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Let W be a Wishart random matrix of size d? x d?, considered as a block matrix with
d x d blocks. Let Y be the matrix obtained by transposing each block of W. We prove
that the empirical eigenvalue distribution of Y approaches a non-centered semicircular
distribution when d — oco. We also show the convergence of extreme eigenvalues towards
the edge of the expected spectrum. The proofs are based on the moments method.

This matrix model is relevant to Quantum Information Theory and corresponds to
the partial transposition of a random induced state. A natural question is: “When does
a random state have a positive partial transpose (PPT)?”. We answer this question and
exhibit a strong threshold when the parameter from the Wishart distribution equals 4.
When d gets large, a random state on C% ® C% obtained after partial tracing a random
pure state over some ancilla of dimension ad? is typically PPT when a > 4 and typically
non-PPT when o < 4.

Keywords: Partial transposition; Wishart matrices; semicircular distribution; PPT
states.
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1. Introduction

In the recent years, several connections were established between Random Matrix
Theory and Quantum Information Theory. It turns out that random operators, and
the random constructions they induce, can be used to construct quantum channels
with an unexpected behavior, violating some natural conjectures (the most promi-
nent example being Hastings’s counterexample to additivity conjectures [11]). Ran-
dom matrices appear to be a sharp tool in order to understand the high-dimensional
objects from Quantum Information Theory.

In this spirit, we study here a model of random matrices motivated by Quantum
Information Theory. The model is simple to describe: start from Wishart n x n

1250001-1


http://dx.doi.org/10.1142/S2010326312500013

Random Matrices: Theory Appl. 2012.01. Downloaded from www.worldscientific.com

by MONASH UNIVERSITY on 09/02/13. For personal use only.

G. Aubrun

random matrices, which is the most natural model of random positive matrices.
Assume that their dimension is a square (n = d?). These matrices can be considered
as block-matrices, with d? blocks, each block being a d x d matrix. Now our model is
obtained by applying the transposition operation inside each block. An equivalent
formulation is to consider d? x d? matrices as operators on the tensor product of
two d-dimensional spaces, and to apply to them the partial transposition Id ® T,
where T is the usual transposition.

For this model, the empirical eigenvalue distribution converges towards a non-
centered semicircular distribution, and the extreme eigenvalues converge towards
the edge of the spectrum. These results were observed numerically by Znidari¢
et al. [23]. The aim of the present paper is to give a complete proof of these facts.
We rely on a standard tool from Random Matrix Theory: the method of moments.

The fact that the limiting distribution is semicircular is not a complete sur-
prise. In the context of free probability, semicircular distributions are the non-
commutative analogue of Gaussian distributions, and therefore one expects their
appearance in limit theorems. For example Wigner’s celebrated theorem identi-
fies the centered semicircular distribution as the limit distribution of eigenvalues
of random Hermitian matrices. However, other limiting distributions do appear in
the theory: for example, the Wishart matrices themselves (i.e. without the partial
transposition) converge to the so-called Marcenko-Pastur law (see Sec. 2.3). More-
over, our model brings some additional exoticism since the limiting distribution is
non-centered.

Since the transposition is not a completely positive map, there is no reason
a priori for matrices from our model to be positive. However, we show that for
some range of the parameters, partially transposed Wishart matrices are typically
positive. A threshold occurs when the parameter from the Wishart distribution
equals 4.

The partial transposition appears to play a central role in Quantum Informa-
tion Theory and is closely related to the concept of entanglement. An important
class of states is the family of states with a Positive Partial Transpose (PPT). Non-
PPT states are necessarily entangled [22] and this is the simplest test to detect
entanglement. Let us simply mention a related important open problem known
as the distillability conjecture [13]: it asks whether, for a state p, non-PPT is
equivalent to the existence of a protocol which, given many copies of p, distills
them to obtain Bell singlets — the most useful form of entanglement. A positive
answer to the distillability conjecture would give a physical meaning to partial
transposition.

The model of Wishart random matrices has also a physical interpretation in
terms of open systems: assume the subsystem C? @ C? is coupled with some envi-
ronment CP. If the overall system is in a random pure state, the state on C¢ ® C¢
obtained by partial tracing over CP? is distributed as a (normalized) Wishart matrix.
Early notable works about entanglement of random states include [16, 12]. Our
results can be translated in this language. In particular, a random induced state is
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typically non-PPT when p/d? < 4 and is typically PPT when p/d? > 4. This shows
that a threshold for the PPT property occurs at p = 4d>.

1.1. Organization

The paper is organized as follows: Secs. 2-7 are written in the language of Random
Matrix Theory and contain the proof of our theorems. Section 2 introduces the
model and states Theorem 2.2 (convergence towards the non-centered semicircle
distribution) and Theorem 2.3 (convergence of the extreme eigenvalues). Section 3
reminds the reader about non-crossing partitions and the combinatorics behind the
moments method for Wishart matrices, on which we rely heavily. Section 4 shows
how to derive Theorem 2.2 from moment estimates; the proof of these estimates (the
heart of the moments method) is deferred to Secs. 5 and 6. Section 7 contains the
proof of Theorem 2.3. Section 8 connects to Quantum Information Theory. Section 9
contains some general remarks and possible variations on the model. A high-level
non-technical overview of the result of this paper and of a related article [3] can be
found in [4].

2. Background and Statement of the Main Theorem
2.1. Conventions

By the letters C, Cy,c,... we denote absolute constants, whose value may change
from occurrence to occurrence. The integer part of a real number x is denoted by
|2]. We denote by [k] the set {1,...,k}. Addition in [k] is understood modulo k.
We denote by d, l_;, ¢, ... multi-indices which are elements of N* for some integer k.
The coordinates of @ are denoted (aq,...,ax).

When @ € N*, we denote by #a the number of distinct elements which appear
in the set {a1,...,ar}. For example, #(1,4,1,2) = 3. The cardinality of a set A is
denoted card A. The notation 1 denotes a quantity which equals 1 when the event
FE is true, and 0 otherwise.

By || M||co or simply ||M || we denote the operator norm of a matrix M.

2.2. Semicircular and Maréenko—Pastur distributions

Let m € R and o > 0. The semicircular distribution with mean m and variance
o? is the probability distribution HSC(m,o2) With support [m — 20,m 4+ 20] and
density

d:uSC(m o2) 1
. = 40?2 — (x —m)2.
dx omo2 V0 (z—m)

It is well-known ([1, p. 7]) that if X is a random variable with SC'(0, 1) distribution,

the moments of X are related to the Catalan numbers Cj, = k%_l(

k

EX? =, EX?**l=o.
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We now introduce the Mar¢enko—Pastur distributions. First, for 0 < o < 1, let
fa be the probability density defined on [b_,b] (where by = (1 £ \/a)?) by
V@0 — @)

2mro

fa(z) =

The Marcenko—Pastur distribution with parameter o, pyp(q), is the following prob-
ability distribution

o If a > 1, then jpp(q) is the probability distribution with density f; /4.
o If 0 < a <1, then dupp(a)(z) = (1 — a)do + adf(z), where §y denotes a Dirac
mass at 0.

In particular, note the following fact: if X has a semicircle SC(0, 1) distribution,
then X? has a Marcéenko—Pastur MP(1) distribution.

2.3. Asymptotic spectrum of Wishart matrices: Maréenko—Pastur
distributions

Define an (n,p)- Wishart matriz as a random n x n matrix W obtained by setting
W = %GGJH where G is an n x p matrix with independent (real or complex®) N(0, 1)
entries. The real case and complex case are completely similar. Our results are
valid for both, although only the complex case is relevant to Quantum Information
Theory.

Let A be an n x n Hermitian matrix, and denote A1, ..., \, the eigenvalues of A.
The empirical eigenvalue distribution of A, denoted N4, is the probability measure
on Borel subsets of R defined as

Ny = % > 6,
i=1

In other words, N4(B) is the proportion of eigenvalues that belong to the Borel
set B. For large sizes, the empirical eigenvalue distribution of a Wishart matrix
approaches a Marcenko—Pastur distribution.

Theorem 2.1 (Maréenko—Pastur, [18]). Fiz o > 0. For every n, let W, be
an (n, lan])-Wishart matriz. Then the empirical eigenvalue distribution of W,
approaches a Maréenko—Pastur distribution MP () in the following sense. For every
interval I C R and any € > 0,

lim P(| Ny, (1) — jaspia) (1)] > ) = 0.

n—oo

2.4. Partial transposition

We now assume that n = d?. One can think of any n x n matrix A as a block
matrix, consisting of d x d blocks, each block being a d x d matrix. The entries of

2A complex-valued random variable £ has a complex N(0, 1) distribution if its real and imaginary
parts are independent random variables with real N (0, %) distribution. In particular, E |¢]2 = 1.
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the matrix are then conveniently described using 4 indices ranging from 1 to d
k.l
A= (Ai,j)i,j,k,b
Here ¢ denotes the block row index, j the block column index, k the row index inside
the block (i,7) and [ the column index inside the block (i,j). We can then apply

to each block of A the transposition operation. The resulting matrix is denoted AT
and called the partial transposition® of A. Using indices, we may write

(AT) = AL, (2.1)
Such a block matrix A can be naturally seen as an operator on C?® C?. Indeed,
a natural basis in this space is the double-indexed family (e; ® ex)1<ix<d, Where
(e;) is the canonical basis of C?. The action of A on this basis is described as
d
Ale; ® eg) = Z Aﬁ’;ej ® €.
jl=1
We may identify canonically M(C? @ C?) with M(C?%) @ M(C?). Via this identi-
fication, the matrix A" coincides with (Id ® T')(A), where T : M(C%) — M(C?) is
the usual transposition map. The map T is the simplest example of a map which is
positive but not completely positive: A > 0 does not imply A" > 0.

2.5. Asymptotic spectrum of partially transposed Wishart
matrices: Non-centered semicircular distribution

Motivated by Quantum Information Theory, we investigate the following question:
what does the spectrum of A" look like? As we will see, the partial transposition
dramatically changes the spectrum: the empirical eigenvalue distribution of AT is
no longer close to a Marcenko—Pastur distribution, but to a shifted semicircular
distribution! This is our main theorem.

Theorem 2.2. Fiz a > 0. For every d, let Wy be a (d?, |ad?))- Wishart matriz, and
let Yo = WY be the partial transposition of Wy. Then the empirical eigenvalue dis-
tribution of Yq approaches the semicircular distribution psc(1,1/a) i the following
sense. For every interval I C R and any € > 0,

dlirgoPGNYd (I) — HSC(1,1/a) (I)| > 5) =0.
Recall that Ny,(I) is the proportion of eigenvalues of the matriz Yy that belong to
the interval 1.

Note that the trace and the Hilbert—Schmidt norm are obviously invariant under
partial transpose. The distributions MP(a)) and SC(1,1/«) (corresponding to eigen-
value distribution before and after applying partial transpose) indeed share the same
first and second moments.

b An explanation for the notation is that T' is “half” of the letter T' which denotes the usual
transposition.
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The support of the limiting spectral distribution SC(1,1/«) is the interval [1 —
=1+ —=]. Denote by Amin(A) (respectively, Amax(A)) the smallest (respectively,
largest) eigenvalue of a matrix A. A natural (and harder) question is whether the
extreme eigenvalues of Y, converge towards 1 + % We show that this is indeed
the case:

Theorem 2.3. Fiz o > 0. For every d, let Wy be a (d*, |ad?])-Wishart matriz,
and let Yq = Wg be the partial transposition of Wq. Then, for every e > 0,

dlijgoP(P‘maX(Yd) —(1+2/Va)|>¢) =0,

lim P (| Amin(Ya) — (1 - 2/v/@)| > €) = 0.

d—o00

2.6. Almost sure convergence

In Random Matrix Theory, it is customary to work with the stronger notion of
almost sure convergence. This requires to define all the objects on a single probabil-
ity space. Such a construction is not natural from a Quantum Information Theory
point of view, which usually “avoids infinity” and prefers to work in a fixed (but
large) dimension.

However, from a mathematical point of view, it is interesting to note that the
results presented here also hold for almost sure convergence. One needs to check
that the proof gives enough concentration in order to use the Borel-Cantelli lemma.
A key point is the O(1/d?) estimate for the variance from Proposition 4.2.

3. Non-Crossing Partitions and Combinatorics
of Wishart Matrices

3.1. Non-crossing partitions

Let S be a finite set with a total order <. Usually, S equals [k] (the set {1,...,k})
for some positive integer k, and additions in [k] are understood modulo k. It is
useful to represent elements of S as points on a circle. We introduce the concept of
non-crossing partitions and refer to [20] for more information and pictures.

o A partition m of S is a family {V4,...,V,} of disjoint nonempty subsets of S,
whose union is S. The sets V; are called the blocks of w. The number of blocks of
7 is denoted |r|. We denote ~,; the equivalence relation on S induced by 7 : & ~; j
means that ¢ and j belong to the same block.

e A partition 7 of S is said to be non-crossing if there does not exist elements
1< j<k<lin S suchthat ¢ ~; k, j ~; [ and i ¢, j. We denote by NC(S)
the set of non-crossing partitions of S, and NC(k) = NC([k]).

e A chording (or a non-crossing pair partition) of S is a non-crossing partition of
S in which each block contains exactly two elements. Chordings exist only when
the cardinal of S is even. We denote by NC5(S) the set of chordings of S, and
NCs (k) = NC3([k).
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Counting non-crossing partitions is a well-known combinatorial problem involv-
ing Catalan numbers (see [20, Lemma 8.9 and Proposition 9.4]).

Lemma 3.1. Let k € N*. The number of elements in NC(k) and the number of

elements in NCq(2k) are both equal to the kth Catalan number Cy = %H(Q:)

Let us also introduce the Kreweras complementation as the map K : NC'(k) —
NC(k) defined as follows. For m € NC({17,...,k™}) ~ NC(k), K(n) is defined
as the coarsest partition 0 € NC({1",...,kT}) ~ NC(k) such that rU o is a
non-crossing partition of {17,17,... k~, kT }, equipped with the order

I <1t <2 <2t < <k <K',

The map K is bijective. Moreover, given ¢ € NC({1F,...,kT}) =~ NC(k), one

can recover K ~1(o) as the coarsest partition m € NC({17,...,k~}) ~ NC(k) such
that m U o is a non-crossing partition of {17,1%,... k=, k*}. See [20] for more
details.

The following lemma will be used in connection to partial transposition.

Lemma 3.2. Let # € NC(k) a non-crossing partition and K(w) ils Kreweras
complement. Then,
(1) For every index i € [k,
The singleton {4} is a block in K(7) < i~ i+ 1.
(2) For every distinct indices i,j € [k],
The pair {i,j} is a block in K(7) < i~z j+1and i+ 1~y j and i %, j.

Proof. This is geometrically obvious. O

3.2. Combinatorics related to Wishart matrices

We now remind the reader about the (standard) proof of the Marcenko-Pastur
theorem via the moments method. This proof can be found for example in [15, 21]
or the book [5]. Not only our proof will mimic this one, but we will actually strongly
recycle most of the combinatorial lemmas. Let W,, = (W;;) be an (n, p)-Wishart
matrix, and k € N. The expansion of E 1 Tr W} reads

1 1
E_’I\I'Wk:_ EWa aWa a "'Wa.a
n n n Z 1,02 2,03 k,a1

ae[n]*

1
= Tl—pk Z EGal,Cl Gaz,cl e Gak,ck Galyck' (31)
ae[n]k,ce(plk

The next task is to analyze which couples (@, ¢) give dominant contributions to
the sum (3.1) when n — oo and p = |an]. One argues as follows. First, if one
couple (a;, ¢;) or (a;4+1,¢;) appears a odd number of times in the product, then the
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contribution is exactly zero (because entries of G are independent and symmetric).
This motivates the following definition:

Definition 3.1. A couple (@,¢) € N*x N* satisfies the Wishart matching condition
if every couple in the following list of 2k elements appears an even number of
times:

(a1,¢1), (az2,c1), (ag, c2), (as, ca), ..., (ak, ck), (a1, ). (3.2)

Let (@,¢) € N¥ x N*¥. We define dy(@,¢) as the number of distinct couples
appearing in the list (3.2), and set ¢y (d@,¢) = #d + #c. We also denote nso(d, ©)
the number of indices 7 such that the ith element appears exactly twice in the
list (3.2), and n4 (@, ) the number of indices 7 such that the ith element appears
at least 4 times. Note that na(d, ¢) + n4(a@, ¢) = 2k. These parameters satisfy some
inequalities:

Lemma 3.3. Let (@,¢) € N* x N¥ satisfy the Wishart matching condition. Then
by (@, ) <dw(d,é)+1<k+1.

Moreover, ny(d,c) <4(k+1—4w(d,c)).

Proof. Read the list (3.2) from left to right, and count how many new indices you
read. The first couple (a1, c1) brings two new indices, and each subsequent couple
that did not appear previously in the list (there are dyy (@, ¢) — 1 such couples) may
bring at most one new index (since it shares a common index with the couple just
before). This shows that ¢y (@, ¢) < dw(d,c) + 1.

The inequality dyw (@, ) < k is easy: if every couple in the list (3.2) appears at
least twice, then this list contains at most k different couples.

For the last claim, note that

with equality iff no element in the list (3.2) appears 6 times or more. O

Now, the couples (@, ¢) satisfying ¢y (d,¢) < k + 1 are easily shown to have a
contribution to the sum (3.1) which is asymptotically zero. Let us say that (d,¢) is
Wishart-admissible if it satisfies the matching condition, together with the equality
bw(a,c) =k+1.

If @ € N¥, the partition induced by @, denoted (@), is the partition of [K]
defined as follows: 7 and j belong to the same block if and only if a; = a;. We say
that @b € N* are equivalent (@ ~ b) if ©(&@) = m(b). Similarly, a couple (@, ) is
equivalent to a couple (@',¢’) if @ ~ @’ and ¢ ~ &’. The next proposition (see [15]
or [21] for details) characterizes the combinatorial structure of (equivalence classes
of) Wishart-admissible couples.
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Proposition 3.1. For every integer k,

(a) If (@,¢) € N¥ x N* is Wishart-admissible, then

(i) Each couple in the list (3.2) appears exactly twice. One occurrence is of the
form (a;, ¢;) while the other occurrence is of the form (a;4+1,c¢;). Moreover,
the pair-partition of [2k] induced by the list (3.2) is non-crossing.

(ii) The partitions w(d) and 7(¢) are mnon-crossing, and Kreweras-
complementary: w(¢) = K(w(d)). In particular, @ is determined by ¢ up
to equivalence.

(b) The mapping (@,¢) — w(C) induces a bijection between the set of equivalence
classes of Wishart-admissible couples in N* x N¥ and the set NC(k).
Example 3.1. Let us give an example of a Wishart-admissible couple for k& = 4.
Let @=(1,2,2,3) and ¢ = (7,3,7,7). Then ¢y (a@,c) = 5. The list (3.2) reads as
(1,7):(2,7);(2,3);(2,3): (2,7): (3,7);: (3, 7); (1, 7).

Indeed, each couple appears exactly twice. The partition induced by this list is

{{1,8},{2,5},{3,4},{6,7}}

while the partitions induced by @ and ¢ are
71—(5:) = {{1}7 {27 3}7 {4}}7
7T(5) = K(W(a)) = {{17374}7 {2}}

From Proposition 3.1, it is easy to check (if p ~ an) that lim,_..c E L Tr W}
coincides with the kth moment of the Marcenko—Pastur distribution with parameter
1/a. To obtain more information than convergence in expectation, one usually needs
also a control of the variance of L Tr W%, The next lemma is then relevant. Actually,

=/ =/

the stronger conclusion fy (@, ¢) + fw(a’,¢") < 2k holds, but we do not need this
sophistication here.

Lemma 3.4. Let (@,¢) and (@'¢") be two couples in N¥ x N* satisfying the fol-

lowing conditions

(i) Each couple in the following list of 4k elements appears at least twice:
(a1,¢1), (a2, c1), ..., (ak, ck), (a1, cr); (33)
(a1, 1), (a5, ch), - . (ay, ), (al, )

(i1) At least some couple appears both in the left half and in the right half of the
list (3.3).

Then by (@, ) + bw(a’,é’) < 2k + 1.

Proof. As before, we read the list (3.3) and keep track of the number of indices.
We first read the left half of the list in its natural order. We then read the right
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half of the list, starting by an element which already appeared in the left half and
reading from left to right — with the convention that (a}, c}) stands at the right of
(@}, cr).

The first element (a1, ¢1) brings two new indices, and each subsequent new couple
(there are at most 2k — 1 many, since each couple in the list appears at least twice)
brings at most one new index. O

If we want to prove estimates on the extreme eigenvalues of Wishart matrices,
we also have to analyze lower-order contributions. We here follow the terminol-
ogy from [10]. Let (@,&) € N* x N* satisfy the Wishart matching condition. The
elements from the list (3.2) fall into one of the following categories.

type 1: innovations for a.

type 2: innovations for ¢.

type 3: first repetitions of an innovation.
type 4: other elements.

The ith element in the list (3.2) is an innovation if it contains one index which did
not appear already in the list. When ¢ = 2p is even, the ¢th element is an innovation
for @if apy1 & {a;:j < p}. When i = 2p—1is odd, the ith element is an innovation
for €if ¢, & {c;:7 < p}. In particular, the first element of the list (3.2) is always
an innovation for ¢.

The ith element is the first repetition of an innovation if there is a unique j < ¢
such that the jth element from the list (3.2) equals the ith element, and moreover
this jth element is an innovation.

The following lemma asserts that there are few different couples satisfying the
Wishart matching condition which have the same types of elements at the same
positions. We refer to [10] for a proof.

Lemma 3.5. Let T = (t1,...,ta) € {1,2,3,4}%% and let U = card{i € [2k] :t; =
4}. Say that (@, €) is of type T if, for every i € [2k], the ith element in the list (3.2)
has type t;. Then, the number of equivalence classes of couples satisfying the Wishart
matching condition which are of type T is bounded by k3U.

3.3. Diagonal elements of Wishart matrices are close to 1
We will use the following simple fact in our proof.

Lemma 3.6. Let W = (W;) be a (n,p)-Wishart matriz. Then, for any e € (0,1),
we have

P(l —e< inf W; < sup Wy; <1 +5) > 1 — Cnexp(—cpe?),
1<i< 1<i<n

where C,c > 0 are absolute constants.

Proof. Recall that W = %GGJH where G = (G;j) is an n x p matrix with
independent N(0,1) entries, so that the diagonal terms of W, follow a x?

1250001-10
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distribution
P
1
2
Wi == |Gij|*.
P

The next lemma shows that such distributions enjoy very strong concentration
properties.

Lemma 3.7. Let g1,...,gp denote independent (real or complex) N(0,1) random
variables, and X be the Euclidean norm of the vector (gi,...,gp). Then for every
t>0,

P(|X — /p| >t) < Cexp(—ct?).

Lemma 3.7 can be proved by direct calculation or follows from concentration of
measure (see e.g. [17]). Indeed, the Euclidean norm is a 1-Lipschitz function and the
expectation of X satisfies the inequalities /p — 1 < EX < ,/p. Lemma 3.6 follows
from Lemma 3.7 via the union bound. O

4. Proof of Theorem 2.2

For an integer d and p = |ad?], let G4 be a d? x p matrix with independent N (0, 1)
entries, Wy = %Gdel and Y; = WY. We denote the entries of G4 as (Gﬁj), where
(i,7) € [d] x [d] denote the row indices and k € [p] denotes the column index.
We label the entries of W, and Yy as (Wfl],l) and (Yfﬂl), where (i,i’,7,5") € [d]*
according to the convention described in Sec. 2.4.

We have to show that Ny,, the empirical eigenvalue distribution of Yy,
approaches a non-centered semicircular distribution SC(1,«). To handle a more
symmetric situation (involving a centered semicircular distribution), we will rather
consider Yy — Id. By Lemma 3.6, this matrix is very close to Z; = Yy — diag(Yy).
The latter behaves in a nicer way with respect to moments combinatorics. We label

’

the entries of Z, as (fo, )isir g ela)- We have

20 =Y Yapaw .-

3,1/ R
The following proposition is central to our work. We defer the proof (the com-
binatorial part of the moments method) to the next section.

Proposition 4.1. For every fized integer k, we have

1 a k20, e, if k is even
lim E —Ter'): /2 ’
d—o0 <d2 (Zd) { ; otherwise.

We also show that the variance goes to zero — this is actually simpler.

Proposition 4.2. For every fized integer k, we have

d—oo

1 :
lim Var(E Tr(Zf;)> =0.
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The proofs of Propositions 4.1 and 4.2 appear in Secs. 5 and 6, respectively.

Proof of Theorem 2.2 (Assuming Propositions 4.1 and 4.2). We claim that
for any interval I C R and € > 0,
dlijgo P(INz,(I) = psc,1/a)(I)] > €) = 0. (4.1)

Deriving this from Propositions 4.1 and 4.2 is a completely standard procedure.
We only sketch the proof and refer to [1, pp. 10-11] for more details. Recall that
the Catalan numbers Cj, satisfy Cj < 4%, and that the support of the SC(0,1/a)
distribution is [—2/y/a,2/+/a]. We first check that the proportion of eigenvalues
outside J = [-3/y/a,3/+/a] is asymptotically zero. For every ¢ > 0 and even
integer k,

1
limsupP(Nz,(J) >¢) < —limsupENg,(J°)

d—o0 € d—oo

1
< glimsupE/xk(\/a/i%)dezd

d—oo
1 . _
< g(\/a/3)kck/204 k/2

1
< 2(2/3)k7

where the second inequality follows from 1 ;¢ (z) < 2¥(\/a/3)*. Since k is arbitrarily
large, we obtain that P(Nz,(J¢) > ¢) tends to 0.

Therefore, to prove (4.1), we may assume I C J. Using the Weierstrass approx-
imation theorem, we may find a polynomial () > 1; such that deHSC(o,l/a) <
psc(o,1/a)(I) 4 €/2. It follows from Proposition 4.1 that

dILH;oE/QdNZd = /QdMSC(o,l/a)~

dlim Var/QdNZd =0.
For d large enough, |E [ QdNz, — [ Qdusc(o,1/a)| < €/4. Then

P(Nz,(I) > pscojay(I) +€) < P( / QdNz, > E / QdNz, + 5/4)

1
< —SVar/QdNZd
€

and this quantity tends to zero. This is only half of (4.1). The other half follows by
noticing that

P(Nz,(I) < psc(o,1/a)I) =€) S P(Ng,(J\I) 2 psc(o,1/a)(J\) +€/2)
+P(Nz,(J) >¢/2)
and applying the previous argument to J\I.
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We now argue that the empirical eigenvalue distribution is stable under small
perturbations. Indeed, for any interval [a,b] and any self-adjoint matrix Ay with
operator norm smaller than 9§,

Nz,+aq.(la+6,b=10]) < Nz,([a,b]) < Nzyqa,(la— 6,0+ 4]). (4.2)

This is a consequence of the minimax formula for eigenvalues (see e.g. [8, Chap. III]).
We apply (4.2) with Ay = diag(Yy) —Id. By Lemma 3.6, for every € > 0, P(||Aq]| >
¢) tends to 0 when d tends to infinity. We easily derive from (4.1) and (4.2) that,
for any interval I,

Jim PNy, —1a(l) = psoa/m ()] > ) = 0.

This is clearly equivalent to Theorem 2.2. |

5. Proof of Proposition 4.1
We expand E % Tr(Z (’j) and analyze the underlying combinatorics.

1 1
ETe(Z))=— Y. Ezbb.zbbs  zh-vbe. zbob

d2 ay,az az,as A —1,0k Qp,a1
aeld)*,beld]*

_ 1 S M@ b BY vy yieh

d2 ay,az az,as A —1,0k af,a1
aeld)*,beld]*
_ i M(a 7 EWwbe:b1 . pyba.be Whkbr—1 17010k
- d2 (a” ) ai,az az,ag "' ag_1,ak ag,a1
aeld)*,beld]*
1 Z oo I
= d2—k M(a,b) EH(a,b,C),
aeld]r beld)®,é[p]*
where we have defined
k
M(a7 b) = H l(ai7bi)¢(ai+1,bz‘+1)
=1
and
= 7\ el Cc1 Cc2 Cc2 Cr—1 Crk—1 Wal: CL
H(CL, b, C) - Gal,bZGa27b1 ’ Ga2yb3Ga37b2 T Gak—l,kaak7bk—l Galmbl Gal,bk'

We introduce some definitions in order to restrict ourselves to triples for which
both M(d,b) and EII(a, b, ¢) are nonzero.

Definition 5.1. A couple (@,b) € N¥ x N¥ is said to be non-repeating if M(a,b) =

1. In other words, (d@,b) is non-repeating if for every i € [k], either a; # a;4+1 or
bi # biiq.
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Because the entries of G4 are independent, we may factorize EII(a, I;, C) as a
product of quantities of the form E(GiC i) (GiC ;). Such a quantity is zero unless

o
q =r, and EII(d, b, €) is zero whenever one of these factors is zero.

Definition 5.2. A triple (a,b,&) € N* x N¥ x N* satisfies the matching condition
if, in the following list of 2k triples, each triple appears an even number of times

(ala b2a Cl)’ (a27 bla Cl); (a27 b3a 62)7 (a37 b2762); B (Clk-, b17ck’)’ (a17 bk’? Ck)' (51)

Therefore, if a triple (&, 5, €) does not satisfy the matching condition, then
EIl(d,b,¢) = 0 both in the real and in the complex cases. The following easy
observation will be used repeatedly.

Lemma 5.1. Assume that (@, b,¢) satisfies the matching condition. Then both (@, )
and (b, @) satisfy the Wishart matching condition.

Recall the definition of equivalence introduced just before Proposition 3.1: @ ~ @’
means that @ and @’ induce the same partition, and (d,b,¢) ~ (a’,b’,¢’) means
@~a',b~b"and ¢~ ¢ Let C be the equivalence class of a triple (d,b, ¢). When
d— oo

card{C' N ([d]* x [d]F x [p]F)} ~ dF#Ed#Ep#E ~ @ #7gt(@E2) (5.2)
where we have defined
0(@,b, @) = #a + #b + 24C.
Together with Lemma 3.3, Lemma 5.1 implies that whenever (@, b, ) satisfies the
matching condition,
0@, b, &) = bw (@, &) + Lw (b, &) < 2k + 2.

Let €, be the (finite) family of all equivalence classes of triples (@, b, &) € N* x N¥ x
N* which satisfy the matching condition. Since the quantities M (@, b), EH(a b, )
and ((@, b, ) depend only on the equivalence class C' € €, of the triple (@, b, &), we
may abusively write M (C), EII(C) and ¢(C). We also write v(C) to denote #¢.
Note that these quantities do not depend on the dimension d. We rearrange the
sum according to equivalence classes of triples:
card{C N ([d]* x [d]* x [p]"))
J2k+2 :

1 L1
ETrZy=— > M(C)EI(C)

(5.3)
2
d CECx

—

Definition 5.3. Let us say that a triple (&, b ) is admissible if the following three
conditions are satisfied

(1) (d, I;, C) satisfies the matching condition,
(2) (d,b) is non-repeating,
(3) £(a@,b,¢&) = 2k + 2.

Denote by €24™ C %), the set of equivalence classes of admissible triples.
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Equation (5.3) implies that

.1 1
dlggcd—QETrzg = > M(C)EI(C)a"D. (5.4)
Cegpdm

Proposition 5.1. If (d, b, ¢) € N¥ x N¥ x N* is admissible, then

(1
(
(3
() #7=k/2.

Moreover, the number of equivalence classes of admissible triples in NF x NF x N*
is equal to the Catalan number Cy/o.

Once Proposition 5.1 is proved, Proposition 4.1 is immediate from (5.4).

Proof of Proposition 5.1. The fact that M(a, I;) = 1 is just a reformulation of
the non-repeating condition. We now check that EIL(@, b, &) = 1. Indeed, since (&, 7)
is Wishart-admissible, every element in the list (3.2) appears exactly twice, once at
an odd position and once at an even position. But the same must be true for the
list (5.1), and therefore EII(@, b, &) = 1. To check the last two conditions, we rely
on the following lemma.

Lemma 5.2. Let (@,b,¢) € N* x N¥ x N¥ which satisfies the matching condition
and such that (a@,b) is non-repeating. Then

(1) No index in & appears only once, and therefore #¢ < |k/2],

(2) #a+ #b<2(|k/2] +1).

Proof. By contraposition, suppose that some index ¢; appears only once in ¢, i.e.

that ¢; # ¢; for every j # i. The matching condition imposes the equality
(@it1,bisci) = (as, bi1, i)

which in turn implies (a;, b;) = (ait1,bit1), contradicting the non-repeating prop-
erty. For the second part of the lemma, we argue differently according to the parity
of k

(k odd) Define (#,%) € N* x N¥ as follows
= (alaa?n sy Af—2, 0k, 02,04, . . . 7ak71)7
§ = (ba,ba,...,bp—1,b1,b3,...,b_2,bp).

The matching condition implies that (Z,¥) is Wishart-admissible. There-
fore, by Lemma 3.3, we have #& + #¢ < k + 1. Since & (respectively, ¥)
is a permutation of @ (respectively, b), we have

H#a+#b<k+1=2(k/2] +1).
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(k even) Define (71, 71) and (2, %2) € N*/2 x N¥/2 as follows
fl = (al,ag,...,ak_l), Zjl = (bQ,b4,...,bk),
Ty = (az,a4,...,a), Y2 = (b3,b5,...,br_1,b1).

Then both (71, 71) and (Z2, y2) are Wishart-admissible. Therefore, using
Lemma 3.3, we obtain

#0 + # < #T1 + #To + #51 + #2 < 2(k/2+ 1).
In both cases we proved #a + #b < 2(|k/2] + 1). O

We continue the proof of Proposition 5.1. If (a, I;, ¢) is admissible, Lemma 5.2
implies that 2k + 2 = £(@,b,&) < 4|k/2] + 2. Therefore, k must be even, and
necessarily #¢ = k/2 and each index in ¢ appears exactly twice.

To prove the last statement in Proposition 5.1, we are going to show that the
following map ©

ERrIm  NCo(k)
(@,b, &) — m(7)
is bijective. First, the partition induced by ¢'is indeed a chording of [k] (this partition
is non-crossing since (@, ¢) is Wishart-admissible). Because an element of a Wishart-
admissible couple is determined (up to equivalence) by the other one, it follows that
the map O is injective.
We now show that this map is onto. Given a partial chording m € NCs(k), there

is a Wishart-admissible couple (@, &) € N* x N¥ such that 7(¢) = . It remains to
check that (@,d, ) is admissible.

e The couple (d,a) is non-repeating. Otherwise, one would have a; = a; 41 for some
index ¢ € [k]. Since 7(¢) = K (n(d)), this would imply by Lemma 3.2 that {7} is
a block in 7(€), which is not possible if 7(¢) is a chording.

e The triple (d,d,c) satisfies the matching condition. Since we already know that
(@, ) satisfies the Wishart matching condition, we have to check the following:
whenever (a;,¢;) = (a;41,¢j), we have a;41 = a;. Suppose (a;,¢;) = (aj41,¢5)-
Since (d,d) is non repeating, we have ¢ # j. This implies that {i,j} must be a
block in 7(¢) and the result now follows from the second part of Lemma 3.2.

Therefore, the map © is bijective, and the cardinal of ‘Kkadm equals the cardinal of
NC3(k), which by Lemma 3.1 is the Catalan number Cj, 5.

6. Proof of Proposition 4.2

Start with a formula from the previous section

1 1 . R
ﬁTr(Zg) = W Z M(a,b)H(a,b,C).
acld)* beld)k,cc[p)*
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The covariance of two random variables X, Y is defined as Cov(X,Y) = E(XY) —
EX -EY. We have

(6.1)

where the summation is taken over indices @,b,a’,b’ in [d]*, and ¢ ¢’ in [p]*. We
first identify the vanishing contributions.

Lemma 6.1. Let (d, b, ¢) and (a’, g’,E’) be two triples in N* x N* x N¥ such that
Cov(I1(a,b,7),11(@',b’,&")) # 0.
Then ((a@,b,c) + £(a@’,b’,c") < 4k + 2.

Proof. The independence of entries of Gy shows that the following two conditions
must hold:

e Each couple in the following list of 4k elements appears at least twice:

(a17 b2a Cl)’ (a27 b17cl) e (Clk-, b17ck’)’ (a17 bk’a Ck)a (62)

(a/17 /2,8/1),(&/2, /1,6/1)"'(6%, /1,6;6),(&/1, ;C’C;c)'

e At least some couple appears both in the upper half and in the lower half of the
list (6.2). Otherwise, the random variables II(@, b, ¢) and II(a’,b’,&") would be
independent, and their covariance would be zero.

As is immediately checked, these conditions imply that d,c,d’,¢’ satisfy the
hypotheses of Lemma 3.4. Therefore,

bw(a,é) + éW(d’,(?’) <2k+1.
Similarly, one may apply Lemma 3.4 to b, b’, &’ to obtain
by (5,E) + bw (b, &) < 2k + 1.
It remains to add both inequalities. O
We now gather the non-zero terms appearing in the sum (6.1) according to the

equivalence class of (d, I;,E,d’ L ). The cardinality of the equivalence class of
(d,b,c,d’,b’,¢") is bounded by

d#a+#5+#a’+#5/ ot _ O(de(a,“,a)w(a/,z?/,a’)) _ O(d4k+2)'

p

The overall factor 1/d*p?* = O(1/d***%) in front of the sum (6.1) shows that each
class has contribution asymptotically zero. Since the number of equivalence classes
depends only on k, this proves the lemma.
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7. Convergence of Extreme Eigenvalues: Proof of Theorem 2.3
Let G4 be a d? x p matrix with independent N (0, 1) entries, Wy = %GdGIﬁ Yy =W}
and Z, = Yy — diag(Yy). Assume that p = |ad?].

Half of Theorem 2.3 can be deduced from Theorem 2.2. Indeed, for every ¢ > 0,
let I be the interval [1+2/y/a—¢,142/+/a]. Since psc(1,1/a)(I) > 0, Theorem 2.2
implies that, with probability tending to 1, Ny, (I) > 0, which means Apax(Ya) >
1+ 2/y/a —e. A similar argument shows that Apin(Yy) < 1 — 2/y/a + ¢ with
probability tending to 1.

To prove the other half of Theorem 2.3 (the hard part), we are going to give
an upper bound on ETr(Z¥) which holds in any fixed dimension (as opposed to
asymptotic estimates from the previous sections).

Proposition 7.1. There is a polynomial @ such that, for any integer k,
ETr(Z}) < (2/p)*(d+ Q(k)* (Vb + Q(K))*.

Assume for the moment that Proposition 7.1 is true. We claim that it implies
that for every ¢ > 0,

Jim P(||Yy —1d|| > 2/V/a+¢) =0,
from which Theorem 2.2 follows. Indeed, choose k = k(d) an even integer such that
Q(k) = o(d) and logd = o(k). Then, when d — oo, Proposition 7.1 implies

B| Zi|* < BTH(Z5) < (j—; " o<1>)k ~(=+ o<1>)k.

Therefore, it follows from Markov’s inequality that for every e > 0,

P Za] > 2/va + <) < (% + 0(1))k (% + €>_k ~o0.

On the other hand, by Lemma 3.6,
P(||diag(Yy) — Id|| > ) < d* exp(—cpe?) — 0.
This completes the proof of Theorem 2.3 since
P(||Yq —1d|| = 2/Va+¢) < P(||diag(Ys) — 1d|| > £/2) + P([| Zal| = 2/ Vo +¢/2).

Proof of Proposition 7.1. Recall the computation from Sec. 5

Tr(Zk) = ik > M (@, b)IL(a@, b, @). (7.1)
P aetap beta ol
We first give an upper bound on EII(a, I;, c).
Lemma 7.1. Let (@,b,¢) € N* x N¥ x N* satisfy the matching condition, and
denote

A=2k+2—0ab,7).
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Note that A > 0. Then

(1) The number N of indices i € [2k] such that the ith term in the list (5.1) appears
4 times or more is bounded by 2A,
(2) We have EII(@, b, ) < (Cok)?, where Cy is an absolute constant.

Proof. At least one of the numbers k + 1 — (@, &) and k + 1 — £y (b, @) must
be smaller than A/2, since their sum equals A. Without loss of generality, we may
assume that k+ 1 — ¢y (d,¢) < A/2. Then, Lemma 3.3 implies that n, (a,¢) < 2A.
Since N < ny(d,c), the first part of the lemma follows.

For the second part, we use independence to write EII(d, b, ¢) as a product of
quantities of the form E(G} ;)% (G—k)q2 < E|G};|2t%. If G is a N(0,1) random
variable, then E|G|*" equals 1 - 3 - 5 -+ (2n — 1) in the real case and n! in the
complex case. In both cases, for some constant Cj,

—1, if g =2,
E|G|? (7.2)
< (Cov/q)?, ifg>2.

Bounding each individual factor according to (7.2) and using g < 2k leads to
EI(@,b, &) < (CovV2k)N
and the second part of the lemma follows. |

—

The number of triples in [d]* x [d]* x [p]* equivalent to a given triple (@, b, ) is
equal to

d(d—1)-(d—#a+1)-dd—1)--(d—#b+1) p(p—1)
- (p— #E+1) < dFTEHIHE,

Therefore, it is convenient to rearrange the sum (7.1) according to the values of
#ad + #l_; and #c. We denote by my, ¢, the number of equivalence classes of triples
(@,b,¢) € N* x N* x N* which satisfy the matching condition, with (@, 5) non-
repeating, #d + #5 = /{1 and #E’ = (5. It follows from the analysis above that

ETr(Y") < Z dp*2my, 4, (Cok)2FT2-0=26 (7.3)
£1,62
By Lemma 5.2, my, ¢, = 0 if either ¢; > k42 or ¢ > k/2. It remains to give a
bound on the number my, ¢,. This is the content of the following proposition (we
postpone the proof to the end of the section).

Proposition 7.2. There is a polynomial P such that the following holds. Denote
by Na the number of equivalence classes of triples (d, E, ¢) € N¥ x N¥ x N* which
satisfy the matching condition, with (@,b) non-repeating and ((a,b, &) = 2k +2 — A.
We have the bound

Na < 28P(k)A. (7.4)
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Remark 7.1. The bound given in (7.4) is quite sharp. Indeed, for A = 0, it gives
Ny < 2%, But Ny is exactly the number of equivalence classes of admissible triples
considered in Sec. 5, where this number was shown to equal the Catalan number
Cy 2, only slightly smaller that 2k,

We continue the proof of Proposition 7.1. We have
My 0y < Nogyo o, o0, < 2FP(k)2FH2-0=20

Plugging this into (7.3) and denoting @ the polynomial Q(k) = CokP(k),

ok k+2 k/2
ETr(zh) < = Z Z 44 pl2Q(k)2h 22t
p él 2(2 1
k+2 k/2
(Z d£1 k+2—£1> Z(\/ﬁ)QﬁgQ(k)k’—Qﬁg
£1=2 Lo=1

< (2/p)*(d+Q(K)* (VP + Q(K))".
This completes the proof of Proposition 7.1.

—

Proof of Proposition 7.2. For (@,b,&) € N¥ xN¥xN*, let I = I(@,b,¢) C [k—1]
be the subset of indices i such that the following condition holds

(1) ajy1 & {a;:j <i+ 1} — one says that a;41 is an innovation,
(2) biy1 & {b;:j <i+ 1} — one says that b,y is an innovation,
(3) ¢ & {c;:j <i} — one says that ¢; is an innovation.

—

The next lemma shows that the set I(d, l;,c
postpone the proof.

) is large when A is small. We

-,

Lemma 7.2. If (@,b,&) € N*xN¥ x N satisfies the matching condition with (@,b)
non-repeating, then

card I(d, b, ¢)>k/2—A
where A = (2k +2) — £(a@, b, &).

Let A,C be subsets of [k]. A couple (@,¢) satisfying the Wishart matching
condition is said to be compatible with (A4, C) if

(1) for every ¢ € A, the index q; is an innovation, i.e. a; ¢ {a;:j < i},
(2) for every ¢ € C, the index ¢; is an innovation, i.e. ¢; ¢ {¢;:7 < i}.

Note that if a Wishart-admissible couple (@, ¢) is compatible with (4, C), then
by arguing as in the proof of Lemma 3.3, we have

card A + card C < dw(a,c) +1 < k+ 1.

Let us state one more lemma, postponing the proof.
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Lemma 7.3. Let A,C be subsets of [k], and 6 = k+ 1 — card A — cardC. The
number of equivalence classes of couples (@, ) € N*¥ x N¥ which satisfy the Wishart
matching condition and are compatible with (A, C) is bounded by (2k)%.

The number N is the number (up to equivalence) of triples (@,b,&) which
satisfies the matching condition, with (@,b) non repeating, and £(@,b,¢) = (2k +
2) — A. To bound Na, we first choose a set I C [k — 1] of cardinal larger than
k/2 — A. The number of possibilities for I is bounded by 2. Now, given I, let I T
be the subset of [k] defined as

jeltsj=1 or j—1€l.

If (@, b, ) satisfies the matching condition with I(a, b, ¢) = I, then it is easily
checked that both couples (@,&) and (b,¢) are compatible with (IT,1). We have
card(IT) + card(l) = 2card(I) +1 > k + 1 — 2A. By Lemma 7.3, the number of
admissible couples compatible with (I, 1) is bounded by (2k)'84. Therefore the
number of possible triples (@, b, ) is bounded by (2k)36. This yields the bound

Na < 28(2k)364,
This proves Proposition 7.2 with P(k) = (2k)36. O

Proof of Lemma 7.2. For each index ¢ € [k], one of the following possibility
occurs

Py(i): The indices a;+1, biy1 and ¢; are innovations. Necessarily the triples
(ai, bit1,¢;) and (a1, b, ¢;) are innovations.©

Ps(i): The triples (a;, bj11,¢;) and (ai41, bs, ¢;) are innovations, but at least one of
a;+1,b;+1 and ¢; is not an innovation.

P5(i): Only one of the triples (a;, bj+1,¢;) and (a;+1, b;, ¢;) is an innovation.

Py(i): Neither (a;, bit1,¢;) nor (a;11,b;,¢;) is an innovation.

For j € {1,2,3,4}, let n; be the number of indices ¢ € [k] such that P;(¢) holds
in the above alternative. With this notation, ny = cardI(d,b, ). The numbers
ni, na, N3, ng satisfy the following relations

ni+mno+ns+ng =k, (7.5)

n3 +2n4 > k, (7.6)

4nq + 3no +n3 > 2k — A. (7.7)

e Equation (7.5) is obvious since possibilities Pj(i),...,Ps(i) are mutually

exclusive.

e There must be at least k elements in the list (5.1) which are not innovations, since
every element must appear at least twice. But the number of non-innovations in
the list (5.1) is equal to ng + 2n4, hence Eq. (7.6).

“We say that a triple at jth position from the list (5.1) is an innovation if it does not coincide
with a triple at ith position for i < j.
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e For each i, let Z; be the number

Z; = 1{ai+1 is an innovation} + 1{bi+1 is an innovation} +2- 1{01 is an innovation}-

The value of Z; depends on which of P; (i), P(i), Ps(i), Py(i) occurs. If Pi(7)
occurs, then Z; = 4. If Py(i) occurs, then Z; = 0. If P5(i) occurs, then Z; < 3. If
P5(i) occurs, then Z; < 1. This last point deserves some explanation.

— If (aj,bi+1,¢;) is not an innovation, then certainly b;41 and ¢; cannot be
innovations.

— Ifinstead (a;41, bi, ¢;) is not an innovation, then a;11 cannot be an innovation.
We claim that ¢; is also not an innovation. Indeed, if ¢; was an innovation, then
necessarily (a;+1, b;, ¢;) would be equal to (a;, b;t1, ¢;) which would contradict
the non-repeating property.

This shows that Y Z; < 4ny + 3na + ns. On the other hand, we have

k
D Zi=#a— 1+ #b— 14246 =2k - A.

i=1
Therefore, the above discussion implies Eq. (7.7).
Adding (7.7) and twice (7.6), we obtain
4dny + 3no + 3nz + 4nyg > 4k — A.

Together with (7.5), this implies that no+ns < A. Since ng > 0, this in turn implies
3na+n3 < 3A. Combined with (7.7), we obtain 4n; > 2k —4A, hence ny > k/2—A
as claimed. O

Proof of Lemma 7.3. Given a couple (@,¢) € N¥ x N¥ satisfying the Wishart
matching condition, there is a partition of [2k] as

2kl=T1 UTh UT3 UTy (7.8)

where T; denotes the set of indices j such that the jth element in the list (3.2) is
of type ¢ (the four possible types have been defined in Sec. 2). If the couple (d, ©)
is compatible with (A4, C), then necessarily 77 C Ty and Ty C T», where

Ty ={206i—1):i€ Ai #1},

Ty ={2i—1:ieC}.

We claim that the number of partitions (7.8) satisfying these constraints is
bounded by (2k)3°. Indeed, we first have to enlarge T} into T; and Ty into Tb.
Since card(Ty UTy) = k — 0 and card(T; UT,) < k, the number of possible ways to
perform these enlargements in at most (2k)°.

Since card(T3) = card(T}) + card(72), we have card(Ty) < 2J. Therefore the
number of possible choices for T is bounded by (2k)25. Once Ty, T> and Ty are

chosen, the set T3 consists of the remaining indices. Hence the claim on the number
of possible partitions.
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Now, by Lemma 3.5, the number of equivalence classes of couples satisfying the
Wishart matching condition with a given partition (7.8) is bounded by

(2k’)3 card Ty S (2]{)66.

Finally, the total number of equivalence classes satisfying the Wishart matching
condition and compatible with (4, C) is bounded by (2k)%. m|

8. Relevance to Quantum Information Theory

In this section we consider finite-dimensional complex Hilbert spaces. We write
M(C") for the space of linear operators (= matrices) on C™.

8.1. PPT states

A state (= density matrix) p on C" is a positive operator on C" with trace 1. We
write D(C™) for the set of states on C™. A pure state is a rank one state and is
denoted p = |z){x|, where x is a unit vector in the range of p. We typically consider
the case C" ~ C? @ C?. We have the following canonical identification

M(C? @ C?) ~ M(C?) @ M(CP).

A state p € D(C?® C?) if called separable if it can be written as a convex combina-
tion of product states. A state p is called PPT (“positive partial transpose”) if p' is
a positive operator (the partial transposition p' = (Id ® T')p was defined in (2.1)).
The partial transposition of a separable state p is always positive [22]; however there
exist non-separable (=entangled) PPT states. For many purposes, checking posi-
tivity of the partial transpose is the most efficient tool to detect entanglement. We
refer to the survey [14] for more information about PPT states and entanglement.

8.2. Random induced states are normalized Wishart matrices

There is a canonical probability measure on the set of pure states on any finite-
dimensional Hilbert space H, obtained by pushing forward the uniform measure on
the unit sphere of H under the map z — |x)(x|. We define the measure p,, , to be
the distribution of Trcw |2) (2|, where z is uniformly distributed on the unit sphere
of C™ @ CP. The partial trace Trcr is the linear operation

Treoe := IdM(Cn) ® Tr: M(Cn X Cp) — M(Cn),

where Idycn) is the identity operation on M(C") and Tr : M(CP) — C is the
usual trace.

The measure iy, is a probability measure on D(C™), the set of mixed states on
C™. A random state with distribution pu,, , is called an induced state; the space C?
is called the ancilla space. This family of measures has a simple physical motivation:
they can be used if our only knowledge about a state is the dimensionality of the
environment (see [7, Sec. 14.5] and references therein).
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Induced states are closely related to Wishart distributions. Indeed, if W is an
(n,p)-Wishart random matrix, then ﬁW is a random state with distribution
fin.p- Moreover, the random variables Tr W and =4 W are independent (this fact
explicitly appears in [19]). Therefore, results about Wishart matrices can be eas-
ily translated in the language of induced states. The special case p = n, when
the dimension of the ancilla equals the dimension of the system, deserves to be
highlighted thanks to the following proposition [24].

Proposition 8.1. The measure pin, , is equal to the normalized Lebesgue measure
restricted to the set D(C™).

Proposition 8.1 follows from a more general fact [24]: whenever p > n, the density
of the measure p,, , with respect to the Lebesgue measure on D(C™) is proportional
to det(p)P—".

8.3. Partial transposition of random induced states

Our main results admit an immediate translation in the language of random induced
states. Here is a version of Theorem 2.2 for induced states.

Theorem 8.1. Fiz a > 0. For each d, let pg be a random state on C?® C? chosen
according to the measure 142 | aq2|- Then for every interval I = [a,b] C R ande >0,

dh_{go P(|Nd2pg (I) = pnsc,1/a) (1) >€) = 0.

Recall that Ndng (I) is the proportion of eigenvalues of the matriz pl that belong to
the interval [a/d?,b/d?].

. . . w e . )
Proof. If W is a (d?,p)-Wishart matrix, then Ty has distribution as pg2 .
Therefore,

Ny (0.0 = N o e (0] = e | 20 5] ).

T W a2z 7 d?

The distribution of TZZV is proportional to a x? distribution. Using Lemma 3.7 to
quantify its concentration, we obtain that for any n > 0,

TrW
P(‘ o 1‘ > 77) < Cexp(—cd*pn?). (8.1)
When \TEIXV — 1] <7, we may use the inclusions
W TrW
(1 +m)a, (1 —n)b] C [d—2a7 d—Qb} C (T =mn)a, (1 + )]
to show that Theorem 2.2 implies Theorem 8.1. O

If d is fixed, the induced measures p42, concentrate towards the maximally
mixed state on C? ® C? when p increases. For small values of p, one expects to get
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typically very entangled states. Therefore one can consider the critical p for which
the property “being PPT” becomes typically true. The following theorem shows
that a threshold occurs when p = 4d2.

Theorem 8.2. For every € > 0, there exist positive constants c(e),C(g) such that
the following holds. If p is a random state on C% ® C?% chosen according to the
measure [Lq2 p, then

(1) If p < (4 —e)d?, then
P(pis PPT) < C(e) exp(—c(e)p).
(2) If p> (4 +¢)d?, then

P(pis PPT) > 1 — C(e) exp(—c(e)p).

Proof. We only show the proof of (1), the proof of (2) being similar. We are going
to use a concentration argument from [3], where the same question is studied for
separability instead of PPT. We start by a lemma that compares the probability
that a random state is PPT, for different dimensions.

Lemma 8.1. Let dy,ds,d}|,d, and p be integers, with di < d; and dy < ds. Let p
be a random state on CM ®@ C% with distribution jid,a,.p, and let p’' be a random
state on CU @ C% with distribution Haydy,p- Then

P(pis PPT) < P(p is PPT).

Proof. It is enough to prove the lemma in the special case dy = d} (since both
factors play the same role, the full version follows by applying twice this special
case).

We construct a coupling between both distributions as follows. Identify C% as
a subspace of C%, and let Q : C* — C% be the orthogonal projection. Then,
Ch @ C% ¢ C% @ C% is the range of the projection P = Q ® Id. Let W be a
(dyds, p)-Wishart matrix, seen as an operator on C% @ C9. The random operator
PW P, when seen as an operator on C% © C% has the distribution of a (d/ds, p)-
Wishart matrix. Therefore, the states

W
p= W’
o PpP PWP

T TrPpP Tt PWP’

have respective distributions pq,d, p and fia;d,,p- To prove the lemma it remains to
check that

pis PPT = o’ is PPT.
This implication holds because (PpP)" = Pp' P. ]
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Fix € > 0. As a consequence of Lemma 8.1, it is enough to prove Theorem 8.2,
for every given p, when d is minimal such that p < (4 — ¢)d? (from now one, we
assume that d and s are related by this condition).

Denote by || - |ppr the gauge associated to the convex body of all PPT states.
This gauge is defined as follows, for any state p on C? @ C¢

. Id 1 Id\ .
lpllppr = mf{t >0+ <p —~ ﬁ) is PPT}

=1- d2Amin(pF)-

Note in particular that p is PPT if and only if || p|[ppt < 1. Let pg2 ,, be a random
state with distribution 42 ), and denote by M2 ,, the median of the random variable
| paz pllppT. By applying [3, Proposition 4.2], we obtain the following inequality:
there are absolute constants ¢, C' such that for any n > 0,

P(lllollppr — Mz,

Let Wy2, be a (d? p)-Wishart matrix. It follows from Theorem 2.3 that
)\min(W({z ,p) converges in probability towards 1 — 2//4 — & when d, p tend to infin-
ity. By (8.1), Tr Vde,p/d2 converges in probability to 1. Since W2 ,,/ Tr W2 ,, has

distribution jug2 ,, it follows that ||pgz ,||ppr converges to \/42:. In particular,

> ) < Cexp(—cp) + Cexp(—cpn?). (8.2)

2
lim M, =
p,d—o0 &p V4 —e

We now choose 7 such that 2/y/4 —e > 1+ . For d, p large enough, we have
Mgz, > 141, and we can apply (8.2) to obtain

> 1.

P(p is PPT) = P(||pllppr < 1) < Cexp(—cp) + C exp(—cpi®).

This concludes the proof of Theorem 8.2 (small dimensions can be taken into
account by adjusting the constants).

9. Miscellaneous Remarks
9.1. Partial transposition of a random pure state

Another natural question from the point of view of Quantum Information Theory
is to study the partial transposition of random pure states (as opposed to random
mized states considered here). In that direction, one may prove the following result.

Proposition 9.1. For every d, let pg be a random pure state on C¢ ® C?, with
uniform distribution. Then, when d tends to infinity, the empirical eigenvalue dis-
tribution of dp approaches a deterministic distribution which can be described as
the distribution of the product of two independent SC(0,1) random variables.

Remark 9.1. The notion of convergence used is the same as in Theorem 8.1.
The limiting distribution appearing in Proposition 9.1 has vanishing odd moments

1250001-26



Random Matrices: Theory Appl. 2012.01. Downloaded from www.worldscientific.com

by MONASH UNIVERSITY on 09/02/13. For personal use only.

Partial Transposition of Random States and Non-Centered Semicircular Distributions

and even moments equal to the square of Catalan numbers. Such a distribution
has been studied recently in [9], where a closed formula for the density (involving
special functions) is derived.

Proof of Proposition 9.1 (sketch). If p = |¢)(z| is a pure state on C? @ C¢,
the eigenvalues of p!" can be described from the Schmidt coefficients of ¢ (Schmidt
coefficients for tensors correspond to singular values for matrices, and are there-
fore governed by the Marcenko-Pastur distribution). Indeed, given a Schmidt
decomposition

d
w = Z\/A_'Lel(gfla
i=1

for some orthonormal bases (e;), (fi), one checks that

) (| = Z\/Auez@fj (e ® fil-

3,j=1

It follows that the eigenvalues of |¢)(1)|" are

iy for every 1 <i < d,
AiAj, forevery 1 <i<j<d.

Eigenvalues of the first category do not contribute to the limit distribution, and the
result follows with little effort. |

9.2. Unbalanced bipartite systems

We may apply partial transposition to any decomposition c ~Cch g C% | with
dvdy = d?. Provided the ratio d; /ds stays away from 0 and oo, Theorems 2.2 and 2.3
remain valid. The point is that the main contributions come from terms in which

an~ g, so that df&adf&b depends only on the product dids.

9.3. Connezxions to free probability

The same model of partially transposed Wishart matrices has been considered
recently by Banica and Nechita [6] in a different asymptotic regime (when d; is fixed
and dy goes to infinity). For that regime the picture is different: they obtain that the
limit spectral distribution can be described as the difference of two freely indepen-
dent random variables with Mar¢enko—Pastur distributions. The shifted semicircle
distribution appears then as a limit case. We refer to [6] for more information.

9.4. Uniform mixtures of random pure states

There is another popular model of random states which is very similar to the model
of random induced states considered in Sec. 8, for which our results are also valid.
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Let (1;)1<i<p be unit vectors in C™, chosen independently according to the uniform
probability measure on the the unit sphere. Then we consider the random state

1 P
P= —ZWJWJ
P

Denote by vy, the distribution of p. This model of random states has been con-
sidered for example in [23]. When n, p are large, the probability measures pu,, , and
U, p behave similarly. It can be shown that Theorems 8.1 and 8.2 remain valid when
the probability measures p, , are substituted by the probability measures v, .

9.5. Volume of the PPT convex body

How many states have a positive partial transpose? This question may be formulated
using the Lebesgue measure (or “volume”) induced by the Hilbert—Schmidt scalar
product, or equivalently (cf. Proposition 8.1) by the induced measure over an ancilla
of equal dimension. Let Wy be a (d?, d?)-Wishart random matrix. It was shown in [2]
(formulated as a lower bound on the volume of the set of PPT states, and using
techniques from high-dimensional convexity) that for some constant C' > 0

P(W] > 0) > exp(—Cd*). (9.1)

By Theorem 2.3, the probability on the left-hand side tends to 0 when d tends to
+o00. How fast it goes to zero is actually a question about large deviations. For
standard models of random matrices, very precise results are known about large
deviations (see e.g. [1, Sec. 2.6.2]), and one may expect the lower bound from (9.1)
to be sharp.

Conjecture. There is an absolute constant ¢ > 0 such that, whenever Wy is a
(d?, d?)-Wishart matriz,

P(W; >0) < exp(—cd?).

This would quantify precisely how (un)common are PPT states in large
dimensions.
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