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Summary. We prove that the convergence of the largest eigenvalue λ1 of a n × n
random matrix from the Gaussian Unitary Ensemble to its Tracy–Widom limit
holds in a strong sense, specifically with respect to an appropriate Wasserstein-like
distance. This unifying approach allows us both to recover the limiting behaviour
and to derive the inequality P(λ1 � 2+t) � C exp(−cnt3/2), valid uniformly for all n
and t. This inequality is sharp for “small deviations” and complements the usual
“large deviation” inequality obtained from the Gaussian concentration principle.
Following the approach by Tracy and Widom, the proof analyses several integral
operators, which converge in the appropriate sense to an operator whose determinant
can be estimated.
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Introduction

LetHn be the set of n-dimensional (complex) Hermitian matrices. The general
element of Hn is denoted by A(n), and its entries are denoted by (a(n)

ij ).
We exclusively focus on the Gaussian Unitary Ensemble GUE, which can

be defined by the data of a probability measure Pn on Hn which fulfills the
following conditions:

1. The n2 random variables (a(n)
ii ), (�a(n)

ij )i<j , (�a(n)
ij )i<j are independent,

2. ∀i, a(n)
ii follows the Gaussian law N(0, 1/n),

3. ∀i < j, �a(n)
ij and �a(n)

ij follow the Gaussian law N(0, 1/2n).

The measure Pn is uniquely determined by these three conditions because
of the extra symmetry constraint aij = aji; it can also be made explicit.
Hn is a vector space on which the scalar product 〈u, v〉 := tr(uv) induces a
Euclidean structure, hence a Lebesgue measure. The probability measure Pn

has a density with respect to this Lebesgue measure, which can be shown to
be equal to
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dPn :=
1
cn

exp
(
−n

2
trM2

)
dM

where cn is a normalization constant.
The GUE has the wonderful property of invariance under rotation: indeed

the measure Pn is invariant under the conjugation action of the unitary group.
This makes calculations easier and is very useful for the study of eigenvalues,
which are also invariant under the same action.

From now on, “random matrix” means “element of (Hn,Pn)” seen as a
probability space. Let (Ω,P) denote the product of all these probability spaces∏∞
i=n(Hn,Pn); an element of Ω is a sequence of random matrices, the n-th

matrix being of size n. However, for all the questions we shall consider, the
relationships between the Hn’s for different n’s are immaterial.

For more background, we refer the reader to the monograph [10]. Through-
out the argument, C, c, c′, . . . will stand for positive universal constants, inde-
pendent of the dimension and of any other parameters that may be involved.
The values of these constants may change from place to place.

Let λ1(A(n)) � λ2(A(n)) � . . . � λn(A(n)) be the ordered eigenvalues of a
random matrix A(n). The global asymptotic behavior of these eigenvalues is
well-known. The most famous result in this topic is the semi-circle law, which
can be stated as follows: let N(A(n)) be the probability measure on R derived
from the random matrix A(n) in the following way (δx denotes the Dirac mass
at point x)

N
(
A(n)

)
:=

n∑

k=1

δλk(A(n)).

Then, P-almost surely, the sequence of probabilities (N(A(n)) converges
weakly to a deterministic measure µc, with a density with respect to Lebesgue
measure given by

dµc :=
1
2π

1[−2,2]

√
4− x2 dx.

We are interested here in the asymptotic behavior of the largest eigenvalue
λ1(A(n)), which is a so-called local problem. Classical results (see e.g. [1], also
for precise references to the original articles) claim that

lim
n→∞

λ1

(
A(n)

)
= 2 P-almost surely.

The asymptotic behaviour of λ1(A(n)) was further clarified by Tracy and
Widom, who proved the following result: there exists a continuous decreasing
function ψTW from R onto (0, 1) such that

lim
n→∞

Pn

(
λ1

(
A(n)

)
� 2 + xn−2/3

)
= ψTW(x). (1)

This function ψTW naturally arises as a determinant linked to the so-called
“Airy kernel”, which will be defined later. The most difficult point of Tracy
and Widom’s work was to show that this function ψTW can be written in terms
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of a Painlevé function (see [17]). From this point one can deduce asymptotic
behavior of ψTW around +∞ and find universal positive constants C, c, C′,
c′ such that for x large enough

c′ exp
(
−C′x3/2

)
� ψTW(x) � c exp

(
−Cx3/2

)
. (2)

The remainder of this article is organized as follows: in section 1, we define
an appropriate Wasserstein distance and state our main theorem which asserts
that Tracy–Widom convergence holds in this strong distance. In section 2, we
derive from this theorem the small deviation inequality and compare it with
the classical one. Section 3 introduces the needed framework of determinantal
kernels, which are classical in this field, and section 4 contains the proof of
the main theorem. Finally, section 5 contains an alternative simple derivation
of upper bounds (2) for the Tracy–Widom distribution.

1 Convergence in Terms of a Wasserstein Distance

We call tail function of a measure µ on R the function ψµ : R → [0, 1] de-
fined by ψµ(x) := µ((x,+∞)). Such a function is decreasing, left-continuous,
tends to 1 at −∞ and to 0 at +∞. The tail function just equals 1 minus the
cumulative distribution function. The function appearing in the r.h.s. of (1)
is the tail function of the Tracy–Widom distribution on R (we denote this
distribution by TW ).

We want to prove that the law of the rescaled largest eigenvalue tends to
the Tracy–Widom law in a strong sense. As we only focus on the upper tail,
we can consider truncated laws, supported on an interval [a,+∞) for some
real a. Let Λan be the probability measure with tail function defined by

ψΛa
n
(x) =

{
Pn(λ1(A(n)) � 2 + xn−2/3) if x � a,
1 if x < a.

Similarly, let TW a be the truncated Tracy–Widom law defined by

ψTWa (x) =
{
ψTW(x) if x � a,
1 if x < a.

We are going to show that for any a, Λan tends to TW a with respect to
the distance defined through a mass transportation problem in its Monge–
Kantorovich formulation (see [12]).

A mass transportation problem is the question of optimizing the trans-
shipment from a measure to another with respect to a given cost. More pre-
cisely, let µ and ν be two probability measures on the same space X , and
c : X × X → R+ a symmetric function vanishing on the diagonal (c(x, y)
represent the price to pay to transfer a unit of mass from x to y). Ways to
carry µ onto ν are represented through probability measures π on the square
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space X ×X having µ and ν as marginals (this means that for any measur-
able subset A of X , π(A ×X) = µ(A) and π(X ×A) = ν(A)). We denote by
Π(µ, ν) the space of such π.

The Wasserstein distance associated with the problem is the “minimum
cost to pay”, defined by

d(µ, ν) = inf
π∈Π(µ,ν)

∫

X2
c(x, y) dπ(x, y).

We are going to consider a very special case of this problem. Let us suppose
that X = R and that the cost c is defined as follows

c(x, y) :=
∣∣∣∣
∫ y

x

w(t) dt
∣∣∣∣ (3)

where w is a positive function.
We can now state the main result of this note

Theorem 1. Let w(x) := exp(γx3/2) and let d be the Wasserstein distance
associated with the cost induced by w via the formula (3). Then, for any fixed
a ∈ R, if γ > 0 is small enough, Λan tends to TW a for the distance d:

lim
n→∞

d(Λan, TW
a) = 0.

2 The Small Deviation Inequality

The simplest idea to get concentration inequalities for the largest eigenvalue of
a GUE random matrix is to use Gaussian concentration; it is a straightforward
consequence of the measure concentration phenomenon in the Gaussian space
(see [1]) that

∀t > 0, ∀n, Pn

(
λ1

(
A(n)

)
� Mn + t

)
< exp

(
−nt2/2

)
(4)

where Mn is the median of λ1(A(n)) with respect to the probability measure
Pn. One has the same upper estimate if the median Mn is replaced by the
expected value Enλ1(A(n)).

The value of Mn can be controlled: for example we have Mn � 2 + c/
√
n.

This will be a consequence of our Proposition. Plugging this into the equation
(4), we get the following result, where C is a universal constant

∀t > 0, ∀n, Pn

(
λ1

(
A(n)

)
� 2 + t

)
< C exp

(
−nt2/2

)
. (5)

We ask the question whether in fact both Enλ1(A(n)) and Mn are smaller
than 2. Note that since the function λ1 is convex, its median with respect to
Pn does not exceed its expected value ([7]). A positive answer to this question
would imply that one could choose C = 1 in the inequality (5). The answer
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to the analogous question is known to be positive for the GOE (Gaussian
Orthogonal Ensemble), an ensemble of real symmetric matrices defined in a
similar way as GUE (see [10] for a precise definition). The argument, due
to Gordon, uses a result about comparison of the supremum of Gaussian
processes known as Slepian’s lemma (see [1]) and doesn’t carry over to the
complex setting.

There are similar though not as simple results for Pn(λ1(A(n)) � 2 − t),
but in this paper we will concentrate on the “upper tail” estimates.

The result of Tracy and Widom (1) shows that the majoration (5) is not
optimal for very small values of t. If for example t is equal to xn−2/3 for a
fixed x, then the right-hand side in concentration inequality (5) tends to 1
when n grows to ∞, whereas the left-hand side tends to ψTW(x), which can
be very small.

We would like to derive from our Theorem a deviation inequality which
would improve the inequality (5) for small values of t. For this purpose, the
uniform convergence in (1) (which, by Dini’s theorem, follows formally from
the pointwise convergence) is not enough. But we will prove in this section
that our Theorem implies the following Proposition:

Proposition 1. There exist positive universal constants C and c such that
for every positive t and any integer n

Pn

(
λ1

(
A(n)

)
� 2 + t

)
� C exp

(
−cnt3/2

)
. (6)

Of course, by symmetry of the law Pn, similar results are true for the
smallest eigenvalue λn(A(n))

Pn(λn(A(n)) � −2− t) � C exp
(
−cnt3/2

)
. (7)

Using the fact that for a Hermitian matrix A, the norm equals the maxi-
mum absolute value of an eigenvalue, we get a similar estimate for ‖A(n)‖

Pn

(∥∥A(n)
∥∥ � 2 + t

)
� C exp

(
−cnt3/2

)
. (8)

We need the following lemma to prove the proposition, which will help us
to explicitly compute Wasserstein distance

Lemma 1. Suppose that the measures µ and ν are defined on R, and that
the cost c is defined by an integral, as in (3). If µ and ν are regular enough,
for example if ψµ and ψν are piecewise C1, then the Wasserstein distance
for the cost c equals

d(µ, ν) =
∫ ∞

−∞
w(t)|ψµ(t)− ψν(t)| dx. (9)

Proof. In fact, this transportation problem is explicitly solvable. For a one-
dimensional problem with a cost satisfying the Monge condition (which is
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always the case when the cost is defined using an integral as in (3)), the
optimal transshipment is achieved through the map T defined as follows (see
[12], chapter 3.1) ∫ x

−∞
dµ =

∫ T (x)

−∞
dν.

Thus, we can compute the value of d(µ, ν)

d(µ, ν) =
∫ 1

0

c
(
ψ−1
µ (u), ψ−1

ν (u)
)
du.

Let us consider first the particular case when ψµ � ψν . This allows us to drop
the absolute values in the definition of c (see (3)) and unfold the calculations.
Using the appropriate changes of variables, we come to the equality (9).

For general µ and ν, define µ ∧ ν and µ ∨ ν using their tail functions

ψµ∧ν(x) = min
(
ψµ(x), ψν(x)

)
and ψµ∨ν(x) = max

(
ψµ(x), ψν(x)

)
.

We easily check that ψµ∧ν � ψµ∨ν , d(ψµ, ψν) = d(ψµ∧ν , ψµ∨ν) and that the
value of the r.h.s. of (9) does not change if we replace ψµ and ψν by ψµ∧ν and
ψµ∨ν . This yields the conclusion for the general case. 	


Using this lemma, we get from our theorem (with a = 0), using the upper
bound (2) for ψTW , the uniform estimate

∫ ∞

0

w(x)Pn
(
λ1

(
A(n)

)
� 2 + xn−2/3

)
dx � C

which implies immediately for x � 1 (keep in mind that ψn is decreasing)

ψn(x) � C exp
(
−γ(x− 1)3/2

)
� C′ exp

(
−γ′x3/2

)
. (10)

This is, up to the rescaling t = xn−2/3, the content of the proposition.

Now we can also easily show that our theorem implies the Tracy–Widom
limit (1): using the uniform bound (10) and Lebesgue’s convergence theorem,
we get from the Theorem that ψTW is the pointwise limit of the ψn’s on
[a,+∞), and thus on the whole real line if we let a go to −∞.

It should be emphasized that recently (independently from and slightly
preceding this work), this small deviation result has been proved by Ledoux
in [8] using an argument based on the Harer–Zagier recurrence formula (see [5]
for a simple proof of this formula). The same paper by Ledoux contains an-
other proof based on hypercontractivity which gives the result up to a polyno-
mial factor; this method works also for the Laguerre Unitary Ensemble (see [8]
for the definition). However, the existence of a Tracy–Widom limit does not
follow from this approach. More generally, many contributions to this and
related topics either address the limit behaviour or provide dimension-free
bounds, rarely combining the two. Our technique captures both phenomena
in a single “stroke”.
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3 Relation to Determinants

The remainder of this note is devoted to the proof of the main theorem. For
simplicity, we will prove only the case a = 0, and drop all the superscripts.
The proof for a general a requires only routine modifications.

We are first going to express all involved quantities in terms of determi-
nants of certain operators. This is quite classical work due to Gaudin and
Mehta (see [10]). Part of the calculations done here are present, at least im-
plicitly, in the paper by Tracy and Widom ([17]).

We need new notation. Let (Hn) be the Hermite polynomials, which are
defined by

Hn(t) := (−1)n exp
(
t2
)( d

dt

)n
exp

(
−t2

)
.

They are orthogonal for the measure on R of density exp(−x2) with respect
to Lebesgue measure. Then we note

φn(t) :=
1√
dn
Hn(t) exp

(
−t2/2

)
(11)

where dn :=
∫

R
Hn(x)2 dx = 2nn!

√
π. The family (φn) is therefore orthonor-

mal in L2(R). We introduce

kn(x, y) :=
n−1∑

j=0

φj(x)φj(y).

We can associate to kn an integral operatorKn acting on the Hilbert space
L2(R) in the following way

(Knf)(x) :=
∫

R

kn(x, y)f(y) dy. (12)

This operator Kn is nothing but the orthogonal projection in L2(R) onto
the subspace spanned by (φj)1�j�n.

This is a very general setting: if we have a measure space (X,µ) and a
“kernel” k ∈ L2(X × X), we can define an operator K on L2(X) using a
formula similar to (12). From now on, all kernels are assumed to belong to
L2(X×X) and are denoted by small letters; associated integral operators are
denoted by the corresponding capital letter.

It is straightforward to prove that Hilbert–Schmidt operators on L2(X) are
exactly integral operators with a L2 kernel. Moreover, the Hilbert–Schmidt
norm of the operator and the L2 norm of the kernel coincide. This fact is
proved in [3], which is a good reference for a reader who wants more detail on
integral operators. Let us just quote the formula for compositions of operators:
if k and l are two kernels on the same space (X,µ), then the operator KL is
an integral operator with kernel (kl):
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(kl)(x, y) =
∫

X

k(x, z)l(z, y) dµ(z). (13)

The tail function of λ1(A(n)) can now be expressed using the kernel kn.
The key formula is the following (see [10])

∀t ∈ R, Pn

(√
n√
2
λ1

(
A(n)

)
� t

)
= det

[t,∞)

(
Id−Kn

)
. (14)

In the formula (14), the right-hand side must be understood as the de-
terminant of the operator Kn acting on the space L2([t,∞)) (or equivalently
of the operator with kernel equal to is the restriction of kn to [t,∞)2). This
restricted operator is denoted K [t]

n .
It may not be immediately obvious how to define such a determinant,

as the operator involved acts on an infinite-dimensional space. However, the
operator Kn that we consider here has a finite rank, hence we can define its
determinant as if it were acting on a finite-dimensional space.

A problem will arise when we want to consider limits of such operators,
which might fail to have a finite rank. Fortunately, a whole theory of deter-
minants (and traces) of integral operators exists (so-called “Fredholm” deter-
minants). In fact, there are several possible ways to extend these concepts
to the infinite-dimensional case. We will focus on a more algebraic approach,
due to Grothendieck (see [4] or [13] for a complete exposition), which defines
determinants of a nuclear (= trace class) perturbation of identity in terms of
traces of its exterior powers (here N is a nuclear operator, for which trace is
well-defined):

det(Id +N) := 1 +
∞∑

k=1

tr
(
Λk(N)

)
.

Of course, this definition coincides with the usual one in the finite-
dimensional case.

The presence of the factor
√
n/
√

2 in equation (14) requires an explana-
tion. It arose because there are several possible normalizations. We chose to
define the GUE so that the first eigenvalue is about 2, while other authors,
as Tracy and Widom in [17], prefer to locate it around

√
2n (there are still

other normalizations but an exhaustive list would be too long). As we kept
their notation for the kernels kn, a scaling factor will appear when we pass
from a normalization to the other one.

To get a nontrivial limit, we must replace the t in formula (14) by the
following rescaling, as for the Tracy–Widom limit (1)

t = τn(x) :=
√
n√
2

(
2 +

x

n2/3

)
.

Let also k̃n be the rescaled kernel
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k̃n(x, y) :=
1√

2n1/6
kn

(
τn(x), τn(y)

)
.

We can see using a change of variable that K̃ [x]
n and K [τn(x)]

n have the same
eigenvalues. More precisely, if f is an eigenfunction of K̃ [x]

n , then f ◦ τ−1
n is an

eigenfunction of K [τn(x)]
n , with the same eigenvalue.

Plugging these renormalizations into the formula (14), we obtain

Pn

(
λ1

(
A(n)

)
� 2 + xn−2/3

)
= det

[x,+∞)

(
Id− K̃n

)
. (15)

Using the previous definition for the tail function ψn, we can write for a
positive s

ψn(s) = 1− det
(
Id− K̃ [s]

n

)
.

The following result was known before Tracy and Widom’s work (see for
example [2])

lim
n→∞

k̃n(x, y) = k(x, y) (16)

uniformly on compact subsets in x and y.
Here k is the kernel, often called Airy kernel, defined by

k(x, y) :=
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y . (17)

The kernel k is extended by continuity to the diagonal. The function Ai
is called the Airy function. It is very useful in physics and can be defined by
several means. One of them is the following integral representation

Ai(z) :=
1
2π

∫ ∞

−∞
exp

(
i(zt+ t3/3)

)
dt.

It can also be written as a combination of Bessel functions. It satisfies the
Airy ODE

∂2

∂x2
y(x) = xy(x). (18)

The asymptotic behavior of Ai is well-known, for example [16] contains
the following formula, valid when x tends to +∞

Ai(x) ∼ 1
2

3−1/4√π x−1/4 exp
(
− 2

33/2
x3/2

)
. (19)

The function ψTW can be defined using this Airy kernel

ψTW(x) := 1− det
(
Id−K [x]

)
. (20)

In [17] Tracy and Widom found another expression for ψTW . Let q be the
solution of the Painlevé II ODE
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∂2

∂x2
q(x) = xq(x) + 2q(x)3

which is determined by the asymptotics q(x) ∼ Ai(x) for x close to +∞. Then
we have the representation

ψTW(x) = 1− exp
(
−
∫ ∞

x

(t− x)q(t)2 dt
)
. (21)

It is easy to get from (19) and (21) the bounds (2) for the asymptotic
behavior of ψTW . However, as we do not really need all the depth of Tracy
and Widom’s results and connections to Painlevé functions, we will reprove
this fact in a more elementary way at the end of this note.

4 Convergence of the Operators

The convergence in (16) as determined in the existing literature is rather
weak; in particular, it does not imply convergence of the associated integral
operators in the Hilbert–Schmidt norm or even in the operator norm on L2.
In particular, we are not a priori allowed to exchange limit and determinant
in (15) when n tends to infinity.

Our main step will be to show that K̃n tends to K with respect to the
nuclear (trace class) norm. To that end we need several lemmas.

Lemma 2. The following equality holds

( ∂
∂x

+
∂

∂y

)
kn(x, y) = −

√
n

2
(
φn(x)φn−1(y) + φn−1(x)φn(y)

)
.

Proof. We start with the Christoffel–Darboux formula (see [16])

kn(x, y) =
√
n

2
φn(x)φn−1(y)− φn−1(x)φn(y)

x− y .

Then we apply the operator ∂/∂x+∂/∂y to each term. We use the formula
(11) and the following identities (those which are not obvious are shown in
[16])

φ′n(x) = −exp(−x2/2)√
dn

(
H ′n(x)− xHn(x)

)
,

H ′n−1(x) = 2xHn−1(x)−Hn(x),
H ′n(x) = 2nHn−1(x).

We obtain exactly the expected result. 	




330 Guillaume Aubrun

Lemma 3. The following integral representation holds

k̃n(x, y) =
n1/6

2
√

2

∫ ∞

0

φn
(
τn(x+ z)

)
φn−1

(
τn(y + z)

)
(22)

+ φn−1

(
τn(x+ z)

)
φn

(
τn(y + z)

)
dz.

Proof. If we apply the operator ∂/∂x + ∂/∂y to the right-hand side of (22)
(there is no trouble with interchanging the operations “∂/∂x + ∂/∂y” and
“
∫∞
0

” since all the functions involved are Schwartz functions), we get after
standard calculations

n1/6

2
√

2

(
φn

(
τn(x)

)
φn−1

(
τn(y)

)
+ φn−1

(
τn(x)

)
φn

(
τn(y)

))
.

Lemma 2 asserts that we obtain exactly the same expression when we
apply the operator ∂/∂x + ∂/∂y to the left member of (22). Thus, the two
members of the equation are equal modulo a function (say, α) which only
depends on x−y. But both members tend to zero when x et y tend to infinity
in an independent way. Therefore the function α has to vanish identically and
the lemma is proved. 	


Let us introduce some extra notation. The following kernels are defined on
[s,+∞)2, where s is any positive number

a[s]
n (x, y) :=

n1/12

21/4
φn

(
τn(x+ y − s)

)
,

b[s]n (x, y) :=
n1/12

21/4
φn−1

(
τn(x+ y − s)

)
,

a[s](x, y) := Ai(x+ y − s).
The equality (22) can be translated in terms of operators (this is just a

consequence of the formula (13) for the composition of kernels)

K̃ [s]
n =

1
2
(
A[s]
n B

[s]
n +B[s]

n A
[s]
n

)
. (23)

A similar equality for the operator K is proved (exactly in the same way)
in [17]

K [s] =
(
A[s]

)2
. (24)

We shall subsequently show that (for a fixed s) the operators A[s]
n and B[s]

n

tend to A[s] with respect to the Hilbert–Schmidt norm. To that end, we need
estimates for φn contained in two lemmas that follow.

Lemma 4. The functions φn, after rescaling, converge to Ai, uniformly on
compact subsets in y:

φn
(
τn(y)

)
2−1/4n1/12 → Ai(y) and φn−1

(
τn(y)

)
2−1/4n1/12 → Ai(y). (25)
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Proof. This is an immediate consequence of the following asymptotic formulae
for Hermite polynomials due to Plancherel and Rotach. They can be found,
in a slightly different presentation, in the book by Szegö ([16])

If x =
√

2n+ 1 +
y√

2n1/6
, then φn(x) = 21/4n−1/12

(
Ai(y) +O(n−3/4)

)
.

The O holds when n tends to +∞, uniformly in y on compact subsets. 	


Lemma 5. We have a bound for φn which is uniform in n: there exists a
positive constant c such that for any y > 0 and any integer n

{
n1/12φn

(
τn(y)

)
� C exp

(
−cy3/2

)
,

n1/12φn
(
τn−1(y)

)
� C exp

(
−cy3/2

)
.

(26)

Proof. Let us sketch a proof of the first inequality in (26). We will use the
following result, which is an exercise on page 403 of [11]. It is valid for x � 1

Hn(νx) � 1.13
√

2π exp
(
−ν2/4

)
ν(3ν2−1)/6 exp

(
ν2x2/2

)( ζ

x2 − 1

)1/4
Ai
(
ν4/3ζ

)

where ν :=
√

2n+ 1 and

ζ :=
(

3
4
x
√
x2 − 1− 3

4
Argchx

)2/3
.

Using the definition of φn given in formula (11) and Stirling’s formula to
estimate dn, we obtain

n1/12φn(νx) � C

(
ζ

x2 − 1

)1/4
Ai(ν4/3ζ).

We deduce from (19) a bound for Ai, and we also use the inequality ζ �
c(x− 1) to get

n1/12φn
(√

2n+ 1x
)

� Cn−1/6 1
(x− 1)1/4

exp
(
−c(2n+ 1)(x− 1)3/2

)
. (27)

We now return to our notation through the change of variable
√

2n+ 1 x =
τn(y). We can estimate x in the following way

x � 1− c

n
+

y√
2n1/6

√
2n+ 1

.

For y large enough, we even have

x � 1 + c
y

n2/3
. (28)
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Combining (27) and (28) yields

n1/12φn
(
τn(y)

)
� C

1
y1/4

exp
(
−cy3/2

)
.

The factor y−1/4 can be deleted if c is made small enough. This inequality
is only true for y large enough, but we keep in mind that convergence in (25)
was uniform on compact subsets, so we can extend it to all positive y, and the
inequality is proved. The same scheme of demonstration works for the second
inequality, with τn−1 instead of τn. 	


We are now ready to prove our main theorem.

Proof of Theorem 1. We denote by ‖ . ‖HS the Hilbert–Schmidt norm and by
ν the nuclear norm.

We are first going to estimate the quantity |ψn(s) − ψTW(s)| = | det(Id −
K̃

[s]
n )− det(Id−K [s])|. To reach this goal, we will use the following estimate

(see [4]), valid for any two nuclear operators A and B

| det(Id +A)− det(Id +B)| � ν(A −B) e1+ν(A)+ν(B). (29)

It will be useful to notice that lemma 5 implies in particular the following
remark: there is a positive C such that for any s � 0 and any integer n, all the
quantities ‖A[s]

n ‖HS , ‖B[s]
n ‖HS and ‖A[s]‖HS are bounded by C (remember

that the Hilbert–Schmidt norm is just the L2-norm of the kernel). Using
inequalities (23), (24) and the noncommutative Hölder inequality, we get that
ν(K [s]) and ν(K̃ [s]

n ) are also bounded by the constant. Hence we can drop the
exponential factor in formula (29)

|ψn(s)− ψTW(s)| � Cν
(
K̃ [s]
n −K [s]

)
.

We need to estimate the quantity ν(K̃ [s]
n −K [s]). The key to do this is to

use the equalities (23) et (24) to get

K̃ [s]
n −K [s] =

1
4

((
A[s]
n −A[s]

)(
B[s]
n +A[s]

)
+
(
A[s]
n +A[s]

)(
B[s]
n −A[s]

)

+
(
B[s]
n +A[s]

)(
A[s]
n −A[s]

)
+
(
B[s]
n −A[s]

)(
A[s]
n +A[s]

))
.

The non-commutative Hölder inequality yields

ν
(
K̃ [s]
n −K [s]

)
� 1

2

∥∥A[s]
n −A[s]

∥∥
HS

∥∥B[s]
n +A[s]

∥∥
HS

(30)

+
1
2

∥∥A[s]
n +A[s]

∥∥
HS

∥∥B[s]
n −A[s]

∥∥
HS
.

The factors with a “+” are easy to get rid of: we can use the triangle
inequality to write ‖A[s]

n +A[s]‖HS � ‖A[s]
n ‖HS+‖A[s]‖HS , which is uniformly

bounded according to the remark following formula (29). We obtain
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ν
(
K̃ [s]
n −K [s]

)
� C

(∥∥A[s]
n −A[s]

∥∥
HS

+
∥∥B[s]

n −A[s]
∥∥
HS

)
.

We can now calculate the Wasserstein distance from Λn to TW , using the
expression given by lemma 1

d(Λn, TW ) =
∫ ∞

0

exp
(
γs3/2

)
|ψn(s)− ψTW(s)| ds

� C

∫ ∞

0

exp
(
γs3/2

)(∥∥A[s]
n −A[s]

∥∥
HS

+
∥∥B[s]

n −A[s]
∥∥
HS

)
ds.

First deal with the term ‖A[s]
n −A[s]‖HS . Using the definition of A[s]

n and
A[s] we get
∫ ∞

0

exp
(
γs3/2

)∥∥A[s]
n −A[s]

∥∥
HS

ds (31)

=
√

2
∫ ∞

0

exp
(
γs3/2

)(∫ ∞

0

z

((n1/12

21/4
φn ◦ τn −Ai

)
(z + s)

)2

dz
)1/2

ds.

Fix an ε > 0 and use the uniform bound of lemma 5: we get that for γ
small enough, S large enough and any n

√
2
∫ ∞

S

exp
(
γs3/2

)(∫ ∞

0

z

((n1/12

21/4
φn ◦ τn −Ai

)
(z + s)

)2
dz

)1/2
ds � ε.

Similarly, for Z large enough, any s smaller than S and any n

(∫ ∞

Z

z

((n1/12

21/4
φn ◦ τn −Ai

)
(z + s)

)2

dz
)1/2

� ε√
2S exp(S3/2)

.

Now we can split the integral in (31) into three terms to get (remember
that the convergence in lemma 4 is uniform on compact subsets):

∫ ∞

0

exp(γs3/2)
∥∥A[s]

n −A[s]
∥∥
HS

ds � 3ε for n large enough.

We can write a similar estimate with Bn instead of An. We finally deduce
that, for n large enough, d(Λn, TW ) � 6Cε. Hence Λn tends to TW in the
Wasserstein sense. This is the announced result. 	


5 An Elementary Proof of Asymptotics for ψ
TW

To prove our theorem, we needed the upper asymptotics (2) for ψTW . It is
possible to derive them from the representation (21): keeping in mind that
q ∼ Ai, we get from (19)
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∫ ∞

x

(t− x)q2(t) dt � C exp
(
−cx3/2

)
.

Hence, (21) yields

ψTW(x) � 1− exp
(
−C exp(−cx3/2)

)
� C′ exp

(
−cx3/2

)
.

However, for sake of completeness, we are going to derive in this section
this last result in a more elementary way, i.e. without using the Painlevé
representation. To do this, we need some facts about integral operators. Of
course, a general integral operator can fail to be nuclear (for example, any
Hilbert–Schmidt operator from L2(X) into itself can be written as an integral
operator). Nevertheless, there exist several “nuclearity tests”, criteria ensuring
that under some conditions, kernels generate nuclear operators ([3],[4]). The
main result in this topic is Mercer’s theorem, which enables us to expand
a continuous self-adjoint kernel (i.e. the associated operator is self-adjoint)
as a series of eigenfunctions of the operator. Unfortunately, these results are
usually stated when dealing with a compact space of finite measure, and we
have to consider half-infinite intervals [s,+∞). However, the standard proofs
work also in this setting with only slight modifications.

A result which fits the present context is the following

Lemma 6. Let X = [s,+∞), equipped with the Lebesgue measure, and k be
a kernel on X ×X which satisfies the following conditions:

1. k ∈ L2(X ×X)
2. k is jointly continuous
3. K is positive self-adjoint as an operator on L2(X)
4. There exists a continous positive function ' in L2(X) such that |k(x, y)| �
'(x)'(y) for every x, y in X.

Then the operator K is nuclear and the trace formula holds

tr(K) =
∫ ∞

s

k(x, x) dx. (32)

Proof. We are going to derive our result from the classical finite-measure case
using a change of density trick. Let µ be the measure on X with density '2

with respect to Lebesgue measure; we have µ(X) < ∞. If we (isometrically)
identify L2(X, dx) with L2(X,µ) sending f to f/', the integral operator K
viewed from L2(X,µ) into itself has kernel k(x, y)/'(x)'(y). To get the result
we simply apply to the new kernel the following version of Mercer’s theorem
(it can be proved adapting straightforward the classical proof from [14]): if µ is
a finite Borel measure on X and k a continuous bounded positive self-adjoint
kernel, then the associated operator K is nuclear and its trace is equal to the
integral of the kernel along the diagonal. 	
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Lemma 7. The following estimation holds

∃C, c > 0, ∀s > 0, ψTW(s) � C exp
(
−cs3/2

)
.

Proof. By definition (see [13]), we have

ψTW(s) =
∞∑

k=1

(−1)k−1 tr
(
Λk

(
K [s]

))
.

Using the fact that tr(Λk(K [s])) � tr(K [s])k/k!, we get

|ψTW(s)| � exp
(
trK [s]

)
− 1.

Actually, formula (20) shows that ψ
TW

is positive since we have 0 � K [s] �
1. In the end, the convexity of the exponential function on [0, trK [0]] yields
for s � 0

ψ
T W

(s) � C trK [s].

It is not hard to check that the kernel k[s] satisfies the hypotheses of
lemma 6; to check condition 4 we can cook up a function ' using Ai and its
derivative.

Thus we can rewrite the trace of K [s] as an integral

ψ
T W

(s) � C

∫ ∞

s

(
(Ai′(x))2 − xAi(x)

)
dx. (33)

The value of K on the diagonal comes from (17) and the Airy ODE (18).
Using (19), we can write

∃C, c > 0, ∀s � 0 Ai(s) � C exp
(
−cs3/2

)
. (34)

A similar majoration holds for Ai′: we only need to write Ai′(s) =∫∞
s

Ai′′(x) dx and to use formulae (18) and (34)

∃C, c > 0, ∀s � 0 Ai′(s) � C exp
(
−cs3/2

)
. (35)

The conclusion comes when combining formulae (33), (34) and (35). 	


Possible Generalizations

Of course, we expect the inequalities analogous to (6) to be true in a much
more general setting. Basically, each time a Tracy–Widom-like behavior has
been proved or is suspected, we can ask whether such a uniform estimate
holds.

The most natural extension would be the setting of general Wigner ma-
trices, for which universality of Tracy–Widom limit has been proved by Sosh-
nikov ([15]). However, the bounds on moments he obtained do not suffice to
derive the small deviation inequality.
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Tracy and Widom proved results similar to (1), involving a different limit
law, for the matrix ensembles GOE and GSE (the real orthogonal and the
symplectic cases) in [18].

Several authors investigated the behavior of the largest s-number (also
called singular value) of a rectangular m×n matrix with independent entries,
when the ratio m/n tends to a limit in (0, 1). The paper [6] contains a result
analogous to (1) for the Gaussian case (the so-called Wishart ensemble). There
is strong numerical evidence indicating that a convergence on the scale n−2/3

as in Tracy–Widom behavior occurs also universally in this case, for the largest
s-number, but also for the smallest one.

Another quantity of interest is the norm of a n ×m random matrix as a
operator from (np to (mq . Concentration results have been recently obtain in
this case by Meckes (cf [9]).

In all these cases, we know concentration inequalities similar to (5), it
would be interesting to prove the corresponding small deviation result.
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5. Haagerup, U, and Thorbjørnsen, S (2003). Random matrices with complex

Gaussian entries. Expo. Math. 21, no. 4, 293–337.
6. Johnstone, I.M. (2001). On the distribution of the largest eigenvalue in prin-

cipal component analysis. Ann. Statist. 29, 295–327.
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16. Szegö, G. (1967). Orthogonal Polynomials. American Mathematical Society,

third edition.
17. Tracy, C.A. and Widom, H. (1994). Level-spacing distributions and the Airy

kernel. Comm. Math. Phys. 159, 151–174.
18. Tracy, C.A. and Widom, H. (1996). On orthogonal and symplectic matrix

ensembles. Comm. Math. Phys. 177, 727–754.


	Introduction
	1 Convergence in Terms of a Wasserstein Distance
	2 The Small Deviation Inequality
	3 Relation to Determinants
	4 Convergence of the Operators
	5 An Elementary Proof of Asymptotics for $\psi_TW$
	References



