. n � 2 and E is a hyperplane in R
n.
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Assume for simplicity that E contains the origin. Let x, y be two points of ∂K such
that K ∩ (E⊥ + x) = [x, y]. Let us prove that K is symmetric with respect to the affine
hyperplane parallel to E passing through x+y

2 . Let P be any affine 2-plane containing the
segment [x, y]. For any affine hyperplane H parallel to E we have that (τH K) ∩ P =
τH∩P (K ∩ P) is convex. By case 1, this immediately implies that K ∩ P is symmetric
with respect to a line parallel to E ∩ P . Because of the choice of x and y this line has to be
E ∩ P + x+y

2 . This implies that K ∩ P is symmetric with respect to the affine hyperplane
E + x+y

2 . It follows that K is symmetric with respect to E + x+y
2 .

C a s e 3. general case.

We first need the following lemma:

Lemma 1. Let K be a convex body in R
n which admits a hyperplane of symmetry in

every direction. Then K is a Euclidean ball.

P r o o f o f L e m m a 1. First choose a basis (e1, . . . , en) and for each i, let Hi be an
(affine) hyperplane of symmetry of K orthogonal to ei . Then the intersection of the Hi’s is
a singleton {x}, and x is a center of symmetry of K (we can assume x to be the origin). Thus
all the symmetry hyperplanes must pass through x, and so K is invariant under all orthogonal
symmetries, therefore under the whole orthogonal group O(n). So K is a Euclidean ball.

We now return to Case 3. From Case 2, for any hyperplane H containing E, K is
symmetric with respect to a translate of H . This implies that for any affine subspace F

parallel to E⊥, the convex set K ∩ F admits a hyperplane (in F ) of symmetry in every
direction, so by Lemma 1 it is a Euclidean ball in F . It remains to prove that the centers of
these balls lie on a translate of E. But if K is symmetric with respect to an hyperplane H

containing E, H must pass through all theses centers. As (again by case 2) such hyperplanes
exist in any direction, the centers necessarily lie on a translate of E. Hence K admits a
revolution symmetry around a translate of E and the proof is complete. �

o

F i g u r e 2. A convex body in R
2 remaining convex after two-point symmetrizations with respect to hyperplanes

through the origin.
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R e m a r k 1. Note that Theorem 3 is a generalization of Theorem 2 in the bounded case
(take E = {0}). The boundedness requirement in Theorem 3 is important to avoid the
situation of the half-spaces.

R e m a r k 2. A natural question to generalize Theorem 1 would be: “what are the convex
bodies in R

n which remain convex after any two-point symmetrization with respect to
hyperplanes containing a fixed point (say, the origin)?”. Unfortunately, the answer does
not seem to be very nice. Such a body may even fail to have any symmetry, as it can be
checked thanks to Proposition 1 on the example of Figure 2.
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