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The goal of this note is to show that the analysis of the minimum output p-Rényi
entropy of a typical quantum channel essentially amounts to applying Milman’s
version of Dvoretzky’s theorem about almost Euclidean sections of high-
dimensional convex bodies. This conceptually simplifies the (nonconstructive) ar-
gument by Hayden—Winter, disproving the additivity conjecture for the minimal
output p-Rényi entropy (for p>1). © 2010 American Institute of Physics.
[doi:10.1063/1.3271044]

I. INTRODUCTION

Many major questions in quantum information theory can be formulated as additivity prob-
lems. These questions have received considerable attention in recent years, culminating in Hast-
ings’ work showing that the minimal output von Neumann entropy of a quantum channel is not
additive. He used a random construction inspired by previous examples due to Winter and Hayden,
who proved nonadditivity of the minimal output p-Rényi entropy for any p > 1. In this short note,
we show that the Hayden—Winter analysis can be simplified (at least conceptually) by appealing to
Dvoretzky’s theorem. Dvoretzky’s theorem is a fundamental result of asymptotic geometric analy-
sis, which studies the behavior of geometric parameters associated with norms in R” (or, equiva-
lently, with convex bodies) when n becomes large. Such connections between quantum informa-
tion theory and high-dimensional convex geometry promise to be very fruitful.

Il. NOTATION

If H is a Hilbert space, we will denote by B(H) the space of bounded linear operators on ,
and by D(H) the set of density matrices on H, i.e., positive semidefinite trace one operators on H
[or states on H, or—more properly—states on B(H)]. Most often, we will have H=C" for some
ne N, and we will then write M, for B(C").

For p=1, the p-Rényi entropy of a state p is defined as

S,(p) =

: log(tr p”).
l-p

(For p=1, this should be understood as a limit and coincides with the von Neumann entropy.)
A linear map ®: M,,— M, is called a quantum channel if it is completely positive and trace
preserving. The minimal output p-Rényi entropy of ® is then defined as
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S;)“i“((l)) = min S,,(CID(p)).
peD(C™)

lll. THE ADDITIVITY CONJECTURE

The additivity conjecturel asserted that the following equality held for every pair @, ¥ of
quantum channels

9

ST(D © W)=ST(®) + STI(P). (1)

The most important case, p=1, has been shown to be equivalent to a number of central questions
in quantum information theory.27 Of course, had the conjecture been true for every p > 1, it would
have held also for p=1 by continuity.

The conjecture has been recently disproved for all values of p=1. Early (explicit) counter-
examples for p >4.79 were due to Holevo and Werner.”! Subsequently, the case p>1 was settled
by Hayden and Winter in Ref. 17, and finally Hastings found a counterexample to the additivity
conjecture for p= 1.'° The latter two papers used nonconstructive methods (see Sec. IV for more
comments on this aspect of the story). Hastings’ presentation was rather concise, but more detailed
expositions of his approach can be found in, e.g., Refs. 10, 3, and 9.

We want to show in this note that a large part of the analysis by Hayden and Winter is actually
a fallout of Dvoretzky’s theorem, a classical result in high-dimensional convex geometry dating to
the 1960s.”*' We note that this approach, at least in its present form, does not cover Hastings’
construction.

IV. MULTIPLICATIVE FORM

It will be more convenient to study a multiplicative version of the conjecture, already consid-
ered in Ref. 1. Instead of the Rényi entropy, we will work with the Schatten p-norm |[|o]|,
=(tr(a"o)?’)P. (The limit case [|-|.. is the operator, or “spectral,” norm.)

If p>1 and p is a state, then S,(p)=p/(1-p) log|p|,. and so the study of S;“i“(CD) is replaced
by that of max,.p(m)||P(p)|,, or the maximum output p-norm. The latter quantity has a nice
functional-analytic interpretation: it equals ||®[,_,, i.e., the norm of ® as an operator from
(M., ]Il to (Mg,]-]|,). This allows one to rewrite conjecture (1) in a multiplicative form

2

[® @ \I’||1—>p=||q)||1—>p||‘l’||1—»p- (2)

The inequality “=" is trivial, so the conjecture asked if “=” was always true.

We point out that the argument that follows deals directly with the maximum output p-norm
and not with [|®[|;_, ,, so the knowledge that the two are equal is not really needed. Note that it is
only obvious that the maximum output p-norm is equal—for any linear map ®—to the norm of
the restriction of ® to the R-linear space MY of mXm Hermitian matrices. The fact that it
coincides—for quantum channels, or even for all 2-positive maps—with the a priori larger norm
|®], ., is also elementary, but less immediate™ (see also Refs. 2 and 29 for short proofs of the
more general version).

Finally, let us observe that ||®||; ,, never exceeds 1 if @ is a quantum channel. If, additionally,
® is M -valued, then ||®], ., is at least d"7~" (the p-norm of the maximally mixed state in M,).

V. CHANNELS AS SUBSPACES

Let W be a subspace of C/®C¢ of dimension m. Then ®:B(W)— M, defined by ®(p)
=tr,y(p) [partial trace in the second factor, i.e., tr,(p; ® py)=tr(p,)p;] is a quantum channel. Alter-
natively (and perhaps more properly), we could identify ¥V with € via an isometry V:(C™
— (?® (4 whose range is WV and set, for p € M,,, ®(p)=tr,(VpV?); then ® goes from M,, to M,,.
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(One could also consider here subspaces WC C?® (", where possibly r# d; this would allow to
preserve full generality, but would lead to more involved notation.)

By convexity, the maximum output p-norm, and hence also ||®||; _,, is attained on pure states.
In other words,

1P];—, = max [ d(lx)x])

xeC" |x|=1

p>

where || is the Euclidean norm. A standard and well-known argument shows that eigenvalues of
®(|x)(x|) are exactly squares of 5;(x), the “Schmidt coefficients” of x, so

d 1/p
lof, ., = max (Es,-(x)zp) = max |3,
xeW,|x|l=1 Jj=1 xeW,|x|=1

where in the last expression we identify x e WC C/®C? (or, to be more precise, (1o C—a
distinction we will ignore) with an element of M, via the canonical map induced by u®v
— |u)(v|. (Schmidt coefficients of an element of C¢® (¢ become singular values of the correspond-
ing element of M,.)

In other words, |®|;_., is the square of the maximum of the ratio |x|,,/|x], over the
m-dimensional subspace of M, that corresponds to ¥V under the canonical identification, and that
we will still call W,

[, = max (el el ). (3)

VI. THE HAYDEN-WINTER COUNTEREXAMPLE

The Hayden—Winter construction can be described as follows. Let V:C" — C?® (4 be a ran-
dom isometry (chosen with respect to the Haar measure) and ®: p+—>tr,(VpV") be the correspond-
ing quantum channel from M,, into M, We show in Sec. VII that Dvoretzky’s theorem implies
that for m~ d'*'?, such random quantum channel typically satisfies

)y, ~ a""". )

Here, and throughout the remainder of the paper, ~means “equivalent up to a universal multipli-
cative constant.”

Take as the second channel the (complex) conjugate channel ® and let |¢)) be the maximally
entangled state in C”®C™. It is shown in Ref. 17 (Lemma 3.3) that (®® ®)(|¢)(¢|) has an
eigenvalue =m/ d?, which implies that with the above choice of m,

D © B, = | e D, .= mid~d".

On the other hand, again with the same choice of m, by (4)

||<I)||1—»p = ||CI_)||1—>]) -~ dl/[)—l 5

and thus

IRl I Pl ~ (@) < a'P, (5)

so that we obtain a violation of the multiplicativity provided that d'7"'<1/C, i.e., d=CP/?~,
where C is the absolute constant hidden behind the ~ symbol. Moreover, this violation is asymp-
totically extremal. Indeed, while the inequality ||® ® ®f_, <||P[|;_,=[P[;*, |Pll;_,IP];_, al-
ways holds (this follows from results from Ref. 1), in this example the reverse inequality also
@1, ~d'""" is of largest

holds up to an absolute multiplicative constant. At the same time,
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possible order in the class of M ;-valued quantum channels (see the observation at the end of Sec.
V).

The lower estimate for |[®® ®||; ., was the relatively simple part of the argument from Ref.
17; the authors referred to the proof of their Lemma 3.3 as “an easy calculation.” Of course, it is
“easy” only after the fact, and the crucial point was coming up with the right pair of channels to
analyze.

Finally, as pointed out in Ref. 16, the random approach allows working initially with real
spaces (R”, RY® R, etc.) and producing channels @ fitting into the Hayden—Winter scheme,

whose representation in the computational basis is real. In particular, b=, so we have channels
(acting on complex spaces) for which [|®® @[, >[®[[]_, and SI"™(D @ D) <287™(D).

Vil. DVORETZKY’S THEOREM

By (3), [|®|, ., =max, cy(|[xl|o,/[I¥]],)*, where WC M, is an m-dimensional subspace. The
behavior of the ratio between the Euclidean norm and some other norms on subspaces of given
dimension is a quantity that has been extensively studied in geometry of Banach spaces. The most
classical result in this direction is Dvoretzky’s theorem.

Given m € N and € >0, there is N=N(m, &) such that, for any norm on RN (or CN) there is an
m-dimensional subspace on which that ratio is (approximately) constant, up to a multiplicative
factor 1+e.

This reveals a striking geometric phenomenon: any high-dimensional convex body, no matter
how peaked it may be, has sections that are close to Euclidean balls.

For specific norms this statement can be made much more precise, both in describing the
dependence N=N(m,¢) and in identifying the constant of (approximate) proportionality of norms.
The version of Dvoretzky’s theorem that is relevant here is due to Milman.”' (Alternative good
expositions are, for example, Refs. 8, 24, and 25; the last one presents a proof based on the
Gaussian analysis, which allows one to bypass the—deep and not so easy to prove—spherical
isoperimetric inequality.)

Dvoretzky’s Theorem: (Tangible version) Consider the n—dimensional Euclidean space (real
or complex) endowed with the Euclidean norm |-| and some other norms ||-|| such that, for some
b>0, ||-|=b|-|. Denote M=E|X|, where X is a random variable uniformly distributed on the unit
Euclidean sphere. Let €>0 and let m=ce*(M/b)*n, where ¢>0 is an appropriate (computable)
universal constant. Then, for most m-dimensional subspaces E (in the sense of the invariant
measure on the corresponding Grassmannian), we have

VxeE,(1-e)M|x| = x| =1 +e)Mx|.

Remarks: (i) The above result is usually stated with the hypothesis a™!|-|<||-||=b|-| (for some
a,b>0). However, the parameter a does not enter into the assertion; lower bounds on |-|| are
related to lower bounds on M, needed to obtain nontrivial values of m [and the function N(m, )
mentioned earlier] in the abstract setting.

(i) Standard and most elementary proofs yield the assertion only for m=cs?/log(1/g)(M/b)’n;
the dependence on & of the order of £? was obtained in the important papers.u’26 However, for our
purposes it is enough to have, say, SZ%, so this aspect of the story is not important.

Viil. DVORETZKY’S THEOREM FOR SCHATTEN CLASSES

In the Hayden—Winter construction, YWC M, is a random m-dimensional subspace distributed
according to the Haar measure on the Grassmann manifold and [cf. (3) and (4)] we want to control
the ratio [x|,,/|x]l, uniformly on W, where 2p =:g>2. Thus, the context in which one needs to
apply Dvoretzky’s theorem is the Schatten g-norm on the complex space M, for ¢>2, in par-
ticular, n=d? [|-||=|,, and [-|=|-[. the Hilbert-Schmidt norm. This has been done, e.g., in the
1977 paper” (see Example 3.3 there; Ref. 8 focuses on real spaces, but it is noted that all proofs
carry over to the complex case). The conclusion is that if m~d'*?7=d'*'_then the inequality
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2, = i, = a2l ©

holds (for some constant C=1 that does not depend on d nor—Iless crucially—on ¢) for all x in
a typical m-dimensional subspace of M. (If we used the normalized trace to define Schatten
norms, the powers of d would disappear.) Combining (6) with (3) yields that when m ~d'*''?, then
||, .,~d*"'=d"P~" for a typical ®, which are exactly the values needed for the Hayden-—
Winter example.

For completeness, let us comment on the details of the derivation of (6) from Dvoretzky’s
theorem. What we need is to find (or estimate) the quantities b,M appearing in the theorem.
Clearly, for all x e M,

d" 412, = xll, = [l

2 (7)

which yields the value of the parameter b=1, the lower (trivial, and not actually needed for the
multiplicativity problem) estimate from (6) and, a fortiori, the bound M =d"47"2, The upper
estimate in (6) will now follow once we establish that M is precisely of the order of 44712,
Indeed, using (the tangible version of) Dvoretzky’s theorem with s=]§, we are then led to m
2c(%)2(M/b)2n~(d”q‘”z)zdzzd“yq, and to an upper estimate 5M~d"4""? in (6) (i.e., on a
“typical” m-dimensional subspace).

As we mentioned above, the fact that M ~d'/4~'? is implicit in the argument from Ref. 8. [It
is shown in Ref. 8 that m ~d'*?? is the optimal (i.e., the largest) dimension for which (approxi-
mate) proportionality of norms does hold. Now, if we have had M > d"4-"/2 Dvoretzky’s theorem
would have yielded a nearly Euclidean subspace of dimension m> d'**4 (just repeat the argument
from the preceding paragraph with>instead of ~), which contradicts the optimality assertion.]
However, it is instructive to note that it may also be obtained by many other “standard” methods
developed in geometric functional analysis and in random matrix theory. One (by far not the
easiest, but most precise, at least in the appropriate asymptotic regime) was used by
Collins—Nechita.* A simple argument to get an upper bound for M goes as follows. Let X be a
random variable uniformly distributed on the Hilbert—Schmidt sphere in M. It is easy to check,
using an elementary e-net argument, that the expectation of || X].. is bounded by Cod~'" for some
absolute constant Cy. Using the (pointwise) inequality [[X]|, = [1X]3*|X]"*¢ and Hélder’s inequal-
ity, we get

M= E”X”q <= (E||X||30)1_2/q <= (Cod—l/Z)l—Z/q — C(l)—Z/qu/q—l/Z.

If we are interested in good values of numerical constants, the best possible choice is Cy=2—the
same “2” as in the Wigner’s semicircle law. The needed generality and precision can be
extracted—at least in the real case—from Ref. 11 [see also Refs. 15 and 6 (Theorem 2.11) or Ref.
28 (Appendix F) for related calculations].

IX. DERANDOMIZATION

Similarly as the approaches to the additivity conjectures by Hayden—Winter and Hastings,
Milman’s proof of Dvoretzky’s theorem relies on concentration of measure via Lévy’s lemma, and
so it is highly nonconstructive. Some effort has been put recently in finding explicit subspaces
satisfying the conclusion of the theorem. Of course, this must depend on the choice of the initial
norm ||-||. The prominent example is the case of the £, norm on R", which is relevant to (classical)
theoretical computer science, for example, to compressed sensing. In this case the dimension of
the subspace is proportional to n. Although no explicit construction of such a subspace exists yet,
recent results are promising (see Refs. 18, 14, and 19 and references therein). We might hope to
adapt such techniques to obtain constructive counterexamples to the additivity conjectures. How-
ever, to date the best result in this direction seems to be Ref. 13, with an explicit example which
works for all p>2. An explicit counterexample to the companion problem concerning the range
p €[0,1) is exhibited in Ref. 5 (it works for p close to 0).
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X. SHRINKING UNDER RANDOM PROJECTIONS AND RELATED REMARKS

The Hayden—Winter construction requires only an upper estimate on [x], for all x in a (ran-
dom) subspace of M, [cf. (3) and (5)]. This observation leads to counterexamples to additivity
conjecture based on a phenomenon that is conceptually simpler (even if less known) than Dvoretz-
ky’s theorem. One way to express it is as follows: if, in the notation of Dvoretzky’s theorem,
(M/b)*n=:my<m=n, then the one sided estimate |[x||=<C\im/n b |x| holds for all x in a typical
m-dimensional subspace.

While the choice m~d'*"P (in the construction of a random channel) results in an extremal
violation of multiplicativity, the above remark shows that similar calculations for, e.g., all m

=d"*"7 lead to estimates of the order m/d” on all the norms ||®|, . [®|, ., and [®@ @ D], ., and
so a violation occurs as long as m/ d? is small enough, i.e., smaller than a certain numerical
constant ¢>0. However, it should be noted that the restrictions cd’>>m=d"*'"? still imply that
d—xas p—1.

It may be more geometrically compelling to express the phenomenon referred to above in its
dual form. First, the dual reformulation of Dvoretzky’s theorem states that if K is a symmetric
body in the n-dimensional Euclidean space, then there is (relatively large) m, such that a typical
orthogonal m-dimensional projection of K is approximately a Euclidean ball. (Determining the
threshold m, involves considering the norm, for which K is the unit ball, and then calculating
parameters M and b for the dual norm.) The relaxed version states that if my=m=n, then the
diameter of a typical m-dimensional projection of K does not exceed C \/m_/n times the diameter of
K. References for these remarks are, e.g., Refs. 22 and 23 (Sec. 2.3.1), but the phenomenon can,
in fact, be traced back (at least) to Ref. 12 or Ref. 20 among others.
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