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We study the distinguishability norms associated to families of locally restricted POVMs
on multipartite systems. These norms (introduced by Matthews, Wehner and Winter)
quantify how quantum measurements, subject to locality constraints, perform in the
task of discriminating two multipartite quantum states. We mainly address the fol-
lowing question regarding the behaviour of these distinguishability norms in the high-
dimensional regime: On a bipartite space, what are the relative strengths of standard
classes of locally restricted measurements? We show that the class of PPT measurements
typically performs almost as well as the class of all measurements whereas restricting
to local measurements and classical communication, or even just to separable measure-
ments, implies a substantial loss. We also provide examples of state pairs which can be
perfectly distinguished by local measurements if (one-way) classical communication is
allowed between the parties, but very poorly without it. Finally, we study how many
POVMs are needed to distinguish almost perfectly any pair of states on C¢, showing
that the answer is exp(©(d?)).
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1. Introduction

How quantum measurements can help us make decisions? We consider a basic problem, the
task of distinguishing two quantum states, where this question has a neat answer. Given
a POVM (Positive Operator-Valued Measure) M on C?, Matthews, Wehner and Winter [1]
introduced its distinguishability norm || - ||, which has the property that given a pair (p, o)
of quantum states, ||p — o||m is the bias observed when the POVM M is used optimally to
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514  Locally restricted measurements on a multipartite quantum system: data hiding is generic

distinguish p from o (the larger is the norm, the more efficient is the POVM). More generally,
we can associate to a family of POVMs M the norm | - [|m = sup{|| - [m : M € M} which
corresponds to the bias achieved by the best POVM from the family.

In this paper, we study these norms from a functional-analytic point of view and are
mostly interested in the asymptotic regime, when the dimension of the underlying Hilbert
space tends to infinity.

1.1. How many essentially distinct POVMs are there?

The (infinite) family ALL of all POVMs on C¢ achieves maximal efficiency in the distin-
guishability task, and in some sense gives us perfect information. It was indeed one of the
seminal observations by Holevo [2] and Helstrom [3] that | - ||aL, = || - ||1, so that two orthog-
onal quantum states could be perfectly distinguished (i.e. with a zero probability of error) by
a suitable measurement. But how “complex” is the class ALL? What about finite subfami-
lies? How many POVMs are needed to obtain near-to-optimal efficiency? We show (Theorem
1 in Section 2.2) that exp(©(d?)) different POVMs are necessary (and sufficient) to obtain
approximation within a constant factor. The concept of mean width (from convex geometry)
plays an important role in our proof, which is detailed in Section 3.

1.2. Locally restricted POVMs on a multipartite quantum system

On a multipartite quantum system, experimenters usually cannot implement any global ob-
servable. For instance, they may be only able to perform quantum measurements on their own
subsystem (and then perhaps to communicate the results classically). A natural question in
such situation is thus to quantify the relative strengths of several classes of measurements, re-
stricted by these locality constraints, such as LOCC, separable or PPT measurements (precise
definitions appear in Section 2.3).

Let us summarize the main result in this paper (restricting here to the bipartite case for
the sake of clarity). We consider typical discrimination tasks, in the following sense. Let p
and o be states chosen independently and uniformly at random within the set of all states on
C? @ C%. We show that our ability to distinguish p from o depends in an essential way on
the class of the allowed measurements. Indeed, with high probability, ||p — o||ppT is of order
I (as lp — ollarc) while [lo - ollsee, [lo - ollLoce and ||p — ollLoce are of order 1/V4d.
This shows that data hiding is generic: typically, high-dimensional quantum states cannot be
distinguished locally even though they look different globally.

These results appear as Theorem 2 in Section 2.4. The proofs are detailed in Section 5.
They rely, as a first essential step, on estimates on the volume radius and the mean width
of the (polar of) the unit balls associated to the norms || - |lppr, || - [lsep and || - |[Locc
(Theorem 4). We gathered tools and results from convex geometry in an Appendix. The use
of concentration of measure and random matrix theory (Proposition 3) then allows to pass
from these global estimates to the estimates in a typical direction quoted above. In Section 6
corollaries on quantum data hiding are derived and detailed, both in the bipartite and in the
generalized multipartite case.

We also provide examples of random bipartite states p, o on C%® C? which are such that
|p — ollLocc—~ = 2 while, with high probability, |p — o|Lo is of order 1/v/d. The precise
result appears as Theorem 3 in Section 2.4 and is proved in Section 4.
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1.3. Notation

We denote by H(C?) the set of Hermitian operators on C¢, and by H,(C?) the subset of
positive operators. We denote by || - ||1 the trace class norm, by || - ||o the operator norm and
by || - ||2 the Hilbert—Schmidt norm. When A, B are self-adjoint matrices, we denote by [4, B]
the order interval, i.e. the set of self-adjoint matrices C' such that both C'— A and B — C are
nonnegative. In particular, [-Id, Id] is the self-adjoint part of the unit ball for || - ||o. We also
denote by || - [|2 the Euclidean norm on R™ or C™.

The letters C, ¢, g, ... denote numerical constants, independent from any other param-
eters such as the dimension. The value of these constants may change from occurrence to
occurrence. When A and B are quantities depending on the dimension, the notation A < B
means that there is a constant C such that A < CB. The notation A ~ B means both A < B
and B < A, and A ~ B means that the ratio A/B tends to 1 when the dimension tends to
infinity.

Extra notation, concepts and results from convex geometry are introduced in Appendix
Al

2. Distinguishing quantum states: survey of our results

2.1. General setting

In this section, we gather some basic information about norms associated to POVMs, and
refer to [1] for more details and proofs. A POVM (Positive Operator-Valued Measure) on C?
is a finite family M = (M;);es of positive operators on C? such that

ZM,L- =1d.

iel

One could consider also continuous POVMs, where the finite sum is replaced by an integral.
However this is not necessary, since continuous POVMs appear as limit cases of discrete
POVMs which we consider here (sec e.g. [4]).

Given a POVM M = (M;);cr on C%, and denoting by {|i), i € I'} an orthonormal basis of
Ceard() e may associate to M the CPTP (Completely Positive and Trace-Preserving) map

M:AeH(CY - > (TeMA)fi)(i] € H(C™D).

iel
The measurement (semi-)norm associated to M is then defined for A € H(C?) as

1Al = [MA) = D [TrMA.

iel

Note that for any A € H(C?), ||Alla < ||All1, with equality if A € H (C?).

In general, ||-||m is @ semi-norm, and may vanish on non-zero Hermitians. A necessary and
sufficient condition for || - ||p to be a norm is that the POVM M = (M;);¢s is informationally
complete, i.e. that the family of operators (M;);c; spans H(C?) as a linear space. This espe-
cially implies that M has a total number of outcomes satisfying card(I) > d? = dim H(C9).
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We denote by Bj.,, the unit ball associated to [ - [|m, and by Ky the polar of By, (i.e.
the unit ball associated to the norm dual to || - ||s). In other words, the support function of
Ky is defined for A € H(C?) as

hien (B8) = 1Al (1)

Precise definitions of these concepts are given in Appendix A.1.
More generally, one can define the “measurement” or “distinguishability” norm associated
to a whole set M of POVMs on C% as

-l i= sup |- f[a-
MeM

The corresponding unit ball, and its polar, are

B = [ Bl
MeM

Ky = conv U Ku
MeM
As mentioned earlier on in the Introduction, these measurement norms are related to
the task of distinguishing quantum states. Let us consider the situation where a system
(with associated Hilbert space C?) can be either in state p or in state o, with equal prior
1

probabilities 5. It is known [2, 3] that a decision process based on the maximum likelihood

rule after performing the POVM M on the system yields a probability of error
1 1 1

Pos (o)

In this context, the operational interpretation of the quantity ||p — o||m is thus clear (and
actually justifies the terminology of “distinguishability norm”): up to a factor 1/2, it is
nothing else than the bias of the POVM M on the state pair (p, o).

Something that is worth pointing out is that, for any set M of POVMs on C%, there exists
a set M of 2-outcome POVMs on C? which is such that || - [m =[5 It may be explicitly
defined as B

M:={ (MId—M) : 3(M)ies €M, ITCI: M=) M,
iel
Note then that -
Knm = conv{2M —1d, (M,I1d — M) € M}.

2.2. On the complexity of the class of all POVMs

Denote by ALL the family of all POVMs on C?. As we already noticed, || - [|aLL = || - |1 and
therefore Kapy equals [—Id, Id], which is the unit ball in H(C?) for the operator norm.

The family ALL is obviously infinite. Since real-life situations can involve only finitely
many apparatuses, it makes sense to ask what must be the cardinality of a finite family
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of POVMs M which achieves close to perfect discrimination, i.e. such that the inequality
|- |lm > All - []aLL holds for some 0 < A < 1. We show that the answer is exponential in d.
More precisely, we have the theorem below.

Theorem 1 There are positive constants c,C such that the following holds

(i) For any dimension d and any 0 < € < 1, there is a family M consisting of at most
exp(C|loge|d?) POVMs on C? such that || - ||m > (1 —€)| - ||aLL.

(ii) For any e > C/v/d, any family M of POVMs on C% such that | - |m > ¢|| - |aLL
contains at least exp(ce?d?) POV Ms.

Theorem 1 is proved in Section 3. It is clear that the conclusion of (ii) fails for ¢ < 1/v/d,
since a single POVM M (e.g. the uniform POVM, see [1]) may satisfy || - [[m = %H -

2.3. Locally restricted measurements on a bipartite quantum system

We now study the class of locally restricted POVMs. We assume that the underlying global
Hilbert space is the tensor product of several local Hilbert spaces. However, for simplicity, we
focus on the case of a bipartite system in which both parts play the same role and consider
the Hilbert space H = C¢® C?. Several classes of POVMs can be defined on H due to various
levels of locality restrictions (consult [1] or [5] for further information).

The most restricted class of POVMs on H is the one of local measurements, whose elements
are tensor products of measurements on each of the sub-systems:

LO = { (M; @ N;)

M; >0, N; >0, Y M; =Idca, » N, =TIdcu
el JjeJ

iel,jed -

This corresponds to the situation where parties are not allowed to communicate.
Then, we consider the class of separable measurements, whose elements are the measure-
ments on ‘H made of tensor operators
SEP := { (M; ® N;) M; >0, N; >0, > M;®N; =Idgagce
jeJ

jeJ -

An important subclass of SEP is the class LOCC (Local Operations and Classical Com-
munication) of measurements that can be implemented by a finite sequence of local operations
on the sub-systems followed by classical communication between the parties. This class can
be described recursively as the smallest subclass of SEP which contains LO and is stable
under the following operation: given a POVM M = (M;);cr on C%, and for each i € I a

LOCC POVM (N{V & N[) . the POVMs

JE.
(Mil/zN]gl)Mil/z ® Nj(z)) and (N;l) ® Mil/ZN;2)Mil/2>
iel,jed; iel,jet;

are in LOCC. A subclass of LOCC is the class LOCC™ of one-way LOCC POVMs, which
has a simpler description

LOCC™ :={ (M; ® N, ; M; >0, Nij >0, Y M;=Idgs, »_ Ni;j =1Idcu

iel jeJ;

>iel,jeJ7; :
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Finally, we consider the class of positive under partial transpose (PPT) measurements,
whose elements are the measurements on H made of operators that remain positive when
partially transposed on one sub-system:

PPT := ¢ (M))jes : M; >0, Mj >0, > M; =Idcagca
jed

The partial transposition I' is defined by its action on tensor operators on H: (M @ N)' :=
MT @ N, MT denoting the usual transpose of M. Let us point out that, even though the
expression of a matrix transpose depends on the chosen basis, its eigenvalues on the contrary
are intrinsic. Therefore the PPT notion is basis-independent.

It is clear from the definitions that we have the chain of inclusions

LO Cc LOCC™” c LOCC C SEP Cc PPT C ALL

and consequently the chain of norm inequalities

I-leo < I lLoce~ < I - roce < |- see < |- [ppT < |- [|ALL- (2)

All the inequalities in 2 are known to be strict provided d > 2. Note though that the
difference between the norms | - |[Locc~ and | - |[lLocc, as well as between || - [Locc and
|l - lsep, has been established only very recently (see [6]).

Here, we are interested in the high-dimensional behaviour of these norms, and the general
question we investigate is whether or not the various gaps in the hierarchy are bounded
(independently of the dimension of the subsystems). It is already known that the gap between
PPT and ALL is unbounded, an important example being provided by the symmetric state
¢ and the antisymmetric state @ on C? ® C? which satisfy (see e.g. [7])

4

— =2 hil — = .
s — allaLL while [[¢ — a|lppT FE)

We show however (see Theorem 2) that such feature is not generic. This is in contrast with
the gap between SEP and PPT which we prove to be generically unbounded (see Theorem
2). We also provide examples of unbounded gap between LO and LOCC™ (see Theorem 3)
but we do not know if this situation is typical. Regarding the gaps between LOCC™, LOCC
and SEP, determining whether they are bounded remains an open problem.

Note also that for states of low rank, the gaps between these norms remain bounded. It
follows from the results of [5] that, for A € H(C? ® C9) of rank r, we have

1
810 > 5= lA s

2.4. Discriminating power of the different classes of locally restricted measure-
ments

Our main result compares the efficiency of the classes LOCC™, LOCC, SEP, PPT and
ALL to perform a typical discrimination task. Here “typical” means the following: we
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consider the problem of distinguishing p from o, where p and o are random states, chosen
independently at random with respect to the uniform measure (i.e. the Lebesgue measure
induced by the Hilbert-Schmidt distance) on the set of all states. It turns out that the
PPT constraint on the allowed measurements is not very restrictive, affecting typically the
performance by only a constant factor, while the separability one implies a more substantial
loss. This shows that generic bipartite states are data hiding: separable measurements (and
even more so local measurements followed by classical communication) can poorly distinguish
them (see [8] for another instance of this phenomenon and Section 6 for a more detailed
discussion on that topic).

Theorem 2 There are universal constants C,c such that the following holds. Given a
dimension d, let p and o be random states, independent and uniformly distributed on the set
of states on C% @ C%. Then, with high probability,

c<|lp—ollppr < lp—ollaLL < C,

c C
ﬁ <|lp—ollLocc~ < |lp —ollLoce < |lp — ollsep < ﬁ

Here, “with high probability” means that the probability that one of the conclusions fails is
less than exp(—cod) for some constant c¢g > 0.

An immediate consequence of the high probability estimates is that one can find in C¢®C?
exponentially many states which are pairwise data hiding.

Corollary 1 There are constants C,c such that, if A denotes a set of exp(cd) independent
random states uniformly distributed on the set of states on C*® C?, with high probability any
pair of distinct states p,o € A satisfies the conclusions of Theorem 2.

We deduce Theorem 2 from estimates on the mean width and the volume of the unit balls
Krocc—, Ksep and Kppt. The use of concentration of measure allows to pass from these
global estimates to the estimates in a typical direction that appear in Theorem 2. We include
all this material in Section 5.

We also show that even the smallest amount of communication has a huge influence: we
give examples of states which are perfectly distinguishable under local measurements and
one-way classical communication but very poorly distinguishable under local measurements
with no communication between the parties.

Theorem 3 There is a universal constant C such that the following holds: for any di-
mension d, there exists states p and o on C* @ C? such that

llp—ollLocc— =2,

and
Q
\/g.

These states are constructed as follows: assuming without loss of generality that d is even,

(3)

lp—ollLo <

let E be a fixed d/2-dimensional subspace of C%, let Uy, ..., U be random independent Haar-
distributed unitaries on C?, and define the random states p; = Uifj’%UJ and o; = Ui%UJ ,
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1 <i<d, on C? (where Pg and Pg. denote the orthogonal projections onto E and E+
respectively). Then, denoting by {|1),...,|d)} an orthonormal basis of C?, define

d
Zli><il ® 0;.

SHE

d
1 N\
p=7 ;:1 |i)(i| ® p; and o =

The pair (p, o) satisfies 3 with high probability.
Theorem 3 is proved in Section 4. It is built on the idea that, typically, a single POVM
cannot succeed simultaneously in several “sufficiently different” discrimination tasks.

3. On the complexity of the class of all POVMs

In this section, we determine how many distinct POVMs a set M of POVMs on C? must
contain in order to approximate the set ALL of all POVMs on C? (in the sense that A||-[|aLL <
I lIIlm < - |laLL for some 0 < X < 1).

The reason for the exp(d?) scaling in the first part of Theorem 1 is that these POVMs
should be able to discriminate any two states within the family of states {diﬁPE}’ where
E varies among all subspaces of C%, and Pg denotes the orthogonal projection onto E. The
set of k-dimensional subspaces of C? has dimension k(d — k), which is of order d? when k is
proportional to d.

The second part of Theorem 1 requires an extra ingredient, since a single POVM may be
able to discriminate exponentially many pairs of subspaces. The concept of mean width (see
Appendix A.1) provides a neat answer to this problem.

To begin with, we prove the first part of Theorem 1. Note that the condition || - ||m >
(1 —¢)|l - |laLL is equivalent to Km O (1 — ¢)[—Id, Id], the set Ky being defined in 1. We
thus only have to make use of the well-known lemma below.
Lemma 1 (Approximation of convex bodies by polytopes) Given a symmetric con-
vex body K C R™ and 0 < € < 1, there is a finite family (x;);cr such that card(I) < (3/e)™
and

(1-¢)K Cconv{tz; : i€l} CK.

Proof. Let N be e-net in K, with respect to | - ||x (the gauge of K, as defined in
Appendix A.1). A standard volumetric argument (see e.g. [9], Lemma 4.10) shows that we
may ensure that card(N) < (3/¢)™. Let P := conv(+N) C K. Given any = € K, there exists
x' € N such that ||z — 2’| <e. Therefore

Izl < ll2'[lp + [l — 2'[lp < 1+ €4,

where A := sup{||ly||lp : y € K}. Taking supremum over z € K, we obtain A < 1+ ¢4
and therefore (A is easily seen to be finite) A < (1 —¢)~!. We thus proved the inequality
|- llp < (1 —=¢)7Y ||k, which is equivalent to the inclusion (1 —¢)K C P. 0O.

When applied to the d-dimensional convex body Karr = [—1d,Id], Lemma 1 implies
that there is a finite family (A4;)ier C [—1d,Id] with card(l) < (3/5)d2 and conv{tA; : i€
I} O (1 —¢)[-Id,Id]. For every i € I, we may consider the POVM

ML (Id—s—Ai’Id—Ai).
2 2




G. Aubrun and C. Lancien 521

If we denote M := {M; : i € I}, then for any i € I, £A4, € Ky, and therefore (1 —
¢)[~1d,1d] C Km, which is precisely what we wanted to prove.

We now show the second part of Theorem 1. The key observation is the following lemma,
where we denote by «a,, the mean width of a segment [—xz,z] for  a unit vector in R", so
that cu, ~ \/2/7mn (see Appendix A.1).

Lemma 2 Let M be a POVM on C%. Then the mean width of the set Ky defined in 1
satisfies w(Km) < dagz, with equality if M is a rank-1 POVM (note that dagz is of order 1).

It may be pointed out that the assertion of Lemma 2 implies that, as far as the mean
width is concerned, all rank-1 POVMs are comparable!

Proof. Given any POVM M, there is a rank-1 POVM M’ such that Ky C Ky (this is
easily seen by splitting the POVM elements from M as a sum of rank-1 operators). Therefore,
it suffices to show that w(Ky) = dage for any rank-1 POVM. Let M = (p;[t)i)(¥i]);c; be a
rank-1 POVM, where (p;);cr are positive numbers and (1););cr are unit vectors such that

> pilwi) (il =1d.

iel
By taking the trace, we check that the total mass of {p; : i € I'} equals d. We then have,
for any A € H(C?),
R () = pil (il Al .
iel
Hence, denoting by Sy (ca) the Hilbert—Schmidt unit sphere of H(C?) (which has dimension
d? — 1) equipped with the uniform measure o, the mean width of Ky can be computed as

w(Ky) = /S i () do(8) =3 </s

H(CD) el

(il Alpi)] dU(A)> =Y piae = dag.
H(cd) iel
a.
Assume that M is a family of N POVMs such that ||Allm > €]|All; for any A € H(C?).

This implies that Kn D €[—Id,Id] and therefore that
w(Kyp) > ew([-1d,1d]) ~ eVd, (4)

where we used last the estimate on the mean width of [—Id,Id] (from Theorem A.4). On the
other hand, we have

Ky =conv [ | Ku |, (5)
MeM

so that K is the convex hull of IV sets, each of them of mean width bounded by an absolute
constant (by Lemma 2). We may apply Lemma A.1 with A = v/d since [—Id, Id] is contained
in the Hilbert-Schmidt ball of radius v/d. Recalling that the ambient dimension is n = d?,

we get
\/logN>
vd )

A comparison of the bounds 4 and 6 immediately yields log N > £2d?, as required.

w(Km) < C <1 + (6)
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4. Unbounded gap between LO and LOCC

In this section we give a proof of Theorem 3. Let {|1),...,|d)} be an orthonormal basis
of CZ. For d even, we consider a fixed d/2-dimensional subspace E C C¢, and denote
Ag = 2Pg — Id. We then pick Uy, ..., Uy random independent Haar-distributed unitaries on
C?, and for 1 < i < d we consider the random operators A; = UZ»AOUZ-T . We finally introduce

d

A=Yl ® A (7)

i=1

For each 1 < i < d, let M; = (M;,1d — M;) be a POVM on C? such that ||A;||m, = || A1
Then,
M = (J8) (il @ M;, i) (i] @ (Id = M), <<

is a POVM on C? ® C? which is in LOCC™, and therefore

d
1A = [AllLoce~ = 1Ay =) Al = d*.

i=1

Theorem 3 will follow (with p and o being the positive and negative parts of A, after renor-
malization) if we prove that ||A[Lo < Cd®/? with high probability.
Proposition 1 For A € H(C? ® C%) defined as in 7, we have

d
|A||I:0:SUP{ZAZ'”N : N POVM on Cd}. 8)

i=1

This quantity can be upper bounded as follows, where N denotes a 1—16—71625 mn Scd,

d
IAlLo < d sup Y |{a|Ala)] (9)
(L‘escdizl
d
< 2dsup > [(alAlo). (10
T&N =1

Proof. The inequality > in 8 follows by considering the LO POVM (i) (i])1<i<a ® N.
Conversely, given POVMs M = (M,);c; and N = (Ni)gerx on C?, we have

Aoy = Y.

d
> Tr((liil ® Ad) (M ® Nk))|

jeJd, keK |i=1
d

< 3 () (zmmiw)
i=1 \jeJ kEK

d
< Y llA,
=1

the last inequality being because, for each 1 <@ < d, > ., |[(i[M;|i)] = >, ;(i[M;li) =
(i]¢) = 1. Taking the supremum over M and N gives the inequality < in 8.
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The supremum in 8 is unchanged when restricting to the supremum on POVMs whose
elements have rank 1, since splitting the POVM elements as sum of rank 1 operators does
not decrease the distinguishability norm. If N is such a POVM, its elements can be written
as (ag|zr){@k|)kek, where (x)rex are unit vectors and (o )gex positive numbers satisfying
> kex 0k = d. We thus have in that case

ZHA In = Z Z ITr(A; - agler)(zk])| < d sup Z| (x| A |x) ],
Scd i=1

i=1 keK

proving 9.

To prove 10, we introduce the function g defined for =,y € C? by g(z,y) = 2?21 (x| Aily)],
and the function f defined for x € C¢ by f(x) = g(z,x). Denote by G the supremum of g
over Sca X Sga, by F the supremum of f over Sqa and by F’ the supremum of f over a d-net
N. For any z,y € C? and A € H(C?), we have by the polarisation identity

(z|Aly) = — ((z + ylAlz + y) + i{z + iy|Alz +iy) — (z — y|Alz —y) — i{z —iy|Alz —dy)),

1
4

so that g(z,y) < X (f(z+y) + f( +iy) + f(x —y) + f(xz —iy)) and therefore G < 4F.
Given z € Sod, there exists z’ € A such that ||z —2'||2 < §, and by the triangle inequality,
for any A € H(C?),

[(z|Alz)| < [(z]Ale — ') + [(z — 2'|Ala")| + [{2'|Al2")] .
Summing over i with A = A; and taking supremum over x € Sca gives
F <20G+F <8F+F'.

For 6 = 1/16, we obtain F < 2F’, and therefore 10 follows from 9. O.
To bound [|A||Lo, we combine Proposition 1 with the following result.

Proposition 2 Let x be a fized unit vector in C?, E be a fived d/2-dimensional subspace of
C? and Ay = 2Pg —1d, (U, i)1<i<n be Haar-distributed independent random unitaries on Cce,
and for each 1 < i <mn, set A; = UZAoUl . Then, for any t > 1,

<Z| x|A;|z)| > (1 —l—t)nE<aj|A1|3;>|> < e—cont,

co being a universal constant.

Proof. Proposition 2 is a consequence of Proposition 6.2 from [4] (which is itself a vari-
ation on Bernstein inequalities). The quantity E|{x|A;|z)| is equal to the so-called “uniform
norm” of A; (see [1, 4]) and we use the bound from [5]

1
E[{z]Ai|z)] < SllAd]l2 =

-
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We now complete the proof of Theorem 3. Let A be a minimal 1/16-net in Sga, so that
card(N) < 48%¢ (see [9], Lemma 4.10). Using Propositions 1 and 2 (for n = d), and the union
bound, we obtain that for any ¢t > 1

d
p (||A|@ > 9(1 +t)d3/2) <P <3 zeN Y [alAda)] > (1 + t)ﬁ) < 48%de—codt
i=1
This estimate is less than 1 when ¢ is larger than some number ¢y. This shows that
|AllLo < 2(1+t9)d®? with high probability while ||Al|Locc~ = d?, and Theorem 3 follows.
Remark 1 The operator A defined by equation 7 can we rewritten as A = d?(p’ — 1d/d?),
with

d
2 Ny
p'= 2> il ®UiPpU}.
=1

It thus follows from Theorem 3 that ||p’ — 1d/d?||Lo < C/Vd with high probability, while
lp) —1d/d?|Locc~ = 1. This property is characteristic of data locking states. These are
states whose accessible mutual information (i.e. the mazimum classical mutual information
that can be achieved by local measurements) drastically underestimates their quantum mutual
information (see [10] for the original description of this phenomenon). Now, following [11]
and [12], data locking may also be defined in terms of distinguishability from the mazimally
mized state by local measurements: informally, a state p on C¢ @ C? which is such that

lp—1d/d*|Lo < |p —1d/d?|Locc— may be used for information locking.

5. Generic unbounded gap between SEP and PPT

5.1. Volume and mean width estimates

The first step towards Theorem 2 is to estimate globally the size of the (dual) unit balls
Kppr, Ksgp and Krocc— associated to the measurement norms || - [|ppT, || - ||lsep and
|l - lLocc—. Classical useful invariants used to quantify the size of convex bodies include the
volume radius and the mean width, which are defined in Appendix A.1.

Note that whenever we use tools from convex geometry in the space H(C? @ C?) (which
has dimension d?) it is tacitly understood that we use the Euclidean structure induced by the
Hilbert—Schmidt inner product (A, B) = Tr(AB). The definitions of the volume radius and
the mean width of Ky thus become

4
VO]KM 1/d
vrad(Kwm) = (VOIBHS>

and
w(ttn) = [ Al do(a),
Sus

where By denotes the Hilbert—Schmidt unit ball of H(C?®C?) and Sg s its Hilbert—Schmidt
unit sphere equipped with the uniform measure o. Here are the estimates on the volume radius
and the mean width of Kppr, Ksgp and Krocc—. As a reference, recall that (on Clg Cd)

vrad(KaLL) ~ w(KaLL) ~ d.
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This follows from Theorem A.4 once we have in mind that Kapy = [—Id, Id].
Theorem 4 In C%® C%, one has

vrad (Kppr) ~ w (Kppr) ~ d,

and
vrad (KLocc—) ~ w (KLocc—) ~ Vi,

vrad (Kpocc) ~ w (Krocc) ~ Vd,

vrad (KSEP) ~ W (KSEP) ~ /.

To prove these results, we will make essential use of the Urysohn inequality (Theorem
A.1): for any convex body K C R", we have vrad(K) < w(K). In particular, Theorem 4
follows from the following four inequalities: (a) w(Kppt) =X d, (b) vrad(Kppr) = d, (c)
w(Ksgp) < vVd (d) vrad(KLocc~) = Vd.

5.2. (a) Proof that w(Kppt) =< d

This follows from the inclusion Kppr C [—Id,1d], together with the estimate on the mean
width of [-Id, Id] from Theorem A.4.

5.3. (b) Proof that vrad(Kppt) = d

We start by noticing that
Kppr = [-1d,1d] N [-1d,1d]".

We apply the Milman—Pajor inequality (Corollary A.1) to the convex body [—Id,Id] (which
indeed has the origin as center of mass) and to the orthogonal transformation I' (the partial
transposition). This yields

1 vrad ([-1d, Id])*
vrad (Km) > im = a,

where we used the estimates on the volume radius and the mean width of [-Id,Id] from
Theorem A.4.

5.4. (c¢) Proof that w(Kggp) < Vd

We are going to relate Kggp with the set S of separable states on C? ® C¢. In fact, denoting
the cone with base S by
RTS:={\p : NeR", pe S},

we have Kggp = L N (—L), where
L:=2 (R*S N [O,Id]) —1d.
This gives immediately an upper bound on the mean width of Kggp

w(Ksgp) < w(L) < 2w(RTSN[0,1d]) < 2w({\p : A € [0,d%], p € S}) = 2d*w(conv({0},S)).
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Now, if K, K’ are two convex sets such that KNK’ # (§, then w(conv(K, K')) < w(K)+w(K").
So, denoting by «,, the mean width of a segment [—z,z] for x a unit vector in R", we have

Qg4 1 1
w(conv({0},S)) < w(conv{0,1d/d*}) + w(S) = 7(1 + PR =< yETeh

where we used the estimate w(S) ~ d=3/? from Theorem A.6, and the fact that a,, ~ n~1/2
(see Appendix A.1).

5.5. (d) Proof that vrad(Kpocc—) = Vd
We consider the following set of states on C% @ C¢

T = conv {|¢)(¢)| ® o : ¢ € Sga, o astate on C? such that [|o]| < 3/d} .

A connection between T and LOCC™ is given by the following lemma.
Lemma 3 Let p,p’ € T such that p+ p' = 21d/d%. Then the operators %p and %Qp’ belong
to KLocc— -

Proof. There exist convex combinations (a;)icr, () e, unit vectors (v4)ier, (¥;)jes

and states (0;)icr, (07) e satisfying [|oillc < 3/d, ||0}]lc < 3/d, such that
p=> )il @i and p = i) @a].
icl jeJ
Define states (7;);er and (TJ/»)jGJ by the relations o; + 27; = 0;- + 2TJ’. = 3Id/d. It can then be
checked that the following POVM is in LOCC™

d2 d2 d2 / !/ / / d2 / !/ / /
M= <6az|wz><wz| ® oy, E%W%Mwﬁ ® 2, Eaj|¢j><wj| ® oy, Eaj|wj><wj| ® 2Tj) -
iel,jed

Hence, tPe operators %Qp and %2 o’ belong to Ky ind therefore to Kpocc—- O.
Let T be the symmetrization of T defined as T'=TN {2;—’?} — T}. By Lemma 3 and the
fact that Kpocc— is centrally symmetric, we have

& .
ECOHV(T, —T) C Krocc—-

We are going to give a lower bound on the volume radius of T. The center of mass of
the set T' equals the maximally mixed state Id/d? (indeed, the center of mass commutes with
local unitaries). By Corollary A.1, this implies that vrad(T) > 2vrad(T). On the other hand,
one has (see definitions in Appendix A.3)

conv(T, —=T) D = - S¢&82 . (11)

Ul

Let us check 11. An extreme point of 2 - S{®SZ has the form +[¢) (1| ® A for ¢ € Sca and
A € H(C?) such that ||A]|co < 1/d. Let e =2 —||All; > 1 and let AT, A~ be the positive and
negative parts of A. Set \* =e/4 + TrA*/2 (so that At + A~ = 1), and consider the states
p* = 3= (e/4-1d/d + A*/2). We have

e/4d +1/2d

3
ioo< < -
lo* e < == < 5
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and therefore p* € T. Since A = A\*p* — A~ p~, this shows 11. Using Theorem A.5, it follows
that
vrad(conv(T, —T)) = d~3/2,

And therefore,
vrad(conv(T, —T)) > vrad(T) = vrad(T) = vrad(conv(T, ~T)) = d~%/2,

the first and third inequalities being due to the Rogers—Shephard inequality (Theorem A.3).
We eventually get
vrad(KLocc~) = V.

5.6. Discriminating between two generic states

Let M be a family of POVMs on C? (possibly reduced to a single POVM). We relate the
mean width w(Km) to the typical performance of M for discriminating two random states,
chosen independently and uniformly from the set D(C?) of all states on C?.

Proposition 3 Let M be a family of POVMs on C?, and denote w := w(Ppg, Kwm), where Py,
stands for the orthogonal projection onto the hyperplane Hy C H(CY) of trace 0 Hermitian
operators on C%. Let p and o be two random states, chosen independently with respect to the
uniform measure on D(C?). Then,

w
E=E|p—-0c ~ 12
o —ollm Nz (12)
Moreover, we have the concentration estimate
vV t>0, P(’||p—a||M—E| > t) < 2exp(—cdt?), (13)

c being a universal constant.

We first deduce Theorem 2 from Theorem 4 and Proposition 3 (we warn the reader that
we apply the latter on the space C?¢ ® C¢, and therefore the ambient dimension is d? instead
of d).

Proof. [Proof of Theorem 2] Let M € {LOCC,LOCC™,SEP, PPT}. While we com-
puted w(Knm) in Theorem 4, the relevant quantity here is w(Pg,Km). We show that both
are comparable. We first have the upper bound (see A.1 from Appendix A.1)

w(PryKm) 2 w(Km).

To get the reverse bound, we consider the volume radius rather than the mean width. If we
denote more generally by H, the hyperplane of trace t operators on C%, we have by Fubini’s
theorem
1
volga (Km) = g/dz volga_1 (Km N Hy) dt.
By the Brunn—Minkowski inequality, the function under the integral is maximal when ¢t = 0,
and therefore
volga (Km) < 2dvolga_q (Km N Ho).
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It follows easily that w(Pr, Km) > vrad(Pr, Kwm) > vrad(KmNHp) = vrad(Km) ~ w(Kwm),
the first inequality being the Urysohn inequality (Theorem A.1) and the last estimate being
by Theorem 4. Once this is known, Theorem 2 is immediate from Proposition 3. O.

Proof. [Proof of Proposition 3] We first show the concentration estimate 13, using the
following representation due to Zyczkowski and Sommers [13]: p has the same distribution as
M MY, where M is uniformly distributed on the Hilbert-Schmidt unit sphere (denoted Sgg)
in the space of complex d x d matrices. We estimate the Lipschitz constant of the function
fi(M,N)~ ||[MM" — NNT||m, defined on Sgg x Sps, as follows:

F(My, Ny) = f(Ma,Na) = ||MyM] — NiNJ||m — || Mo M — NaNJ |m
< |IMyM{ = MyM]||p + [|NUNT — NoNJ [|m
< V(M) - MoM | + NN - NoN2)
< Vd(@2IMy — Majz + 2|[N1 — Nala).

We used the standard bounds || - [|[m < || - |1 < V/d| - |2 and ||AAT — BBT||s < [|(A —
B)BT||2 +||A(A— B)'||2 to get the second and the third inequalities respectively. We obtain
as a consequence of Lemma 4 below (a variation on Lévy’s lemma) the desired estimate

P (|lp—ollm — E| > t) < 2exp(—cdt?).

In our application of Lemma 4, we identify the set of complex dx d matrices with R™ (n = 2d?),
and use L = 2/d.

Lemma 4 Let S be the unit sphere in R™, and equip S x S with the metric d((z,y), (z',y')) :=
|z — 2’| + |y — ¢'| and the measure p ® p, where p is the uniform probability measure on S.
For any L-Lipschitz function f: S xS — R and any t > 0,

P(|f — Ef| > t) < 2exp(—cnt?/L?),

¢ being a universal constant.

Lemma 4 can be deduced quickly from the usual Lévy lemma (see [14]) which quantifies the
phenomenon of concentration of measure on the sphere. If we denote E, := fS flx,y)duly),
we may apply Lévy’s lemma to show that, for fixed z, the function y — f(z,y) concentrates
around its expectation E,, and again Lévy’s lemma to show that the function  — E, (which
is L-Lipschitz, as an average of L-Lipschitz functions) is also well-concentrated.

We now prove the first part of Proposition 3. Let A be a random matrix uniformly chosen
from the Hilbert—Schmidt sphere in the hyperplane Hy, and p,o be independent random
states with uniform distribution. We claim that, from a very rough perspective, the spectra
of p— o and %A look similar. More precisely, we have

Lemma 5 Let p,o be independent random states uniformly chosen from D(C?), and A be
a random matriz uniformly chosen from the Hilbert—Schmidt sphere in the hyperplane Hy.
Then with large probability

HA”1 = \/& ”AH? =1, ”AHOO = 1/\/&

lo—olli =1, llo—olla=1/Vd, |p— oo =1/d.
Moreover these statements hold in expectation: e.g. E||Alloo ~ 1/Vd and E||p — 0||o0 ~ 1/d.
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In order to compare p — o with A, we rely on the following lemma. For x = (z1,...,2,) €
R", we denote ||z]/cc = max{|z;| : 1 <i<n}and |z|1 => 1 |zl
Lemma 6 Let E={z € R™ : >  x; =0} and let |||-||| be a norm on E which is invariant

under permutation of coordinates. Then, for any nonzero vectors x,y € E, we have

[E41ES

Il < 2n
1yllx

[lyll]- (14)

Assuming both lemmas, we now complete the proof of Proposition 3. On the hyperplane
E c R of vectors whose sum of coordinates is zero, we define a norm by

el == / |Udiag(2)U||p dU,
U(d)

where the integral is taken with respect to the Haar measure on the unitary group, and
diag(x) denotes the diagonal matrix on C? with diagonal elements equal to the coordinates
of . Note that ||| - ||| is obviously invariant under permutation of coordinates. Also, A has
the same distribution as Udiag (spec(A)) UT, where U is a Haar-distributed unitary matrix
independent from A and spec(A4) € R? denotes the spectrum of A € H(C?) (the ordering of
eigenvalues being irrelevant). The same holds for p — o instead of A, and it follows that

El[[spec(A)[]| = E[|[Allm  and  El||spec(p — o)[[| = Ellp — o||m-

Let us show that

1
Ellp - ollm ~ E—=||Aljm. 15
lp = ollm \/gII [Int (15)

We first prove the inequality <. Say that a vector y € FE satisfies the condition (%)
if ||y|l1 > ¢V/d, where we may choose the constant ¢ such that the random vector spec(A)
satisfies the condition (x) with probability larger than 1/2 (this is possible, as we check using
Lemma 5). Now, by Lemma 6, for any y € E satisfying condition (*) and any x € E, we have

el = V]l - [yl

We apply this inequality with = spec(p — o) and take expectation. This gives (using the
statement about expectations in Lemma 5)

Elllp —olllm =

L
va

This inequality is true for any y € F satisfying condition (x). Therefore,

E[[Aflm E|||spec(A)]]]
V- P (spec(A) satisfies condition (x))E|p — o|m

VAE||p - o]|m.

Y

12

as needed. This proves one half of 15, and the reverse inequality is proved along the exact
same lines. Finally, we note that

E[|Allm = w (Pr, Km) ,
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which, together with 15, shows 12, and concludes the proof. 0.

Proof. [Proof of Lemma 5] This is folklore in random matrix theory, in fact much more
precise results are known (for example, ~ can be replaced with ~, with specific constants
implicit in that notation). However, most of the literature focuses on slightly different ran-
dom setups. Accordingly, we sketch an essentially self-contained elementary argument for
completeness.

First of all, we observe that it is enough to prove the upper estimate for || - ||« and the
lower estimate for || - [|2. Indeed, the remaining upper estimates and the lower estimate for
| - llso follow then from the generally valid inequalities || - ||; < Vd|| - ||l2 < d|| - ||oo, while the

lower bound for || - ||; follows from || - [|2 < || - |1/ - 127
The upper bound on || - ||« can be proved by a standard net argument. The lower bound

on ||All2 is trivial, while for ||p — o|l2 we may proceed as follows. First, using concentration
of measure in the form of Lemma 4, E||p — o||» is comparable to (E[p — U||§)1/2. Next, by
Jensen inequality,

Elp— o3 = Ellp —1d/d]3.

Recalling that p can be represented as MM, with M uniformly distributed on Sgg, the last
quantity can be expanded as

2
=ETr|M|* -
2

Id 1
Ellp—- = =
ax ;

and it can be checked by moments expansion that ETr|M|* ~ 2/d. O.

Proof. [Proof of Lemma 6] Define o = 2n||z||/|lyll1. By elementary properties of
majorization (see Chapter II in [15]) it is enough to show that x is majorized by ay, i.e. that
for every 1 < k <mn,

k k
D w<a) yy,
i=1 i=1

where (iﬂf)lgign, (yii)lgign denote the non-increasing rearrangement of x,y. This follows
from the inequalities

k
1 . 2n
Tolm E 2t < min(k,n — k) < Tl E yr. (16)
o =1 i=1

The left-hand inequality in 16 follows from the triangle inequality, once we have in mind that
mf—&-- . -—l—xt = —(mt_H +---+a}). To prove the right-hand inequality in 16, note that the sum
of positive coordinates of y and the sum of negative coordinates of y both equal ||y||1/2. Let £
be the number of positive coordinates of y. If k < £, then y+ 4 - -- +yp > Elylli/2 > £llyll,
while if k> €, then g + -+ yf = —(yey + -+ k) > 25 lyl/2 > Syl ©.

6. Applications to quantum data hiding

6.1. Bipartite data hiding
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As already mentioned, what Theorem 2 establishes is that generic bipartite states are data
hiding for separable measurements but not for PPT measurements. This fact somehow coun-
terbalances the usually cited constructions of data hiding schemes using Werner states (see
e.g. [16, 7, 17] and [1, 5]). Werner states are indeed data hiding in the exact same way for
both separable and PPT measurements.

Besides, results in the same vein as those from Theorem 2 but more specifically orientated
towards applications to quantum data hiding may be quite directly written down. In fact, one
often thinks of data hiding states as being orthogonal states, hence perfectly distinguishable
by the suitable global measurement, that are nevertheless barely distinguishable by any local
measurement. The following theorem provides a statement in that direction.

Theorem 5 There are universal constants C,c such that the following holds. Given a

2
dimension d, let E be a %—dimensional subspace of C* ® C? (we assume without loss of
generality that d is even). Let also p = d%/QUPEUT and o = d%/QUPELUT, where U s a
Haar-distributed random unitary on C* @ C%. Then,

lp—ollaLL = 2,

whereas with high probability,
c<|p-olppr <C,

<o~ ollser < .
Vi =P =4
Proof. The first part of Theorem 5 is clear: the random states p and ¢ are orthogonal
by construction, so that ||p — o|aLL = [|[p — o1 = 2.
To prove the second part of Theorem 5, the only thing we have to show is that Proposition
3 also holds for the random states p and ¢ considered here.
Now, for any family M of POVMs on C*® C?, f : U € U(d?) — || U (P — Ppo)UT||\,

is a %—Lipschitz function. Indeed, by the same arguments as in the proof of 13,

2
J) = 1) < =5 ([UPeU] = UsPuUf I + U1 P Uf = UaPp Uf )
2
< = (It2PeU} = UsPoUS |z + U1 Py U = Us P U2
4
< S IUPe = U2Pllz + [UrPps — UzPp-|2)
8
< Uy = Vs
< SllUr = Uall2

And any L-Lipschitz function g : U(n) — R satisfies the concentration estimate (see the
Appendix in [18])
Vt>0, P(lg—Eg|>t) <2exp(—cnt?/L?),

¢ being a universal constant.

The function f thus satisfies P(|f — Ef| > t) < 2exp(—cd*t?). So the concentration
estimate 13 in Proposition 3 is in fact still true (and actually even stronger) for the random
states under consideration.
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What is more, the results from Lemma 5 remain valid too because we here even have the
equalities

So since 2 U(Pg— Pg.)UT has the same distribution as Vdiag (spec (U (Pg — Ppu)UT)) V1
for V. € U(d?), one may apply Lemma 6 to conclude that the expectation estimate 12 in

2
d—QU(PE — Pg)UT

2 2
—U(Pg — PEL)UTH =

2
—U(Pg — Pg.)UT 5 =

d2

:27 ‘

= 7
1 2 d ‘ 0o

Proposition 3 is in fact still true too for the random states under consideration. 0O.
In words, Theorem 5 stipulates the following. Picking a subspace E at random from the
d

set of ;—dimensional subspaces of C? ® C?, and then considering the states p = dI;—’/‘JQ and

o = 52’5—/2, one gets examples of states which are perfectly distinguishable by some global
measurement and which are with high probability data-hiding for separable measurements
but not data-hiding for PPT measurements.

Remark 2 Let us come back on the example of the symmetric state ¢ and the antisymmetric
state a on C? @ C?. They satisfy (see e.g. [7])

4 2

T = 7 e= . 17
d+1 d+1”g ollar (17)

s — allsep = [|s — allppT =
They are consequently “exceptional” data hiding states for two reasons. First, as mentioned
before, because they are equally PPT and SEP data hiding. And second because they are
“more” data hiding than generic states: their SEP norm is of order é < %, hence almost

reaching the known lower-bound valid for any states p,o on C? @ C¢ (see e.g. [1]) namely
lp—ollsep > 2]p — ol aLL-

6.2. Multipartite vs bipartite data hiding

In Theorem 4, we focused on the bipartite case H = (C%)®2 for the sake of clarity. However,
generalizations to the general k-partite case H = (C%)®* are quite straightforward, at least
in the situation where the high-dimensional composite system of interest is made of a “small”
number of “large” subsystems (i.e. & is fixed and d tends to infinity).

Let us denote by md,k and SEde’,C the sets of respectively k-PPT and k-separable
POVMs on (C%)®F. On the one hand, an iteration of the Milman-Pajor inequality (Corollary
A1) leads to the estimate

Cdek/Q < Vrad(Kpplek) < w(KppTd k) < Cdk/2,

for some constants ¢, C' depending neither on k£ nor on d.
On the other hand, the generalization of Theorem A.6 to the set Sy 1, of k-separable states
on (C%)®* is known, namely (see [25])

k Vklogk

c
W S Vrad(Sde) S 'lU(SdJC) S Cw,
and implies that

Fd'? < vrad(Ksme, ,) < w(Ksep, ) < Cy/klogkd"/?,



G. Aubrun and C. Lancien 533

for some constants ¢, C' depending neither on k& nor on d.

A multipartite analogue of Theorem 2 can then be derived, following the exact same lines
of proof.

Theorem 6 There exist constants ci, Cy such that the following holds. Given a dimension

d, let p and o be random states, independent and uniformly distributed on the set of states on
(CH®E . Then, with high probability,

ek <|llp—olppr,, <llp—ollaLL < Ck,

& <Jlp-ollsee,, <t
N p—oliser,, = N
This means that, forgetting about the dependence on k& and only focusing on the one
on d, for typical states p,o on (C%)®* ||p — ollppr,, is of order 1, like |[p — of[aLL, while
lp—ollsep,, is of order 1/vd*~1.

In this multipartite setting, another quite natural question is the one of finding states
that local observers can poorly distinguish if they remain alone but that they can distinguish

k

substantially better though by gathering into any possible two groups. This type of problem
was especially studied in [17]. Here is another result in that direction.

Define bi — SEP, | as the set of POVMs on (CH®* which are biseparable across any
bipartition of (C?)®*. It may then be shown that for random states p, o, independent and
uniformly distributed on the set of states on (C%)®* with high probability, lp—o||lbi—sEP , ~
d=*/* (whereas ||p — ollsep,, ~ d=(*=1/2 by Theorem 6). This means that on (C%)®* with
k > 2 fixed, restricting to POVMs which are biseparable across every bipartition is roughly
the same as restricting to POVMs which are biseparable across one bipartition, whereas
imposing k-separability is a much tougher constraint that implies a dimensional loss in the
distinguishing ability.

Remark 3 This result might not be as strong as one could hope for. It only shows that
Il ||bi,s,Epch typically vanishes slower than || -||sgp, , when the local dimension d grows, but

it does not provide exzamples of states p,o on (C)®* for which ||p — o|lbi—sep_  would be of
order 1 while ||p — ollsep,, would tend to zero. '

7. Miscellaneous remarks and questions

7.1. Complexity of the different classes of POVMs on a bipartite system

Having at hand the estimates on the mean width of Ksgp (or KLocc) and Kppr provided
by Theorem 4, one may follow the exact same lines as in the proof of Theorem 1 to identify
the number of POVMs needed to approximate the corresponding locally restricted classes
of POVMs. It is thus possible to show that on C? @ C4, exp(6©(d*)) different POVMs are
necessary and sufficient to approximate the class PPT. For the class SEP (or LOCC), we
lack a complete answer since the same arguments show that the minimal number of POVMs
is between exp(2(d?)) and exp(O(d?)).

Let us make another comment on that topic. Theorem 2 tells us, amongst other, that the
class of PPT POVMs is, in some sense, a quite good approximation of the class of all POV Ms.
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One may therefore wonder if there would be a way, when trying to approximate the class of
all POVMSs by a finite sub-family, to impose that all POVMs in it are PPT. However, since
the approximation we are looking for is one in terms of distinguishability norms (i.e. one that
is valid for any pair of states to be discriminated), this possibility is ruled out by the fact
that the gap between | - |[ppt and || - ||aLL is unbounded (i.e. that there exist pair of states,
such as e.g. the Werner states, which are poorly distinguished by any PPT POVM).

7.2. What is the typical performance of the class LO?

While Theorem 3 shows that the gap between the classes LO and LOCC may be un-
bounded, we do not know if this situation is typical or not. Asking whether norms are
comparable in a typical direction is more or less equivalent to asking whether the ratio
vrad(KLocc)/vrad(KLo) is bounded as the dimension increases.

7.3. Can the gap between LOCC™ /LOCC/SEP be unbounded?

Or conversely, does there exist an absolute constant ¢ such that the norm inequalities || -
lLocc— > ¢| - lLocec and/or || - |[Locc > ¢ - [|sep hold for any dimension?

7.4. Locally restricted measurements on a multipartite quantum system

There are at least two ways for a multipartite system such as (C%)®* to be of high dimension:
either with k fixed and d large (few large subsystems) or k large and d fixed (many small
subsystems). Theorem 6 tells us what is the typical discriminating power of k-PPT and k-
separable POVMSs, but in the first setting only. The extension to the case of many small
subsystems seems a challenging problem.
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Appendix A. Classical convex geometry

Appendix A.1. Some vocabulary

We work in the Euclidean space R™, where we denote by ||-||2 the Euclidean norm. We denote
by vol,,(+) or simply vol(-) the n-dimensional Lebesgue measure. A convez body K C R™ is
a convex compact set with non-empty interior. A convex body K is symmetric if K = — K.
The gauge associated to a convex body K is the function || - ||x defined for z € R™ by
|z|lx :=inf{t > 0 : x € tK}. This is a norm if and only if K is symmetric.

If K C R™ is a convex body with origin in its interior, the polar of K is the convex body

K° defined as

K°:={yeR" : (z,y) <1 forall z € K}.
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In the symmetric case, the norms || - ||k and || - | ko are dual to each other.
If u is a vector from the unit sphere S"~!, the support function of K in the direction u is

ac() o= mas(, u) = ul -

Note that hg (u) is the distance from the origin to the hyperplane tangent to K in the direction
U.

Two global invariants associated to a convex body K C R", the volume radius and the
mean width, play an important role in our proofs.
Definition A.1 The volume radius of a conver body K C R™ is defined as

vol K \ /™
vol By ’

where B denotes the unit Euclidean ball of R™.
In words, vrad(K) is the radius of the Euclidean ball with same volume as K.

Definition A.2 The mean width of a subset K C R"™ is defined as

vrad(K) := (

w(K) = /Snil gg}:g{(x,u) do(u),

where do(u) is the normalized spherical measure on the unit Euclidean sphere S~ of R™.
If K is a convex body, we have

w(K) := /Snil hi(u)do(u) = /an lu|| o do(u).

The inequality below (see, e.g., [9]) is a fundamental result which compares the volume
radius and the mean width.
Theorem A.1 (Urysohn inequality) For any convex body K C R™, we have

vrad(K) < w(K).

It is convenient to compute the mean width using Gaussian rather than spherical inte-
gration. Let G be a standard Gaussian vector in R™, i.e. such that its coordinates, in any
orthonormal basis, are independent with a N (0, 1) distribution. Denoting v, = E||G||2 ~ v/n,
we have, for any compact set K C R",

we(K) := Emax(G, z) = y,w(K).
zeK
The Gaussian mean width is usually easier to compute. For example, it allows to compute
the mean width of a segment: if u € S"~1 is a unit vector, then

1 /2 2
oy, = w(conv{tu}) = \/7 ~f—.
Yo VT ™m

It also shows how to control the mean width of a projection. Let K C R"™ be a compact set,
and E C R" be a k-dimensional subspace. Denoting Pg the orthogonal projection onto E,
we have wg(PpK) < wg(K), and therefore

w(K NE) < w(PpK) < ZI—:w(K). (A1)
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We also need the following lemma which is an incarnation of the familiar “union bound”
and appears for example as formula (3.6) in [19] (under the equivalent formulation via suprema
of Gaussian processes).

Lemma A.1 (Bounding the mean width of a union) Let Ki,...,Ky be conver sym-
metric sets in R™ such that K; C ABY for every index 1 < i < N (where By denotes the unit
Euclidean ball of R™). Then

w (conv <U Kl>> <C <1I<nff§\7w(Kl) + A /IOiN> 7

i=1

where C is an absolute constant.

Appendix A.2. Some volume inequalities

We use repeatedly the following result, established in [20], Corollary 3.

Theorem A.2 (Milman—Pajor inequality) Let K, L be convex bodies in R™ with the
same center of mass. Then

vrad(K N L)vrad(K — L) > vrad(K)vrad(L).
Choosing K = —L in Theorem A.2 yields the following corollary.
Corollary A.1 If K is a convex body in R™ with center of mass at the origin, then
vrad(K N —K) > %vrad(K),
and more generally for any orthogonal transformation 6,

vrad(K NO(K)) >

We typically use Corollary A.1 in the following way: if K is a convex body with center
of mass at the origin which satisfies a “reverse” Urysohn inequality, i.e. vrad(K) > aw(K)
for some constant «, we conclude that the volume radius of K N 6(K) is comparable to the
volume radius of K.

Another volume inequality which is useful to us is the Rogers-Shepard inequality (see
21)).

Theorem A.3 (Rogers—Shephard inequality) Let u be a unit vector in R™, h > 0
and consider the affine hyperplane

H={xzeR" : (z,u) =h}.

Let K be a convex body inside H and L = conv(K,—K). Then,

2n71
2hvol,_1 (K) < voln(L) < 2hvol,_y (K)=—.

Consequently,
vrad(L) ~ hY/"vrad(K)'=/", (A.2)
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We can infer from equation A.2 that for sets K with “reasonable” volume (which will be
the case of all sets we consider) vrad(K') and vrad(L) are comparable.

Appendix A.3. Volume estimates for Schatten classes and related bodies

We gather estimates on mean width and volume radius of “standard” sets, which are used in
our proofs. We use the following notation for the unit balls associated to Schatten norms

St ={AeH(C) : AL <1},

S ={AeH(CY : ||Al|l <1} =[-1d,1d].

Moreover, given symmetric convex bodies K € R™ and K’ C R™ | their projective tensor
product is defined as

K&K =conviz @z’ : zeK,2' € K'} CR"®@R"
Theorem A.4 We have
vrad(SL) ~ w(SL) ~ V.

~ L
~ o

Proof. The estimates on the mean width follow from the semicircle law. Indeed, the

vrad(S%) ~ w(S%)

standard Gaussian vector in the space of self-adjoint operators on C¢ is exactly a GUE matrix
G (see [22]), and therefore

VAZZ el

2 3T

2
we(S%) = B|G|, = d¥/2 / ”
2

w6 (S7) = E||Gllos = (2 + o(1))Vd.

Hence, w(S%) = v we(SL) ~ +v/d and w(S{) = 7' we(S§) ~ ld

Since S§ and S, are polar to each other, the Santalé inequality (see [23]) yields
1 < vrad(S% )vrad(SY).

If we then use the Urysohn inequality, we obtain

8vd 2
1 <w(SL)w(SY) < ok 1,

and therefore all these inequalities are sharp up to a multiplicative constant. 0O.
We also need volume estimates on projective tensor products of Schatten spaces.

Theorem A.5 We have the following estimates

vrad(S¢&SL ) ~ w(SI&SL) ~

-
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A very similar proof shows that the estimates of Theorem A.5 are also valid when we
consider the full complex Schatten classes, without the self-adjoint constraint. The question
of estimating the volume radius of projective tensor product of Schatten classes has been
considered in [24], where the question is answered (in a general setting) only up to a factor
logd.

Proof. An upper bound on the mean width can be obtained by a discretization argument,
which we only sketch since we will only use the lower bound. There is a polytope P with
exp(Cd) vertices such that S¢ C P C 2S¢, and a polytope @Q with exp(Cd?) vertices such
that S4 C Q € 28% . The polytope P&(Q satisfies

S{®SL c Po&Q C 4S{®SL.

The polytope P®Q is the convex hull of exp(C’d?) points with Hilbert—Schmidt norm at most
4v/d. Using standard bounds for mean width of polytopes (see e.g. [25]) gives the desired
estimate w(S¢&®S%L) < 1/4d.

We now give a lower bound on the volume radius. We denote by B C R" the unit ball
of the space (7. We have the following formula.

Lemma A.2 Let m,n be integers and K C R™ be a symmetric convex body. Then

"
vol(BreK) = M ok,

(mn)!
Consequently,
. 1
vrad(BY®K) ~ —vrad(K).
n
Proof. If(ey,...,e,) denotes the canonical basis of R™, we have, for any z1,...,z, € R™

n
=> il

BroK =l

n
E e Xx;
=1

So Lemma A.2 follows easily from the formula below, valid for any integer p and any symmetric
convex body L C RP,

vol(L) = I%/Rp exp(—||z||r) dz. (A.3)

Equation A.3 itself may be obtained by the following chain of equalities

—+oo
/e_””””de = // e~ tdtda
RP R J|lz| L
—+00
/ / e~ tdedt
0 {llz = <t}
+o0

= / e tvol(tL)dt
0
= vol(L)p!,

the last equality being because f0+°° te~tdt =pl. 0O.
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Denote by {|j)}1<j<4 an orthonormal basis of C¢. The family

(et { U+ G} uf -k

1<j<k<d

is an orthonormal basis of #(C?) whose elements live in v/25¢. Tt follows that

R 1 2 A 1
vrad(S¢&Sd ) > ﬁvrad(Bf ®8d) = gvrad(Sgo),

the last estimate being a consequence of Lemma A.2.

Using Theorem A.4 one may thus conclude that vrad(S{®S%) = 1/Vd. O.

We also need a result on the volume radius and the mean width of the set of separable
states, which is taken from [25].

Theorem A.6 In H(C?® CY), denoting by S the set of separable states, we have

d=3/% ~ vrad(S) < w(S) ~ d~%/2.



