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Let W be a Wishart random matrix of size d2 × d2, considered as a block matrix with
d × d blocks. Let Y be the matrix obtained by transposing each block of W . We prove
that the empirical eigenvalue distribution of Y approaches a non-centered semicircular
distribution when d → ∞. We also show the convergence of extreme eigenvalues towards
the edge of the expected spectrum. The proofs are based on the moments method.

This matrix model is relevant to Quantum Information Theory and corresponds to
the partial transposition of a random induced state. A natural question is: “When does
a random state have a positive partial transpose (PPT)?”. We answer this question and
exhibit a strong threshold when the parameter from the Wishart distribution equals 4.
When d gets large, a random state on Cd ⊗Cd obtained after partial tracing a random
pure state over some ancilla of dimension αd2 is typically PPT when α > 4 and typically
non-PPT when α < 4.

Keywords: Partial transposition; Wishart matrices; semicircular distribution; PPT
states.
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1. Introduction

In the recent years, several connections were established between Random Matrix
Theory and Quantum Information Theory. It turns out that random operators, and
the random constructions they induce, can be used to construct quantum channels
with an unexpected behavior, violating some natural conjectures (the most promi-
nent example being Hastings’s counterexample to additivity conjectures [11]). Ran-
dom matrices appear to be a sharp tool in order to understand the high-dimensional
objects from Quantum Information Theory.

In this spirit, we study here a model of random matrices motivated by Quantum
Information Theory. The model is simple to describe: start from Wishart n × n
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random matrices, which is the most natural model of random positive matrices.
Assume that their dimension is a square (n = d2). These matrices can be considered
as block-matrices, with d2 blocks, each block being a d×d matrix. Now our model is
obtained by applying the transposition operation inside each block. An equivalent
formulation is to consider d2 × d2 matrices as operators on the tensor product of
two d-dimensional spaces, and to apply to them the partial transposition Id ⊗ T ,
where T is the usual transposition.

For this model, the empirical eigenvalue distribution converges towards a non-
centered semicircular distribution, and the extreme eigenvalues converge towards
the edge of the spectrum. These results were observed numerically by Žnidarič
et al. [23]. The aim of the present paper is to give a complete proof of these facts.
We rely on a standard tool from Random Matrix Theory: the method of moments.

The fact that the limiting distribution is semicircular is not a complete sur-
prise. In the context of free probability, semicircular distributions are the non-
commutative analogue of Gaussian distributions, and therefore one expects their
appearance in limit theorems. For example Wigner’s celebrated theorem identi-
fies the centered semicircular distribution as the limit distribution of eigenvalues
of random Hermitian matrices. However, other limiting distributions do appear in
the theory: for example, the Wishart matrices themselves (i.e. without the partial
transposition) converge to the so-called Marčenko–Pastur law (see Sec. 2.3). More-
over, our model brings some additional exoticism since the limiting distribution is
non-centered.

Since the transposition is not a completely positive map, there is no reason
a priori for matrices from our model to be positive. However, we show that for
some range of the parameters, partially transposed Wishart matrices are typically
positive. A threshold occurs when the parameter from the Wishart distribution
equals 4.

The partial transposition appears to play a central role in Quantum Informa-
tion Theory and is closely related to the concept of entanglement. An important
class of states is the family of states with a Positive Partial Transpose (PPT). Non-
PPT states are necessarily entangled [22] and this is the simplest test to detect
entanglement. Let us simply mention a related important open problem known
as the distillability conjecture [13]: it asks whether, for a state ρ, non-PPT is
equivalent to the existence of a protocol which, given many copies of ρ, distills
them to obtain Bell singlets — the most useful form of entanglement. A positive
answer to the distillability conjecture would give a physical meaning to partial
transposition.

The model of Wishart random matrices has also a physical interpretation in
terms of open systems: assume the subsystem Cd ⊗ Cd is coupled with some envi-
ronment Cp. If the overall system is in a random pure state, the state on Cd ⊗Cd

obtained by partial tracing over Cp is distributed as a (normalized) Wishart matrix.
Early notable works about entanglement of random states include [16, 12]. Our
results can be translated in this language. In particular, a random induced state is
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typically non-PPT when p/d2 < 4 and is typically PPT when p/d2 > 4. This shows
that a threshold for the PPT property occurs at p = 4d2.

1.1. Organization

The paper is organized as follows: Secs. 2–7 are written in the language of Random
Matrix Theory and contain the proof of our theorems. Section 2 introduces the
model and states Theorem 2.2 (convergence towards the non-centered semicircle
distribution) and Theorem 2.3 (convergence of the extreme eigenvalues). Section 3
reminds the reader about non-crossing partitions and the combinatorics behind the
moments method for Wishart matrices, on which we rely heavily. Section 4 shows
how to derive Theorem 2.2 from moment estimates; the proof of these estimates (the
heart of the moments method) is deferred to Secs. 5 and 6. Section 7 contains the
proof of Theorem 2.3. Section 8 connects to Quantum Information Theory. Section 9
contains some general remarks and possible variations on the model. A high-level
non-technical overview of the result of this paper and of a related article [3] can be
found in [4].

2. Background and Statement of the Main Theorem

2.1. Conventions

By the letters C,C0, c, . . . we denote absolute constants, whose value may change
from occurrence to occurrence. The integer part of a real number x is denoted by
�x�. We denote by [k] the set {1, . . . , k}. Addition in [k] is understood modulo k.
We denote by �a,�b,�c, . . . multi-indices which are elements of Nk for some integer k.
The coordinates of �a are denoted (a1, . . . , ak).

When �a ∈ Nk, we denote by #�a the number of distinct elements which appear
in the set {a1, . . . , ak}. For example, #(1, 4, 1, 2) = 3. The cardinality of a set A is
denoted cardA. The notation 1E denotes a quantity which equals 1 when the event
E is true, and 0 otherwise.

By ‖M‖∞ or simply ‖M‖ we denote the operator norm of a matrix M .

2.2. Semicircular and Marčenko–Pastur distributions

Let m ∈ R and σ > 0. The semicircular distribution with mean m and variance
σ2 is the probability distribution µSC(m,σ2) with support [m − 2σ,m + 2σ] and
density

dµSC(m,σ2)

dx
=

1
2πσ2

√
4σ2 − (x −m)2.

It is well-known ([1, p. 7]) that if X is a random variable with SC(0, 1) distribution,
the moments of X are related to the Catalan numbers Ck = 1

k+1

(
2k
k

)
,

EX2k = Ck, EX2k+1 = 0.
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We now introduce the Marčenko–Pastur distributions. First, for 0 < α ≤ 1, let
fα be the probability density defined on [b−, b+] (where b± = (1 ±√

α)2) by

fα(x) =

√
(x− b−)(b+ − x)

2πxα
.

The Marčenko–Pastur distribution with parameter α, µMP(α), is the following prob-
ability distribution

• If α ≥ 1, then µMP(α) is the probability distribution with density f1/α.
• If 0 < α ≤ 1, then dµMP(α)(x) = (1 − α)δ0 + αdfα(x), where δ0 denotes a Dirac

mass at 0.

In particular, note the following fact: if X has a semicircle SC(0, 1) distribution,
then X2 has a Marčenko–Pastur MP(1) distribution.

2.3. Asymptotic spectrum of Wishart matrices: Marčenko–Pastur

distributions

Define an (n, p)-Wishart matrix as a random n × n matrix W obtained by setting
W = 1

pGG
†, where G is an n×p matrix with independent (real or complexa) N(0, 1)

entries. The real case and complex case are completely similar. Our results are
valid for both, although only the complex case is relevant to Quantum Information
Theory.

Let A be an n×n Hermitian matrix, and denote λ1, . . . , λn the eigenvalues of A.
The empirical eigenvalue distribution of A, denoted NA, is the probability measure
on Borel subsets of R defined as

NA =
1
n

n∑
i=1

δλi .

In other words, NA(B) is the proportion of eigenvalues that belong to the Borel
set B. For large sizes, the empirical eigenvalue distribution of a Wishart matrix
approaches a Marčenko–Pastur distribution.

Theorem 2.1 (Marčenko–Pastur, [18]). Fix α > 0. For every n, let Wn be
an (n, �αn�)-Wishart matrix. Then the empirical eigenvalue distribution of Wn

approaches a Marčenko–Pastur distribution MP(α) in the following sense. For every
interval I ⊂ R and any ε > 0,

lim
n→∞P(|NWn(I) − µMP (α)(I)| > ε) = 0.

2.4. Partial transposition

We now assume that n = d2. One can think of any n × n matrix A as a block
matrix, consisting of d × d blocks, each block being a d× d matrix. The entries of

aA complex-valued random variable ξ has a complex N(0, 1) distribution if its real and imaginary
parts are independent random variables with real N(0, 1

2
) distribution. In particular, E |ξ|2 = 1.
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the matrix are then conveniently described using 4 indices ranging from 1 to d

A = (Ak,l
i,j )i,j,k,l.

Here i denotes the block row index, j the block column index, k the row index inside
the block (i, j) and l the column index inside the block (i, j). We can then apply
to each block of A the transposition operation. The resulting matrix is denoted AΓ

and called the partial transpositionb of A. Using indices, we may write

(AΓ)k,l
i,j = Al,k

i,j . (2.1)

Such a block matrix A can be naturally seen as an operator on Cd⊗Cd. Indeed,
a natural basis in this space is the double-indexed family (ei ⊗ ek)1≤i,k≤d, where
(ei) is the canonical basis of Cd. The action of A on this basis is described as

A(ei ⊗ ek) =
d∑

j,l=1

Ak,l
i,jej ⊗ el.

We may identify canonically M(Cd ⊗Cd) with M(Cd) ⊗M(Cd). Via this identi-
fication, the matrix AΓ coincides with (Id⊗ T )(A), where T : M(Cd) → M(Cd) is
the usual transposition map. The map T is the simplest example of a map which is
positive but not completely positive: A ≥ 0 does not imply AΓ ≥ 0.

2.5. Asymptotic spectrum of partially transposed Wishart

matrices: Non-centered semicircular distribution

Motivated by Quantum Information Theory, we investigate the following question:
what does the spectrum of AΓ look like? As we will see, the partial transposition
dramatically changes the spectrum: the empirical eigenvalue distribution of AΓ is
no longer close to a Marčenko–Pastur distribution, but to a shifted semicircular
distribution! This is our main theorem.

Theorem 2.2. Fix α > 0. For every d, let Wd be a (d2, �αd2�)-Wishart matrix, and
let Yd = WΓ

d be the partial transposition of Wd. Then the empirical eigenvalue dis-
tribution of Yd approaches the semicircular distribution µSC(1,1/α) in the following
sense. For every interval I ⊂ R and any ε > 0,

lim
d→∞

P(|NYd
(I) − µSC(1,1/α)(I)| > ε) = 0.

Recall that NYd
(I) is the proportion of eigenvalues of the matrix Yd that belong to

the interval I.

Note that the trace and the Hilbert–Schmidt norm are obviously invariant under
partial transpose. The distributions MP(α) and SC(1, 1/α) (corresponding to eigen-
value distribution before and after applying partial transpose) indeed share the same
first and second moments.

bAn explanation for the notation is that Γ is “half” of the letter T which denotes the usual
transposition.
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The support of the limiting spectral distribution SC(1, 1/α) is the interval [1−
2√
α
, 1 + 2√

α
]. Denote by λmin(A) (respectively, λmax(A)) the smallest (respectively,

largest) eigenvalue of a matrix A. A natural (and harder) question is whether the
extreme eigenvalues of Yd converge towards 1 ± 2√

α
. We show that this is indeed

the case:

Theorem 2.3. Fix α > 0. For every d, let Wd be a (d2, �αd2�)-Wishart matrix,
and let Yd = WΓ

d be the partial transposition of Wd. Then, for every ε > 0,

lim
d→∞

P(|λmax(Yd) − (1 + 2/
√
α)| > ε) = 0,

lim
d→∞

P(|λmin(Yd) − (1 − 2/
√
α)| > ε) = 0.

2.6. Almost sure convergence

In Random Matrix Theory, it is customary to work with the stronger notion of
almost sure convergence. This requires to define all the objects on a single probabil-
ity space. Such a construction is not natural from a Quantum Information Theory
point of view, which usually “avoids infinity” and prefers to work in a fixed (but
large) dimension.

However, from a mathematical point of view, it is interesting to note that the
results presented here also hold for almost sure convergence. One needs to check
that the proof gives enough concentration in order to use the Borel–Cantelli lemma.
A key point is the O(1/d2) estimate for the variance from Proposition 4.2.

3. Non-Crossing Partitions and Combinatorics
of Wishart Matrices

3.1. Non-crossing partitions

Let S be a finite set with a total order <. Usually, S equals [k] (the set {1, . . . , k})
for some positive integer k, and additions in [k] are understood modulo k. It is
useful to represent elements of S as points on a circle. We introduce the concept of
non-crossing partitions and refer to [20] for more information and pictures.

• A partition π of S is a family {V1, . . . , Vp} of disjoint nonempty subsets of S,
whose union is S. The sets Vi are called the blocks of π. The number of blocks of
π is denoted |π|. We denote ∼π the equivalence relation on S induced by π : i ∼π j

means that i and j belong to the same block.
• A partition π of S is said to be non-crossing if there does not exist elements
i < j < k < l in S such that i ∼π k, j ∼π l and i �∼π j. We denote by NC(S)
the set of non-crossing partitions of S, and NC(k) = NC([k]).

• A chording (or a non-crossing pair partition) of S is a non-crossing partition of
S in which each block contains exactly two elements. Chordings exist only when
the cardinal of S is even. We denote by NC2(S) the set of chordings of S, and
NC2(k) = NC2([k]).
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Counting non-crossing partitions is a well-known combinatorial problem involv-
ing Catalan numbers (see [20, Lemma 8.9 and Proposition 9.4]).

Lemma 3.1. Let k ∈ N∗. The number of elements in NC(k) and the number of
elements in NC2(2k) are both equal to the kth Catalan number Ck = 1

k+1

(
2k
k

)
.

Let us also introduce the Kreweras complementation as the map K : NC(k) 
→
NC(k) defined as follows. For π ∈ NC({1−, . . . , k−}) � NC(k), K(π) is defined
as the coarsest partition σ ∈ NC({1+, . . . , k+}) � NC(k) such that π ∪ σ is a
non-crossing partition of {1−, 1+, . . . , k−, k+}, equipped with the order

1− < 1+ < 2− < 2+ < · · · < k− < k+.

The map K is bijective. Moreover, given σ ∈ NC({1+, . . . , k+}) � NC(k), one
can recover K−1(σ) as the coarsest partition π ∈ NC({1−, . . . , k−}) � NC(k) such
that π ∪ σ is a non-crossing partition of {1−, 1+, . . . , k−, k+}. See [20] for more
details.

The following lemma will be used in connection to partial transposition.

Lemma 3.2. Let π ∈ NC(k) a non-crossing partition and K(π) its Kreweras
complement. Then,

(1) For every index i ∈ [k],

The singleton {i} is a block in K(π) ⇔ i ∼π i+ 1.

(2) For every distinct indices i, j ∈ [k],

The pair {i,j} is a block in K(π) ⇔ i ∼π j + 1 and i+ 1 ∼π j and i �∼π j.

Proof. This is geometrically obvious.

3.2. Combinatorics related to Wishart matrices

We now remind the reader about the (standard) proof of the Marčenko–Pastur
theorem via the moments method. This proof can be found for example in [15, 21]
or the book [5]. Not only our proof will mimic this one, but we will actually strongly
recycle most of the combinatorial lemmas. Let Wn = (Wij) be an (n, p)-Wishart
matrix, and k ∈ N. The expansion of E 1

n TrW k
n reads

E
1
n

TrW k
n =

1
n

∑
�a∈[n]k

EWa1,a2Wa2,a3 · · ·Wak,a1

=
1
npk

∑
�a∈[n]k,�c∈[p]k

EGa1,c1Ga2,c1 · · ·Gak,ck
Ga1,ck

. (3.1)

The next task is to analyze which couples (�a,�c) give dominant contributions to
the sum (3.1) when n → ∞ and p = �αn�. One argues as follows. First, if one
couple (ai, ci) or (ai+1, ci) appears a odd number of times in the product, then the
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contribution is exactly zero (because entries of G are independent and symmetric).
This motivates the following definition:

Definition 3.1. A couple (�a,�c) ∈ Nk×Nk satisfies the Wishart matching condition
if every couple in the following list of 2k elements appears an even number of
times:

(a1, c1), (a2, c1), (a2, c2), (a3, c2), . . . , (ak, ck), (a1, ck). (3.2)

Let (�a,�c) ∈ Nk × Nk. We define dW (�a,�c) as the number of distinct couples
appearing in the list (3.2), and set 	W (�a,�c) = #�a + #�c. We also denote n2(�a,�c)
the number of indices i such that the ith element appears exactly twice in the
list (3.2), and n+(�a,�c) the number of indices i such that the ith element appears
at least 4 times. Note that n2(�a,�c) + n+(�a,�c) = 2k. These parameters satisfy some
inequalities:

Lemma 3.3. Let (�a,�c) ∈ Nk × Nk satisfy the Wishart matching condition. Then

	W (�a,�c) ≤ dW (�a,�c) + 1 ≤ k + 1.

Moreover, n+(�a,�c) ≤ 4(k + 1 − 	W (�a,�c)).

Proof. Read the list (3.2) from left to right, and count how many new indices you
read. The first couple (a1, c1) brings two new indices, and each subsequent couple
that did not appear previously in the list (there are dW (�a,�c)− 1 such couples) may
bring at most one new index (since it shares a common index with the couple just
before). This shows that 	W (�a,�c) ≤ dW (�a,�c) + 1.

The inequality dW (�a,�c) ≤ k is easy: if every couple in the list (3.2) appears at
least twice, then this list contains at most k different couples.

For the last claim, note that

dW (�a,�c) ≤ 1
2
n2(�a,�c) +

1
4
n+(�a,�c) = k − 1

4
n+(�a,�c),

with equality iff no element in the list (3.2) appears 6 times or more.

Now, the couples (�a,�c) satisfying 	W (�a,�c) < k + 1 are easily shown to have a
contribution to the sum (3.1) which is asymptotically zero. Let us say that (�a,�c) is
Wishart-admissible if it satisfies the matching condition, together with the equality
	W (�a,�c) = k + 1.

If �a ∈ Nk, the partition induced by �a, denoted π(�a), is the partition of [k]
defined as follows: i and j belong to the same block if and only if ai = aj . We say
that �a,�b ∈ Nk are equivalent (�a ∼ �b) if π(�a) = π(�b). Similarly, a couple (�a,�c) is
equivalent to a couple (�a ′,�c ′) if �a ∼ �a ′ and �c ∼ �c ′. The next proposition (see [15]
or [21] for details) characterizes the combinatorial structure of (equivalence classes
of) Wishart-admissible couples.
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Proposition 3.1. For every integer k,

(a) If (�a,�c) ∈ Nk × Nk is Wishart-admissible, then

(i) Each couple in the list (3.2) appears exactly twice. One occurrence is of the
form (ai, ci) while the other occurrence is of the form (ai+1, ci). Moreover,
the pair-partition of [2k] induced by the list (3.2) is non-crossing.

(ii) The partitions π(�a) and π(�c) are non-crossing, and Kreweras-
complementary: π(�c) = K(π(�a)). In particular, �a is determined by �c up
to equivalence.

(b) The mapping (�a,�c) 
→ π(�c) induces a bijection between the set of equivalence
classes of Wishart-admissible couples in Nk × Nk and the set NC(k).

Example 3.1. Let us give an example of a Wishart-admissible couple for k = 4.
Let �a = (1, 2, 2, 3) and �c = (7, 3, 7, 7). Then 	W (�a,�c) = 5. The list (3.2) reads as

(1, 7); (2, 7); (2, 3); (2, 3); (2, 7); (3, 7); (3, 7); (1, 7).

Indeed, each couple appears exactly twice. The partition induced by this list is

{{1, 8}, {2, 5}, {3, 4}, {6, 7}}
while the partitions induced by �a and �c are

π(�a) = {{1}, {2, 3}, {4}},
π(�c) = K(π(�a)) = {{1, 3, 4}, {2}}.

From Proposition 3.1, it is easy to check (if p ∼ αn) that limn→∞ E 1
n TrW k

n

coincides with the kth moment of the Marčenko–Pastur distribution with parameter
1/α. To obtain more information than convergence in expectation, one usually needs
also a control of the variance of 1

n TrW k
n . The next lemma is then relevant. Actually,

the stronger conclusion 	W (�a,�c) + 	W (�a ′,�c ′) ≤ 2k holds, but we do not need this
sophistication here.

Lemma 3.4. Let (�a,�c) and (�a ′�c ′) be two couples in Nk × Nk satisfying the fol-
lowing conditions

(i) Each couple in the following list of 4k elements appears at least twice:

(a1, c1), (a2, c1), . . . , (ak, ck), (a1, ck);

(a′1, c
′
1), (a

′
2, c

′
1), . . . , (a

′
k, c

′
k), (a′1, c

′
k).

(3.3)

(ii) At least some couple appears both in the left half and in the right half of the
list (3.3).

Then 	W (�a,�c) + 	W (�a ′,�c ′) ≤ 2k + 1.

Proof. As before, we read the list (3.3) and keep track of the number of indices.
We first read the left half of the list in its natural order. We then read the right
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half of the list, starting by an element which already appeared in the left half and
reading from left to right — with the convention that (a′1, c

′
1) stands at the right of

(a′1, ck).
The first element (a1, c1) brings two new indices, and each subsequent new couple

(there are at most 2k− 1 many, since each couple in the list appears at least twice)
brings at most one new index.

If we want to prove estimates on the extreme eigenvalues of Wishart matrices,
we also have to analyze lower-order contributions. We here follow the terminol-
ogy from [10]. Let (�a,�c) ∈ Nk × Nk satisfy the Wishart matching condition. The
elements from the list (3.2) fall into one of the following categories.

type 1: innovations for �a.
type 2: innovations for �c.
type 3: first repetitions of an innovation.
type 4: other elements.

The ith element in the list (3.2) is an innovation if it contains one index which did
not appear already in the list. When i = 2p is even, the ith element is an innovation
for �a if ap+1 �∈ {aj : j < p}. When i = 2p−1 is odd, the ith element is an innovation
for �c if cp �∈ {cj : j < p}. In particular, the first element of the list (3.2) is always
an innovation for �c.

The ith element is the first repetition of an innovation if there is a unique j < i

such that the jth element from the list (3.2) equals the ith element, and moreover
this jth element is an innovation.

The following lemma asserts that there are few different couples satisfying the
Wishart matching condition which have the same types of elements at the same
positions. We refer to [10] for a proof.

Lemma 3.5. Let T = (t1, . . . , t2k) ∈ {1, 2, 3, 4}2k, and let U = card{i ∈ [2k] : ti =
4}. Say that (�a,�c) is of type T if, for every i ∈ [2k], the ith element in the list (3.2)
has type ti. Then, the number of equivalence classes of couples satisfying the Wishart
matching condition which are of type T is bounded by k3U .

3.3. Diagonal elements of Wishart matrices are close to 1

We will use the following simple fact in our proof.

Lemma 3.6. Let W = (Wij) be a (n, p)-Wishart matrix. Then, for any ε ∈ (0, 1),
we have

P
(

1 − ε ≤ inf
1≤i≤n

Wii ≤ sup
1≤i≤n

Wii ≤ 1 + ε

)
≥ 1 − Cn exp(−cpε2),

where C, c > 0 are absolute constants.

Proof. Recall that W = 1
pGG

†, where G = (Gij) is an n × p matrix with
independent N(0, 1) entries, so that the diagonal terms of Wn follow a χ2
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distribution

Wii =
1
p

p∑
j=1

|Gij |2.

The next lemma shows that such distributions enjoy very strong concentration
properties.

Lemma 3.7. Let g1, . . . , gp denote independent (real or complex) N(0, 1) random
variables, and X be the Euclidean norm of the vector (g1, . . . , gp). Then for every
t > 0,

P(|X −√
p| > t) ≤ C′ exp(−c′t2).

Lemma 3.7 can be proved by direct calculation or follows from concentration of
measure (see e.g. [17]). Indeed, the Euclidean norm is a 1-Lipschitz function and the
expectation of X satisfies the inequalities

√
p− 1 ≤ EX ≤ √

p. Lemma 3.6 follows
from Lemma 3.7 via the union bound.

4. Proof of Theorem 2.2

For an integer d and p = �αd2�, let Gd be a d2×p matrix with independent N(0, 1)
entries, Wd = 1

pGdG
†
d and Yd = WΓ

d . We denote the entries of Gd as (Gk
i,j), where

(i, j) ∈ [d] × [d] denote the row indices and k ∈ [p] denotes the column index.
We label the entries of Wd and Yd as (W j,j′

i,i′ ) and (Y j,j′
i,i′ ), where (i, i′, j, j′) ∈ [d]4

according to the convention described in Sec. 2.4.
We have to show that NYd

, the empirical eigenvalue distribution of Yd,
approaches a non-centered semicircular distribution SC(1, α). To handle a more
symmetric situation (involving a centered semicircular distribution), we will rather
consider Yd − Id. By Lemma 3.6, this matrix is very close to Zd = Yd − diag(Yd).
The latter behaves in a nicer way with respect to moments combinatorics. We label
the entries of Zd as (Zj,j′

i,i′ )i,i′,j,j′∈[d]. We have

Zj,j′
i,i′ = Y j,j′

i,i′ 1(i,j) �=(i′,j′).

The following proposition is central to our work. We defer the proof (the com-
binatorial part of the moments method) to the next section.

Proposition 4.1. For every fixed integer k, we have

lim
d→∞

E
(

1
d2

Tr(Zk
d )
)

=

{
α−k/2Ck/2, if k is even,

0, otherwise.

We also show that the variance goes to zero — this is actually simpler.

Proposition 4.2. For every fixed integer k, we have

lim
d→∞

Var
(

1
d2

Tr(Zk
d )
)

= 0.
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The proofs of Propositions 4.1 and 4.2 appear in Secs. 5 and 6, respectively.

Proof of Theorem 2.2 (Assuming Propositions 4.1 and 4.2). We claim that
for any interval I ⊂ R and ε > 0,

lim
d→∞

P(|NZd
(I) − µSC(0,1/α)(I)| > ε) = 0. (4.1)

Deriving this from Propositions 4.1 and 4.2 is a completely standard procedure.
We only sketch the proof and refer to [1, pp. 10–11] for more details. Recall that
the Catalan numbers Ck satisfy Ck ≤ 4k, and that the support of the SC(0, 1/α)
distribution is [−2/

√
α, 2/

√
α]. We first check that the proportion of eigenvalues

outside J = [−3/
√
α, 3/

√
α] is asymptotically zero. For every ε > 0 and even

integer k,

lim sup
d→∞

P(NZd
(Jc) > ε) ≤ 1

ε
lim sup

d→∞
ENZd

(Jc)

≤ 1
ε

lim sup
d→∞

E
∫
xk(

√
α/3)kdNZd

≤ 1
ε
(
√
α/3)kCk/2α

−k/2

≤ 1
ε
(2/3)k,

where the second inequality follows from 1Jc(x) ≤ xk(
√
α/3)k. Since k is arbitrarily

large, we obtain that P(NZd
(Jc) > ε) tends to 0.

Therefore, to prove (4.1), we may assume I ⊂ J . Using the Weierstrass approx-
imation theorem, we may find a polynomial Q ≥ 1I such that

∫
QdµSC(0,1/α) ≤

µSC(0,1/α)(I) + ε/2. It follows from Proposition 4.1 that

lim
d→∞

E
∫
QdNZd

=
∫
QdµSC(0,1/α).

lim
d→∞

Var
∫
QdNZd

= 0.

For d large enough, |E ∫ QdNZd
− ∫ QdµSC(0,1/α)| < ε/4. Then

P(NZd
(I) ≥ µSC(0,1/α)(I) + ε) ≤ P

(∫
QdNZd

≥ E
∫
QdNZd

+ ε/4
)

≤ 16
ε2

Var
∫
QdNZd

and this quantity tends to zero. This is only half of (4.1). The other half follows by
noticing that

P(NZd
(I) ≤ µSC(0,1/α)(I) − ε) ≤ P(NZd

(J\I) ≥ µSC(0,1/α)(J\I) + ε/2)

+P(NZd
(Jc) ≥ ε/2)

and applying the previous argument to J\I.
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We now argue that the empirical eigenvalue distribution is stable under small
perturbations. Indeed, for any interval [a, b] and any self-adjoint matrix ∆d with
operator norm smaller than δ,

NZd+∆d
([a+ δ, b− δ]) ≤ NZd

([a, b]) ≤ NZd+∆d
([a− δ, b+ δ]). (4.2)

This is a consequence of the minimax formula for eigenvalues (see e.g. [8, Chap. III]).
We apply (4.2) with ∆d = diag(Yd)− Id. By Lemma 3.6, for every ε > 0, P(‖∆d‖ >
ε) tends to 0 when d tends to infinity. We easily derive from (4.1) and (4.2) that,
for any interval I,

lim
d→∞

P(|NYd−Id(I) − µSC(0,1/α)(I)| > ε) = 0.

This is clearly equivalent to Theorem 2.2.

5. Proof of Proposition 4.1

We expand E 1
d2 Tr(Zk

d ) and analyze the underlying combinatorics.

E
1
d2

Tr(Zk
d ) =

1
d2

∑
�a∈[d]k,�b∈[d]k

EZb1,b2
a1,a2

· Zb2,b3
a2,a3

. . . Zbk−1,bk
ak−1,ak

· Zbk,b1
ak,a1

=
1
d2

∑
�a∈[d]k,�b∈[d]k

M(�a,�b)EY b1,b2
a1,a2

· Y b2,b3
a2,a3

. . . Y bk−1,bk
ak−1,ak

· Y bk,b1
ak,a1

=
1
d2

∑
�a∈[d]k,�b∈[d]k

M(�a,�b)EW b2,b1
a1,a2

·W b3,b2
a2,a3

. . .W bk,bk−1
ak−1,ak

·W b1,bk
ak,a1

=
1

d2pk

∑
�a∈[d]k,�b∈[d]k,�c∈[p]k

M(�a,�b)EΠ(�a,�b,�c),

where we have defined

M(�a,�b) =
k∏

i=1

1(ai,bi) �=(ai+1,bi+1)

and

Π(�a,�b,�c) = Gc1
a1,b2

Gc1
a2,b1

·Gc2
a2,b3

Gc2
a3,b2

. . . G
ck−1
ak−1,bk

G
ck−1
ak,bk−1

·Gck

ak,b1
Gck

a1,bk
.

We introduce some definitions in order to restrict ourselves to triples for which
both M(�a,�b) and EΠ(�a,�b,�c) are nonzero.

Definition 5.1. A couple (�a,�b) ∈ Nk ×Nk is said to be non-repeating if M(�a,�b) =
1. In other words, (�a,�b) is non-repeating if for every i ∈ [k], either ai �= ai+1 or
bi �= bi+1.
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Because the entries of Gd are independent, we may factorize EΠ(�a,�b,�c) as a
product of quantities of the form E(Gk

i,j)
q(Gk

i,j)
r. Such a quantity is zero unless

q = r, and EΠ(�a,�b,�c) is zero whenever one of these factors is zero.

Definition 5.2. A triple (�a,�b,�c) ∈ Nk ×Nk ×Nk satisfies the matching condition
if, in the following list of 2k triples, each triple appears an even number of times

(a1, b2, c1), (a2, b1, c1); (a2, b3, c2), (a3, b2, c2); . . . ; (ak, b1, ck), (a1, bk, ck). (5.1)

Therefore, if a triple (�a,�b,�c) does not satisfy the matching condition, then
EΠ(�a,�b,�c) = 0 both in the real and in the complex cases. The following easy
observation will be used repeatedly.

Lemma 5.1. Assume that (�a,�b,�c) satisfies the matching condition. Then both (�a,�c)
and (�b,�c) satisfy the Wishart matching condition.

Recall the definition of equivalence introduced just before Proposition 3.1: �a ∼ �a ′

means that �a and �a ′ induce the same partition, and (�a,�b,�c) ∼ (�a ′,�b ′,�c ′) means
�a ∼ �a ′, �b ∼ �b ′ and �c ∼ �c ′. Let C be the equivalence class of a triple (�a,�b,�c). When
d→ ∞

card{C ∩ ([d]k × [d]k × [p]k)} ∼ d#�ad#�bp#�c ∼ α#�cd�(�a,�b,�c) (5.2)

where we have defined

	(�a,�b,�c) = #�a+ #�b + 2#�c.

Together with Lemma 3.3, Lemma 5.1 implies that whenever (�a,�b,�c) satisfies the
matching condition,

	(�a,�b,�c) = 	W (�a,�c) + 	W (�b,�c) ≤ 2k + 2.

Let Ck be the (finite) family of all equivalence classes of triples (�a,�b,�c) ∈ Nk×Nk×
Nk which satisfy the matching condition. Since the quantities M(�a,�b), EΠ(�a,�b,�c)
and 	(�a,�b,�c) depend only on the equivalence class C ∈ Ck of the triple (�a,�b,�c), we
may abusively write M(C), EΠ(C) and 	(C). We also write γ(C) to denote #�c.
Note that these quantities do not depend on the dimension d. We rearrange the
sum according to equivalence classes of triples:

E
1
d2

TrZk
d =

1
αk

∑
C∈Ck

M(C)EΠ(C)
card{C ∩ ([d]k × [d]k × [p]k)}

d2k+2
. (5.3)

Definition 5.3. Let us say that a triple (�a,�b,�c) is admissible if the following three
conditions are satisfied

(1) (�a,�b,�c) satisfies the matching condition,
(2) (�a,�b) is non-repeating,
(3) 	(�a,�b,�c) = 2k + 2.

Denote by C adm
k ⊂ Ck the set of equivalence classes of admissible triples.
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Equation (5.3) implies that

lim
d→∞

1
d2

ETrZk
d =

1
αk

∑
C∈C adm

k

M(C)EΠ(C)αγ(C). (5.4)

Proposition 5.1. If (�a,�b,�c) ∈ Nk × Nk × Nk is admissible, then

(1) M(�a,�b) = 1,
(2) EΠ(�a,�b,�c) = 1,
(3) k is even,
(4) #�c = k/2.

Moreover, the number of equivalence classes of admissible triples in Nk ×Nk ×Nk

is equal to the Catalan number Ck/2.

Once Proposition 5.1 is proved, Proposition 4.1 is immediate from (5.4).

Proof of Proposition 5.1. The fact that M(�a,�b) = 1 is just a reformulation of
the non-repeating condition. We now check that EΠ(�a,�b,�c) = 1. Indeed, since (�a,�c)
is Wishart-admissible, every element in the list (3.2) appears exactly twice, once at
an odd position and once at an even position. But the same must be true for the
list (5.1), and therefore EΠ(�a,�b,�c) = 1. To check the last two conditions, we rely
on the following lemma.

Lemma 5.2. Let (�a,�b,�c) ∈ Nk × Nk × Nk which satisfies the matching condition
and such that (�a,�b) is non-repeating. Then

(1) No index in �c appears only once, and therefore #�c ≤ �k/2�,
(2) #�a+ #�b ≤ 2(�k/2�+ 1).

Proof. By contraposition, suppose that some index ci appears only once in �c, i.e.
that cj �= ci for every j �= i. The matching condition imposes the equality

(ai+1, bi, ci) = (ai, bi+1, ci)

which in turn implies (ai, bi) = (ai+1, bi+1), contradicting the non-repeating prop-
erty. For the second part of the lemma, we argue differently according to the parity
of k

(k odd) Define (�x, �y) ∈ Nk × Nk as follows

�x = (a1, a3, . . . , ak−2, ak, a2, a4, . . . , ak−1),

�y = (b2, b4, . . . , bk−1, b1, b3, . . . , bk−2, bk).

The matching condition implies that (�x, �y) is Wishart-admissible. There-
fore, by Lemma 3.3, we have #�x+ #�y ≤ k + 1. Since �x (respectively, �y)
is a permutation of �a (respectively, �b), we have

#�a+ #�b ≤ k + 1 = 2(�k/2�+ 1).
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(k even) Define (�x1, �y1) and (�x2, �y2) ∈ Nk/2 × Nk/2 as follows

�x1 = (a1, a3, . . . , ak−1), �y1 = (b2, b4, . . . , bk),

�x2 = (a2, a4, . . . , ak), �y2 = (b3, b5, . . . , bk−1, b1).

Then both (�x1, �y1) and (�x2, �y2) are Wishart-admissible. Therefore, using
Lemma 3.3, we obtain

#�a+ #�b ≤ #�x1 + #�x2 + #�y1 + #�y2 ≤ 2(k/2 + 1).

In both cases we proved #�a+ #�b ≤ 2(�k/2�+ 1).

We continue the proof of Proposition 5.1. If (�a,�b,�c) is admissible, Lemma 5.2
implies that 2k + 2 = 	(�a,�b,�c) ≤ 4�k/2� + 2. Therefore, k must be even, and
necessarily #�c = k/2 and each index in �c appears exactly twice.

To prove the last statement in Proposition 5.1, we are going to show that the
following map Θ

C adm
k → NC 2(k)

(�a,�b,�c) 
→ π(�c)

is bijective. First, the partition induced by �c is indeed a chording of [k] (this partition
is non-crossing since (�a,�c) is Wishart-admissible). Because an element of a Wishart-
admissible couple is determined (up to equivalence) by the other one, it follows that
the map Θ is injective.

We now show that this map is onto. Given a partial chording π ∈ NC2(k), there
is a Wishart-admissible couple (�a,�c) ∈ Nk × Nk such that π(�c) = π. It remains to
check that (�a,�a,�c) is admissible.

• The couple (�a,�a) is non-repeating. Otherwise, one would have ai = ai+1 for some
index i ∈ [k]. Since π(�c) = K(π(�a)), this would imply by Lemma 3.2 that {i} is
a block in π(�c), which is not possible if π(�c) is a chording.

• The triple (�a,�a,�c) satisfies the matching condition. Since we already know that
(�a,�c) satisfies the Wishart matching condition, we have to check the following:
whenever (ai, ci) = (aj+1, cj), we have ai+1 = aj . Suppose (ai, ci) = (aj+1, cj).
Since (�a,�a) is non repeating, we have i �= j. This implies that {i, j} must be a
block in π(�c) and the result now follows from the second part of Lemma 3.2.

Therefore, the map Θ is bijective, and the cardinal of C adm
k equals the cardinal of

NC2(k), which by Lemma 3.1 is the Catalan number Ck/2.

6. Proof of Proposition 4.2

Start with a formula from the previous section
1
d2

Tr(Zk
d ) =

1
d2pk

∑
�a∈[d]k,�b∈[d]k,�c∈[p]k

M(�a,�b)Π(�a,�b,�c).
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The covariance of two random variables X,Y is defined as Cov(X,Y ) = E(XY )−
EX ·EY . We have

Var
1
d2

Tr Y k
d =

1
d4p2k

∑
�a,�b,�c,�a ′,�b ′,�c ′

M(�a,�b)M(�a ′,�b ′)Cov(Π(�a,�b,�c),Π(�a ′,�b ′,�c ′)),

(6.1)

where the summation is taken over indices �a,�b,�a ′,�b ′ in [d]k, and �c,�c ′ in [p]k. We
first identify the vanishing contributions.

Lemma 6.1. Let (�a,�b,�c) and (�a ′,�b ′,�c ′) be two triples in Nk ×Nk ×Nk such that

Cov(Π(�a,�b,�c),Π(�a ′,�b ′,�c ′)) �= 0.

Then 	(�a,�b,�c) + 	(�a ′,�b ′,�c ′) ≤ 4k + 2.

Proof. The independence of entries of Gd shows that the following two conditions
must hold:

• Each couple in the following list of 4k elements appears at least twice:

(a1, b2, c1), (a2, b1, c1) · · · (ak, b1, ck), (a1, bk, ck),

(a′1, b
′
2, c

′
1), (a

′
2, b

′
1, c

′
1) · · · (a′k, b′1, c′k), (a′1, b

′
k, c

′
k).

(6.2)

• At least some couple appears both in the upper half and in the lower half of the
list (6.2). Otherwise, the random variables Π(�a,�b,�c) and Π(�a ′,�b ′,�c ′) would be
independent, and their covariance would be zero.

As is immediately checked, these conditions imply that �a,�c,�a ′,�c ′ satisfy the
hypotheses of Lemma 3.4. Therefore,

	W (�a,�c) + 	W (�a ′,�c ′) ≤ 2k + 1.

Similarly, one may apply Lemma 3.4 to �b,�c,�b ′,�c ′ to obtain

	W (�b,�c) + 	W (�b ′,�c ′) ≤ 2k + 1.

It remains to add both inequalities.

We now gather the non-zero terms appearing in the sum (6.1) according to the
equivalence class of (�a,�b,�c,�a ′,�b ′,�c ′). The cardinality of the equivalence class of
(�a,�b,�c,�a ′,�b ′,�c ′) is bounded by

d#�a+#�b+#�a ′+#�b ′
p#�c+#�c ′

= O(d�(�a,�b,�c )+�(�a ′,�b ′,�c ′)) = O(d4k+2).

The overall factor 1/d4p2k = O(1/d4k+4) in front of the sum (6.1) shows that each
class has contribution asymptotically zero. Since the number of equivalence classes
depends only on k, this proves the lemma.
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7. Convergence of Extreme Eigenvalues: Proof of Theorem 2.3

Let Gd be a d2×pmatrix with independent N(0, 1) entries, Wd = 1
pGdG

†
d, Yd = WΓ

d

and Zd = Yd − diag(Yd). Assume that p = �αd2�.
Half of Theorem 2.3 can be deduced from Theorem 2.2. Indeed, for every ε > 0,

let I be the interval [1+2/
√
α− ε, 1+2/

√
α]. Since µSC(1,1/α)(I) > 0, Theorem 2.2

implies that, with probability tending to 1, NYd
(I) > 0, which means λmax(Yd) ≥

1 + 2/
√
α − ε. A similar argument shows that λmin(Yd) ≤ 1 − 2/

√
α + ε with

probability tending to 1.
To prove the other half of Theorem 2.3 (the hard part), we are going to give

an upper bound on ETr(Zk
d ) which holds in any fixed dimension (as opposed to

asymptotic estimates from the previous sections).

Proposition 7.1. There is a polynomial Q such that, for any integer k,

ETr(Zk
d ) ≤ (2/p)k(d+Q(k))k+2(

√
p+Q(k))k.

Assume for the moment that Proposition 7.1 is true. We claim that it implies
that for every ε > 0,

lim
d→∞

P(‖Yd − Id‖ ≥ 2/
√
α+ ε) = 0,

from which Theorem 2.2 follows. Indeed, choose k = k(d) an even integer such that
Q(k) = o(d) and log d = o(k). Then, when d→ ∞, Proposition 7.1 implies

E‖Zd‖k ≤ ETr(Zk
d ) ≤

(
2d√
p

+ o(1)
)k

=
(

2√
α

+ o(1)
)k

.

Therefore, it follows from Markov’s inequality that for every ε > 0,

P(‖Zd‖ ≥ 2/
√
α+ ε) ≤

(
2√
α

+ o(1)
)k( 2√

α
+ ε

)−k

→ 0.

On the other hand, by Lemma 3.6,

P(‖diag(Yd) − Id‖ ≥ ε) ≤ d2 exp(−cpε2) → 0.

This completes the proof of Theorem 2.3 since

P(‖Yd − Id‖ ≥ 2/
√
α+ ε) ≤ P(‖ diag(Yd) − Id‖ ≥ ε/2) + P(‖Zd‖ ≥ 2/

√
α+ ε/2).

Proof of Proposition 7.1. Recall the computation from Sec. 5

Tr(Zk
d ) =

1
pk

∑
�a∈[d]k,�b∈[d]k,�c∈[p]k

M(�a,�b)Π(�a,�b,�c). (7.1)

We first give an upper bound on EΠ(�a,�b,�c).

Lemma 7.1. Let (�a,�b,�c) ∈ Nk × Nk × Nk satisfy the matching condition, and
denote

∆ = 2k + 2 − 	(�a,�b,�c).
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Note that ∆ ≥ 0. Then

(1) The number N of indices i ∈ [2k] such that the ith term in the list (5.1) appears
4 times or more is bounded by 2∆,

(2) We have EΠ(�a,�b,�c) ≤ (C0k)∆, where C0 is an absolute constant.

Proof. At least one of the numbers k + 1 − 	W (�a,�c) and k + 1 − 	W (�b,�c) must
be smaller than ∆/2, since their sum equals ∆. Without loss of generality, we may
assume that k+1− 	W (�a,�c) ≤ ∆/2. Then, Lemma 3.3 implies that n+(�a,�c) ≤ 2∆.
Since N ≤ n+(�a,�c), the first part of the lemma follows.

For the second part, we use independence to write EΠ(�a,�b,�c) as a product of
quantities of the form E(Gk

i,j)
q1(Gk

i,j)
q2 ≤ E |Gk

i,j |q1+q2 . If G is a N(0, 1) random
variable, then E|G|2n equals 1 · 3 · 5 · · · (2n − 1) in the real case and n! in the
complex case. In both cases, for some constant C0,

E|G|q



= 1, if q = 2,

≤ (C0
√
q)q, if q > 2.

(7.2)

Bounding each individual factor according to (7.2) and using q ≤ 2k leads to

EΠ(�a,�b,�c) ≤ (C0

√
2k)N

and the second part of the lemma follows.

The number of triples in [d]k × [d]k × [p]k equivalent to a given triple (�a,�b,�c) is
equal to

d(d− 1) · · · (d− #�a+ 1) · d(d− 1) · · · (d− #�b+ 1) · p(p− 1)

· · · (p− #�c+ 1) ≤ d#�a+#�bp#�c.

Therefore, it is convenient to rearrange the sum (7.1) according to the values of
#�a+ #�b and #�c. We denote by m�1,�2 the number of equivalence classes of triples
(�a,�b,�c) ∈ Nk × Nk × Nk which satisfy the matching condition, with (�a,�b) non-
repeating, #�a+ #�b = 	1 and #�c = 	2. It follows from the analysis above that

ETr(Y k) ≤ 1
pk

∑
�1,�2

d�1p�2m�1,�2(C0k)2k+2−�1−2�2 . (7.3)

By Lemma 5.2, m�1,�2 = 0 if either 	1 > k + 2 or 	2 > k/2. It remains to give a
bound on the number m�1,�2 . This is the content of the following proposition (we
postpone the proof to the end of the section).

Proposition 7.2. There is a polynomial P such that the following holds. Denote
by N∆ the number of equivalence classes of triples (�a,�b,�c) ∈ Nk × Nk × Nk which
satisfy the matching condition, with (�a,�b) non-repeating and 	(�a,�b,�c) = 2k+2−∆.
We have the bound

N∆ ≤ 2kP (k)∆. (7.4)
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Remark 7.1. The bound given in (7.4) is quite sharp. Indeed, for ∆ = 0, it gives
N0 ≤ 2k. But N0 is exactly the number of equivalence classes of admissible triples
considered in Sec. 5, where this number was shown to equal the Catalan number
Ck/2, only slightly smaller that 2k.

We continue the proof of Proposition 7.1. We have

m�1,�2 ≤ N2k+2−�1−2�2 ≤ 2kP (k)2k+2−�1−2�2 .

Plugging this into (7.3) and denoting Q the polynomial Q(k) = C0kP (k),

ETr(Zk
d ) ≤ 2k

pk

k+2∑
�1=2

k/2∑
�2=1

d�1p�2Q(k)2k+2−�1−2�2

=
2k

pk

(
k+2∑
�1=2

d�1Q(k)k+2−�1

)
 k/2∑

�2=1

(
√
p)2�2Q(k)k−2�2




≤ (2/p)k(d+Q(k))k+2(
√
p+Q(k))k.

This completes the proof of Proposition 7.1.

Proof of Proposition 7.2. For (�a,�b,�c) ∈ Nk×Nk×Nk, let I = I(�a,�b,�c) ⊂ [k−1]
be the subset of indices i such that the following condition holds

(1) ai+1 �∈ {aj : j < i+ 1} — one says that ai+1 is an innovation,
(2) bi+1 �∈ {bj : j < i+ 1} — one says that bj+1 is an innovation,
(3) ci �∈ {cj : j < i} — one says that cj is an innovation.

The next lemma shows that the set I(�a,�b,�c) is large when ∆ is small. We
postpone the proof.

Lemma 7.2. If (�a,�b,�c) ∈ Nk×Nk×Nk satisfies the matching condition with (�a,�b)
non-repeating, then

card I(�a,�b,�c) ≥ k/2 − ∆.

where ∆ = (2k + 2) − 	(�a,�b,�c).

Let A,C be subsets of [k]. A couple (�a,�c) satisfying the Wishart matching
condition is said to be compatible with (A,C) if

(1) for every i ∈ A, the index ai is an innovation, i.e. ai /∈ {aj : j < i},
(2) for every i ∈ C, the index ci is an innovation, i.e. ci /∈ {cj : j < i}.

Note that if a Wishart-admissible couple (�a,�c) is compatible with (A,C), then
by arguing as in the proof of Lemma 3.3, we have

cardA+ cardC ≤ dW (�a,�c) + 1 ≤ k + 1.

Let us state one more lemma, postponing the proof.
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Lemma 7.3. Let A,C be subsets of [k], and δ = k + 1 − cardA − cardC. The
number of equivalence classes of couples (�a,�c) ∈ Nk×Nk which satisfy the Wishart
matching condition and are compatible with (A,C) is bounded by (2k)9δ.

The number N∆ is the number (up to equivalence) of triples (�a,�b,�c) which
satisfies the matching condition, with (�a,�b) non repeating, and 	(�a,�b,�c) = (2k +
2) − ∆. To bound N∆, we first choose a set I ⊂ [k − 1] of cardinal larger than
k/2 − ∆. The number of possibilities for I is bounded by 2k. Now, given I, let I+

be the subset of [k] defined as

j ∈ I+ ⇔ j = 1 or j − 1 ∈ I.

If (�a,�b,�c) satisfies the matching condition with I(�a,�b,�c) = I, then it is easily
checked that both couples (�a,�c) and (�b,�c) are compatible with (I+, I). We have
card(I+) + card(I) = 2 card(I) + 1 ≥ k + 1 − 2∆. By Lemma 7.3, the number of
admissible couples compatible with (I+, I) is bounded by (2k)18∆. Therefore the
number of possible triples (�a,�b,�c) is bounded by (2k)36. This yields the bound

N∆ ≤ 2k(2k)36∆.

This proves Proposition 7.2 with P (k) = (2k)36.

Proof of Lemma 7.2. For each index i ∈ [k], one of the following possibility
occurs

P1(i): The indices ai+1, bi+1 and ci are innovations. Necessarily the triples
(ai, bi+1, ci) and (ai+1, bi, ci) are innovations.c

P2(i): The triples (ai, bi+1, ci) and (ai+1, bi, ci) are innovations, but at least one of
ai+1, bi+1 and ci is not an innovation.

P3(i): Only one of the triples (ai, bi+1, ci) and (ai+1, bi, ci) is an innovation.
P4(i): Neither (ai, bi+1, ci) nor (ai+1, bi, ci) is an innovation.

For j ∈ {1, 2, 3, 4}, let nj be the number of indices i ∈ [k] such that Pj(i) holds
in the above alternative. With this notation, n1 = card I(�a,�b,�c). The numbers
n1, n2, n3, n4 satisfy the following relations

n1 + n2 + n3 + n4 = k, (7.5)

n3 + 2n4 ≥ k, (7.6)

4n1 + 3n2 + n3 ≥ 2k − ∆. (7.7)

• Equation (7.5) is obvious since possibilities P1(i), . . . , P4(i) are mutually
exclusive.

• There must be at least k elements in the list (5.1) which are not innovations, since
every element must appear at least twice. But the number of non-innovations in
the list (5.1) is equal to n3 + 2n4, hence Eq. (7.6).

cWe say that a triple at jth position from the list (5.1) is an innovation if it does not coincide
with a triple at ith position for i < j.
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• For each i, let Zi be the number

Zi = 1{ai+1 is an innovation} + 1{bi+1 is an innovation} + 2 · 1{ci is an innovation}.

The value of Zi depends on which of P1(i), P2(i), P3(i), P4(i) occurs. If P1(i)
occurs, then Zi = 4. If P4(i) occurs, then Zi = 0. If P2(i) occurs, then Zi ≤ 3. If
P3(i) occurs, then Zi ≤ 1. This last point deserves some explanation.

— If (ai, bi+1, ci) is not an innovation, then certainly bi+1 and ci cannot be
innovations.

— If instead (ai+1, bi, ci) is not an innovation, then ai+1 cannot be an innovation.
We claim that ci is also not an innovation. Indeed, if ci was an innovation, then
necessarily (ai+1, bi, ci) would be equal to (ai, bi+1, ci) which would contradict
the non-repeating property.

This shows that
∑
Zi ≤ 4n1 + 3n2 + n3. On the other hand, we have
k∑

i=1

Zi = #�a− 1 + #�b− 1 + 2#�c = 2k − ∆.

Therefore, the above discussion implies Eq. (7.7).

Adding (7.7) and twice (7.6), we obtain

4n1 + 3n2 + 3n3 + 4n4 ≥ 4k − ∆.

Together with (7.5), this implies that n2+n3 ≤ ∆. Since n3 ≥ 0, this in turn implies
3n2+n3 ≤ 3∆. Combined with (7.7), we obtain 4n1 ≥ 2k−4∆, hence n1 ≥ k/2−∆
as claimed.

Proof of Lemma 7.3. Given a couple (�a,�c) ∈ Nk × Nk satisfying the Wishart
matching condition, there is a partition of [2k] as

[2k] = T1 ∪ T2 ∪ T3 ∪ T4 (7.8)

where Ti denotes the set of indices j such that the jth element in the list (3.2) is
of type i (the four possible types have been defined in Sec. 2). If the couple (�a,�c)
is compatible with (A,C), then necessarily T ∗

1 ⊂ T1 and T ∗
2 ⊂ T2, where

T ∗
1 = {2(i− 1) : i ∈ A, i �= 1},
T ∗

2 = {2i− 1 : i ∈ C}.
We claim that the number of partitions (7.8) satisfying these constraints is

bounded by (2k)3δ. Indeed, we first have to enlarge T ∗
1 into T1 and T ∗

2 into T2.
Since card(T ∗

1 ∪ T ∗
2 ) = k− δ and card(T1 ∪ T2) ≤ k, the number of possible ways to

perform these enlargements in at most (2k)δ.
Since card(T3) = card(T1) + card(T2), we have card(T4) ≤ 2δ. Therefore the

number of possible choices for T4 is bounded by (2k)2δ. Once T1, T2 and T4 are
chosen, the set T3 consists of the remaining indices. Hence the claim on the number
of possible partitions.
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Now, by Lemma 3.5, the number of equivalence classes of couples satisfying the
Wishart matching condition with a given partition (7.8) is bounded by

(2k)3 card T4 ≤ (2k)6δ.

Finally, the total number of equivalence classes satisfying the Wishart matching
condition and compatible with (A,C) is bounded by (2k)9δ.

8. Relevance to Quantum Information Theory

In this section we consider finite-dimensional complex Hilbert spaces. We write
M(Cn) for the space of linear operators (= matrices) on Cn.

8.1. PPT states

A state (= density matrix) ρ on Cn is a positive operator on Cn with trace 1. We
write D(Cn) for the set of states on Cn. A pure state is a rank one state and is
denoted ρ = |x〉〈x|, where x is a unit vector in the range of ρ. We typically consider
the case Cn � Cd ⊗ Cd. We have the following canonical identification

M(Cd ⊗ Cd) � M(Cd) ⊗M(Cd).

A state ρ ∈ D(Cd ⊗Cd) if called separable if it can be written as a convex combina-
tion of product states. A state ρ is called PPT (“positive partial transpose”) if ρΓ is
a positive operator (the partial transposition ρΓ = (Id ⊗ T )ρ was defined in (2.1)).
The partial transposition of a separable state ρ is always positive [22]; however there
exist non-separable (=entangled) PPT states. For many purposes, checking posi-
tivity of the partial transpose is the most efficient tool to detect entanglement. We
refer to the survey [14] for more information about PPT states and entanglement.

8.2. Random induced states are normalized Wishart matrices

There is a canonical probability measure on the set of pure states on any finite-
dimensional Hilbert space H , obtained by pushing forward the uniform measure on
the unit sphere of H under the map x 
→ |x〉〈x|. We define the measure µn,p to be
the distribution of TrCp |x〉〈x|, where x is uniformly distributed on the unit sphere
of Cn ⊗ Cp. The partial trace TrCp is the linear operation

TrCp := IdM(Cn) ⊗ Tr : M(Cn ⊗ Cp) → M(Cn),

where IdM(Cn) is the identity operation on M(Cn) and Tr : M(Cp) → C is the
usual trace.

The measure µn,p is a probability measure on D(Cn), the set of mixed states on
Cn. A random state with distribution µn,p is called an induced state; the space Cp

is called the ancilla space. This family of measures has a simple physical motivation:
they can be used if our only knowledge about a state is the dimensionality of the
environment (see [7, Sec. 14.5] and references therein).
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Induced states are closely related to Wishart distributions. Indeed, if W is an
(n, p)-Wishart random matrix, then 1

Tr W W is a random state with distribution
µn,p. Moreover, the random variables TrW and 1

Tr W W are independent (this fact
explicitly appears in [19]). Therefore, results about Wishart matrices can be eas-
ily translated in the language of induced states. The special case p = n, when
the dimension of the ancilla equals the dimension of the system, deserves to be
highlighted thanks to the following proposition [24].

Proposition 8.1. The measure µn,n is equal to the normalized Lebesgue measure
restricted to the set D(Cn).

Proposition 8.1 follows from a more general fact [24]: whenever p ≥ n, the density
of the measure µn,p with respect to the Lebesgue measure on D(Cn) is proportional
to det(ρ)p−n.

8.3. Partial transposition of random induced states

Our main results admit an immediate translation in the language of random induced
states. Here is a version of Theorem 2.2 for induced states.

Theorem 8.1. Fix α > 0. For each d, let ρd be a random state on Cd ⊗Cd chosen
according to the measure µd2,	αd2
. Then for every interval I = [a, b] ⊂ R and ε > 0,

lim
d→∞

P(|Nd2ρΓ
d
(I) − µSC(1,1/α)(I)| > ε) = 0.

Recall that Nd2ρΓ
d
(I) is the proportion of eigenvalues of the matrix ρΓ

d that belong to
the interval [a/d2, b/d2].

Proof. If W is a (d2, p)-Wishart matrix, then W
Tr W has distribution as µd2,p.

Therefore,

Nd2ρΓ
d
([a, b]) = N d2

Tr W WΓ([a, b]) = NWΓ

([
TrW
d2

a,
TrW
d2

b

])
.

The distribution of Tr W
d2 is proportional to a χ2 distribution. Using Lemma 3.7 to

quantify its concentration, we obtain that for any η > 0,

P
(∣∣∣∣TrW

d2
− 1
∣∣∣∣ > η

)
≤ C exp(−cd2pη2). (8.1)

When |Tr W
d2 − 1| ≤ η, we may use the inclusions

[(1 + η)a, (1 − η)b] ⊂
[
TrW
d2

a,
TrW
d2

b

]
⊂ [(1 − η)a, (1 + η)b]

to show that Theorem 2.2 implies Theorem 8.1.

If d is fixed, the induced measures µd2,p concentrate towards the maximally
mixed state on Cd ⊗Cd when p increases. For small values of p, one expects to get
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typically very entangled states. Therefore one can consider the critical p for which
the property “being PPT” becomes typically true. The following theorem shows
that a threshold occurs when p = 4d2.

Theorem 8.2. For every ε > 0, there exist positive constants c(ε), C(ε) such that
the following holds. If ρ is a random state on Cd ⊗ Cd chosen according to the
measure µd2,p, then

(1) If p ≤ (4 − ε)d2, then

P(ρ is PPT) ≤ C(ε) exp(−c(ε)p).
(2) If p ≥ (4 + ε)d2, then

P(ρis PPT) ≥ 1 − C(ε) exp(−c(ε)p).

Proof. We only show the proof of (1), the proof of (2) being similar. We are going
to use a concentration argument from [3], where the same question is studied for
separability instead of PPT. We start by a lemma that compares the probability
that a random state is PPT, for different dimensions.

Lemma 8.1. Let d1, d2, d
′
1, d

′
2 and p be integers, with d′1 ≤ d1 and d′2 ≤ d2. Let ρ

be a random state on Cd1 ⊗ Cd2 with distribution µd1d2,p, and let ρ′ be a random
state on Cd′

1 ⊗ Cd′
2 with distribution µd′

1d′
2,p. Then

P(ρ is PPT) ≤ P(ρ′ is PPT).

Proof. It is enough to prove the lemma in the special case d2 = d′2 (since both
factors play the same role, the full version follows by applying twice this special
case).

We construct a coupling between both distributions as follows. Identify Cd′
1 as

a subspace of Cd1 , and let Q : Cd1 → Cd′
1 be the orthogonal projection. Then,

Cd′
1 ⊗ Cd2 ⊂ Cd1 ⊗ Cd2 is the range of the projection P = Q ⊗ Id. Let W be a

(d1d2, p)-Wishart matrix, seen as an operator on Cd1 ⊗Cd2 . The random operator
PWP , when seen as an operator on Cd′

1 ⊗Cd2 , has the distribution of a (d′1d2, p)-
Wishart matrix. Therefore, the states

ρ =
W

TrW
,

ρ′ =
PρP

TrPρP
=

PWP

TrPWP
,

have respective distributions µd1d2,p and µd′
1d2,p. To prove the lemma it remains to

check that

ρ is PPT ⇒ ρ′ is PPT.

This implication holds because (PρP )Γ = PρΓP .
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Fix ε > 0. As a consequence of Lemma 8.1, it is enough to prove Theorem 8.2,
for every given p, when d is minimal such that p ≤ (4 − ε)d2 (from now one, we
assume that d and s are related by this condition).

Denote by ‖ · ‖PPT the gauge associated to the convex body of all PPT states.
This gauge is defined as follows, for any state ρ on Cd ⊗ Cd

‖ρ‖PPT = inf
{
t ≥ 0 :

Id
d2

+
1
t

(
ρ− Id

d2

)
is PPT

}

= 1 − d2λmin(ρΓ).

Note in particular that ρ is PPT if and only if ‖ρ‖PPT ≤ 1. Let ρd2,p be a random
state with distribution µd2,p, and denote byMd2,p the median of the random variable
‖ρd2,p‖PPT. By applying [3, Proposition 4.2], we obtain the following inequality:
there are absolute constants c, C such that for any η > 0,

P(|‖ρ‖PPT −Md2,p| ≥ η) ≤ C exp(−cp) + C exp(−cpη2). (8.2)

Let Wd2,p be a (d2, p)-Wishart matrix. It follows from Theorem 2.3 that
λmin(WΓ

d2,p) converges in probability towards 1− 2/
√

4 − ε when d, p tend to infin-
ity. By (8.1), TrWd2,p/d

2 converges in probability to 1. Since Wd2,p/TrWd2,p has
distribution µd2,p, it follows that ‖ρd2,p‖PPT converges to 2√

4−ε
. In particular,

lim
p,d→∞

Md2,p =
2√

4 − ε
> 1.

We now choose η such that 2/
√

4 − ε > 1 + η. For d, p large enough, we have
Md2,p > 1 + η, and we can apply (8.2) to obtain

P(ρ is PPT) = P(‖ρ‖PPT ≤ 1) ≤ C exp(−cp) + C exp(−cpη2).

This concludes the proof of Theorem 8.2 (small dimensions can be taken into
account by adjusting the constants).

9. Miscellaneous Remarks

9.1. Partial transposition of a random pure state

Another natural question from the point of view of Quantum Information Theory
is to study the partial transposition of random pure states (as opposed to random
mixed states considered here). In that direction, one may prove the following result.

Proposition 9.1. For every d, let ρd be a random pure state on Cd ⊗ Cd, with
uniform distribution. Then, when d tends to infinity, the empirical eigenvalue dis-
tribution of dρΓ

d approaches a deterministic distribution which can be described as
the distribution of the product of two independent SC(0, 1) random variables.

Remark 9.1. The notion of convergence used is the same as in Theorem 8.1.
The limiting distribution appearing in Proposition 9.1 has vanishing odd moments
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and even moments equal to the square of Catalan numbers. Such a distribution
has been studied recently in [9], where a closed formula for the density (involving
special functions) is derived.

Proof of Proposition 9.1 (sketch). If ρ = |ψ〉〈ψ| is a pure state on Cd ⊗ Cd,
the eigenvalues of ρΓ can be described from the Schmidt coefficients of ψ (Schmidt
coefficients for tensors correspond to singular values for matrices, and are there-
fore governed by the Marčenko–Pastur distribution). Indeed, given a Schmidt
decomposition

ψ =
d∑

i=1

√
λiei ⊗ fi,

for some orthonormal bases (ei), (fi), one checks that

|ψ〉〈ψ|Γ =
d∑

i,j=1

√
λiλj |ei ⊗ fj〉〈ej ⊗ fi|.

It follows that the eigenvalues of |ψ〉〈ψ|Γ are{
λi, for every 1 ≤ i ≤ d,

±√λiλj , for every 1 ≤ i < j ≤ d.

Eigenvalues of the first category do not contribute to the limit distribution, and the
result follows with little effort.

9.2. Unbalanced bipartite systems

We may apply partial transposition to any decomposition Cd2 � Cd1 ⊗ Cd2 , with
d1d2 = d2. Provided the ratio d1/d2 stays away from 0 and ∞, Theorems 2.2 and 2.3
remain valid. The point is that the main contributions come from terms in which
�a ∼ �b, so that d#�a

1 d#�b
2 depends only on the product d1d2.

9.3. Connexions to free probability

The same model of partially transposed Wishart matrices has been considered
recently by Banica and Nechita [6] in a different asymptotic regime (when d1 is fixed
and d2 goes to infinity). For that regime the picture is different: they obtain that the
limit spectral distribution can be described as the difference of two freely indepen-
dent random variables with Marčenko–Pastur distributions. The shifted semicircle
distribution appears then as a limit case. We refer to [6] for more information.

9.4. Uniform mixtures of random pure states

There is another popular model of random states which is very similar to the model
of random induced states considered in Sec. 8, for which our results are also valid.
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Let (ψi)1≤i≤p be unit vectors in Cn, chosen independently according to the uniform
probability measure on the the unit sphere. Then we consider the random state

ρ =
1
p

p∑
i=1

|ψi〉〈ψi|.

Denote by νn,p the distribution of ρ. This model of random states has been con-
sidered for example in [23]. When n, p are large, the probability measures µn,p and
νn,p behave similarly. It can be shown that Theorems 8.1 and 8.2 remain valid when
the probability measures µn,p are substituted by the probability measures νn,p.

9.5. Volume of the PPT convex body

How many states have a positive partial transpose? This question may be formulated
using the Lebesgue measure (or “volume”) induced by the Hilbert–Schmidt scalar
product, or equivalently (cf. Proposition 8.1) by the induced measure over an ancilla
of equal dimension. LetWd be a (d2, d2)-Wishart random matrix. It was shown in [2]
(formulated as a lower bound on the volume of the set of PPT states, and using
techniques from high-dimensional convexity) that for some constant C > 0

P(WΓ
d ≥ 0) ≥ exp(−Cd4). (9.1)

By Theorem 2.3, the probability on the left-hand side tends to 0 when d tends to
+∞. How fast it goes to zero is actually a question about large deviations. For
standard models of random matrices, very precise results are known about large
deviations (see e.g. [1, Sec. 2.6.2]), and one may expect the lower bound from (9.1)
to be sharp.

Conjecture. There is an absolute constant c > 0 such that, whenever Wd is a
(d2, d2)-Wishart matrix,

P(WΓ
d ≥ 0) ≤ exp(−cd4).

This would quantify precisely how (un)common are PPT states in large
dimensions.
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