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Abstract: For large d, we study quantum channels on C? obtained by selecting ran-
domly N independent Kraus operators according to a probability measure u on the
unitary group 2/(d). When p is the Haar measure, we show that for N = d/s2, such a
channel is e-randomizing with high probability, which means that it maps every state
within distance ¢/d (in operator norm) of the maximally mixed state. This slightly
improves on a result by Hayden, Leung, Shor and Winter by optimizing their discreti-
zation argument.

Moreover, for general p, we obtain an e-randomizing channel provided N = d
(logd)®/e2. For d = 2% (k qubits), this includes Kraus operators obtained by ten-
soring k random Pauli matrices. This leads to more efficient constructions of almost
randomizing channels. The proof uses recent results on empirical processes in
Banach spaces.

1. Introduction

The completely randomizing quantum channel on C¢ maps every state to the
maximally mixed state p,. This channel is used to construct perfect encryption sys-
tems (see [1] for formal definitions). However it is a complex object in the following
sense: any Kraus decomposition must involve at least d> operators. It has been shown
by Hayden, Leung, Shor and Winter [13] that this “ideal” channel can be efficiently
emulated by lower-complexity channels, leading to approximate encryption systems.
The key point is the existence of good approximations with much shorter Kraus decom-
positions. More precisely, say that a quantum channel ® on C? is e-randomizing if
for any state p, [|[P(p) — p«llco < &/d. The existence of e-randomizing channels with
0(d?) Kraus operators has several other implications [13], such as counterexamples to
multiplicativity conjectures [18].
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It has been proved in [13] that if (U;) denote independent random matrices Haar-
distributed on the unitary group U (d), then the quantum channel

N
1 i
(D:pHNjEIUipUi Q)

is e-randomizing with high probability provided N > Cd logd/e* for some constant
C. The proof uses a discretization argument and the fact that the Haar measure satisfies
subgaussian estimates. We show a simple trick that allows to drop a logd factor: ® is
e-randomizing when N > Cd/e?, this is our Theorem 1. The dependance is sharp in &
and d.

The Haar measure is a nice object from the theoretical point of view, but is often too
complicated to implement for concrete situations. We consider here the broad class of iso-
tropic measures. Let us say that a measure ; on U (d) is isotropic when f UpU Td nlU) =
py for any state p. When d = 2%, an important example of isotropic measure is given
by assigning equal masses at k-fold tensor products of Pauli operators.

The following question was asked in [13]: is the quantum channel & defined as (1)
e-randomizing when (U;) are distributed according to any isotropic probability measure
on U(d)? We answer positively this question when N > Cd log® d /&2. This is our main
result and appears as Theorem 2. Note that for non-Haar measures, previous results
appearing in the literature [2,9,13] only involved the weaker trace-norm approximation
P(p) — pill1 < &.

As opposed to the Haar measure, the measure p need not have subgaussian tails,
and we need more sophisticated tools to prove Theorem 2. We use recent results on
suprema of empirical processes in Banach spaces. After early work by Rudelson [16]
and Guédon—Rudelson [12], a general sharp inequality was obtained by Guédon, Men-
delson, Pajor and Tomczak-Jaegermann [11]. This inequality is valid in any Banach space
with a sufficiently regular equivalent norm, such as E‘]’. The problem of e-randomizing

channels involves the supremum of an empirical process in the trace-class space Sld

(non-commutative analogue of E‘ll), which enters perfectly this setting.

The paper is organized as follows. Section 2 contains background and precise state-
ments of the theorems. Theorem 1 (for Haar measure) is proved in Sect. 3. Theorem
2 (for a general measure) is proved in Sect. 4. An Appendix contains the needed facts
about geometry and probability in Banach spaces.

2. Background and Presentation of Results

Thoughout the paper, the letters C and ¢ denote absolute constants whose value may
change from occurrence to occurrence. We usually do not pay too much attention to the
value of these constants.

2.1. Schatten classes. We write M(C?) for the space of complex d x d matrices. If
A € M(C%),lets (A), ..., sd(A) denote the singular values of A (defined as the square
roots of the eigenvalues of AA"). For 1 < p < oo, the Schatten p-norm is defined as

d 1/p
AN, = (Zs,(A)P) :

i=1
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For p = o0, the definition should be understood as || A||.c = maxs;(A) and coincides
with the usual operator norm. It is well-known (see [6], Sect. IV.2) that (M (ChH, || - »)
is a complex normed space, denoted Sg and called Schatten class. The space Sg is the

non-commutative analogue of the space £¢. We write B(S?) for the unit ball of Sg.

The Schatten 2-norm (sometimes called Hilbert—Schmidt or Frobenius norm) is a
Hilbert space norm associated to the inner product (A, B) = Tr A" B. This Hermitian
structure allows to identify M (C?) with its dual space. Duality on Schatten norms holds
as in the commutative case: if p and g are conjugate exponents (i.e. 1/p + 1/g = 1),
then the normed space dual to Sg coincides with Sf; .

2.2. Completely positive maps. We write Mg, (C?) (resp. M. (C%)) for the set of self-
adjoint (resp. positive semi-definite) d x d matrices. A linear map ® : M(CY) —
M(C?) is said to preserve positivity if ®(M(C?)) c M, (C?). Moreover, ® is said
to be completely positive if for any k € N, the map

@ ® Id 0ty 1 M(C? ® C) > M(C? @ €Y

preserves positivity. We use freely the canonical identification M(C¢) ® M(CF) ~
M(C4 ® CF).

If (e;)o<i <a—1 denotes the canonical basis of C?, let Eij = lei){ej]. Tod : M(CY) —
M(C?) we associate Ap € M(C? @ C?) defined as

d
Ao = D Eij ® O(Ej)).
i.j=1

The matrix A is called the Choi matrix of ® ; it is well-known [8] that ® is completely
positive if and only if A¢ is positive. Therefore, the set of completely positive operators
on M(C%) is in one-to-one correspondence with M, (C? ® C?). This correspondence
is known as the Choi—Jamiotkowski isomorphism.

The spectral decomposition of A ¢ implies now the following: any completely positive
map ® on M (C%) can be decomposed as

N
X > > VXV (2)
i=1

Here Vi, ..., Vy are elements of M (C%). This decomposition is called a Kraus decom-
position of ®@ of length N. The minimal length of a Kraus decomposition of @ (called
Kraus rank) is equal to the rank of the Choi matrix A . In particular it is always bounded
by d?.

2.3. States and the completely depolarizing channel. A state on C¢ is a element of
M, (C?) with trace 1. We write D(C?) for the set of states; it is a compact convex set
with (real) dimension d2 — 1. If x € C? is a unit vector, we write P, = |x) (x| for the
associated rank one projector. The state Py is called a pure state, and it follows from
spectral decomposition that any state is a convex combination of pure states. A central
role is played by the maximally mixed state p, = 1d/d (ps is sometimes called the
random state).
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A quantum channel ® : M(C%) — M(C?) is a completely positive map which
preserves trace: for any X € M(Cd), Tr ®(X) = Tr X. Note that a quantum channel

maps states to states. The trace-preserving condition is read on the Kraus decomposition
(2) as

An example of quantum channel that plays a central role in quantum information
theory is the (completely) randomizing channel (also called completely depolarizing

channel) R : M(C?%) — M(C%),
Id
R:X—->TrX —.
d

The randomizing channel maps every state to p,. The Choi matrix of R is
Ap = éldcd®cd. Since A has full rank, any Kraus decomposition of R must have length

(at least) d. An explicit decomposition can be written as follows: let w = exp(2i7/d)
and A and B the matrices defined as

Alej) =ejrimodd  Blej) =we;. (3)

For 1 < j, k < d, define V; ; as the product B/ A* . Note that Vj k belongs to the unitary
group U (d). A routine calculation (see also Sect. 2.5) shows that for any X € M(CY),

1< - Id
= > VikXV], =TrX —.
jik=1

This is a Kraus decomposition of the randomizing channel.

2.4. e-randomizing channels. We are interested in approximating the randomizing chan-
nel R by channels with low Kraus rank. Following Hayden, Leung, Shor and Winter
[13], a quantum channel ® is called ¢-randomizing if for any state p € D(Cd),

[P(0) — pslloo <

IS

Itis equivalent to say that the spectrum of ®(p) is contained in [(1 —¢)/d, (1+¢)/d] for
any state p. It has been proved in [13] that there exist e-randomizing channels with Kraus
rank equal to Cd log d /&> for some constant C. This is much smaller than d? (the Kraus
rank of R). The construction is simple: generate independent random Kraus operators
according to the Haar measure on U (d) and show that the induced quantum channel
is e-randomizing with nonzero probability. A key step in the proof is a discretization
argument. We show that a simple trick improves the efficiency of the argument from [13]
to prove the following theorem. A version of this theorem with a weaker dependence in
& appeared in the preprint [4].
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Theorem 1 (Haar-generated s-randomizing channels). Let (U;)1<ign be independent

random matrices Haar-distributed on the unitary group U(d). Let ® : M(C%) —
M(C?) be the quantum channel defined by

N
1
®(p) = > UinU;.
i=l1

Assume that 0 < ¢ < 1 and N > Cd/e>. Then the channel ® is e-randomizing with
nonzero probability.

As often with random constructions, we actually prove that the conclusion holds true
with large probability: the probability of failure is exponentially small in d.

It is clear that the way N depends on d is optimal: if ® is a ¢-randomizing channel
with ¢ < 1, its Kraus rank must be at least d. This is because for any pure state Py, ® (Py)
must have full rank. The dependence in ¢ is sharp for channels as constructed here, since
Lemma 2 below is sharp. However, it is not clear whether families of e-randomizing
channels with a better dependence in ¢ can be found using a different construction,
possibly partially deterministic.

One checks (using the value ¢ = 1/6 from [13] in Lemma 3 and optimizing over
the net size) that the constant in Theorem 1 can be chosen to, e.g., C = 150. This is
presumably far from optimal.

2.5. Isotropic measures on unitary matrices Although the quantum channels constructed
in Theorem 1 have minimal Kraus rank, it can be argued that Haar-distributed random
matrices are hard to generate in real-life situations. We introduce a wide class of measures
on U (d) that may replace the Haar measure.

Definition. We say that a probability measure | on U(d) is isotropic if for any
X e M(CY),

# Id
uxu'duU)=TrX - —.
UW) d

Similarly, a U(d)-valued random vector is called isotropic if its law is isotropic.

Lemma 1. Let U = (U;;) be a U(d)-valued random vector. The following assertions
are equivalent

(1) U is isotropic.
(2) Forany X € M(C), EITrUX'P = bjx3
(3) Forany indices i, j. k.1, BU;jUy = 38 k8;.1.

Proof. Implications (3) = (1) and (3) = (2) are easily checked by expansion. For
(1) = (3), simply take X = |e;)(ex|. Identity (2) implies after polarization that for any
A, B € M(CY),
— 1 .
E [Tr(UAT)Tr(UBT)] =~ Tr(4B"),

from which (3) follows. O



1108 G. Aubrun

Condition (3) of the lemma means that the covariance matrix of U—which is an
element of M (M (C?))—is a multiple of the identity matrix.

Of course the Haar measure is isotropic. Other examples are provided by discrete
measures. Let % = {Uy, ..., Uy} be a family of unitary matrices, which are mutually
orthogonal in the following sense: if i # j, then Tr UiT U; = 0. For example, one can
take % = {B’ A¥}, <j.k<d» A, B defined as (3). Then the uniform probability measure
on 7 is isotropic. Indeed, any X € M(C?) can be decomposed as X = > x;U; and
condition (2) of Lemma 1 is easily checked.

If we specialize to d = 2, we obtain a random Pauli operator: assign probability 1/4
to each of the following matrices to get an isotropic measure

(1 0 (01 (0 —i (1 O
@=\o 1) *T\10o) 2T\ o) PTN\o —1):
It is straightforward to check that isotropic vectors tensorize: if X; € U(d;) and
X»> € U(dy) are isotropic, so is X1 ® X, € U(d1d>). If we work on M((C?)®%), which
corresponds to a set of k qubits, a natural isotropic measure is therefore obtained by

choosing independently a Pauli matrix on each qubit, i.e. assigning mass 1/4% to the
matrix oy, ® --- @ oy, forany iy, ..., i €{0,1,2, 3}".

2.6. e-randomizing channels for an isotropic measure. We can now state our main
theorem asserting that up to logarithmic terms, the Haar measure can be replaced in
Theorem 1 by simpler notions of randomness. We first state our result

Theorem 2 (General e-randomizing channels). Let u be an isotropic measure on the
unitary group U(d). Let (U;)1<i <N be independent ji-distributed random matrices, and

® : M(C?) — M(C?) be the quantum channel defined as
|
®(p) = > UinU;. )
i=1

Assume that 0 < ¢ < 1 and N > Cd(logd)®/e?. Then the channel ® is -randomizing
with probability larger than %

Theorem 2 applies in particular for a product of random Pauli matrices as described
in the previous section. It is of interest for certain cryptographic applications to know
that e-randomizing channels can be realized using Pauli matrices.

As opposed to Theorem 1, the conclusion of Theorem 2 is not proved to hold
with exponentially large probability. The estimate % on the probability estimate can
be replaced by any number smaller than 1, only affecting the value of the constant C.

Theorem 2 could be quickly deduced from a theorem appearing in [11]. However,
the proof of [11] is rather intricate and uses Talagrand’s majorizing measures in a central
way. We give here a proof of our theorem which uses the simpler Dudley integral instead,
giving the same result. We however rely on an entropy Lemma from [11], which appears
as Lemma AS in the Appendix.

The log® d appearing in Theorem 2 is certainly non optimal (see remarks at the end of
the paper). However, some power of log d is needed, as shown by the next proposition.



On Almost Randomizing Channels with a Short Kraus Decomposition 1109

Proposition. Let A, B defined as (3) and u be the uniform measure on the set
{BJ Ak}lgj,kgd. Consider (X;) independent -distributed random unitary matrices.
If the quantum channel ® defined as (4) is %-randomizing with probability larger than
1/2, then N > cdlogd.

Proof. We will rely on the following standard result in elementary probability theory
known as the coupon collector’s problem (see [ 10], Chap. 1, Example 5.10): if we choose
independently and uniformly random elements among a set of d elements, the mean (and
also the median) number of choices before getting all elements at least once is equivalent
to d logd for large d.

In our case, recall that w = exp(2i7/d) and define x; as

1 o wd=Dij
xi={ —, —, —,...,—— |.
T\Vd Vd v Jd
Note that # = (x;)ogj<d—1 is an orthonormal basis of C< and that B/ Akx( = x;j.Con-

sequently, if U is p-distributed, the random state U Py, U T equals Py; with probability

1/d. In the basis %, the matrix ®(Py,) is diagonal. Note that if ® is %—randomizing,
then ®(P,,) must have full rank. The reduction to the coupon collector’s problem is
now immediate. 0O

3. Proof of Theorem 1: Haar-Distributed Unitary Operators

The scheme of the proof is similar to [13]. We need two lemmas from there. The first is
a deviation inequality sometimes known as Bernstein’s inequality. The second is proved
by a volumetric argument.

Lemma 2 (Lemma IL.3 in [13]). Let ¢, Y be pure states on C? and (U)1<ign be inde-
pendent Haar-distributed random unitary matrices. Then for every 0 < § < 1,

1 & 1
P(‘N E Tr(UipU;' ) p

i=1

8 2
= 7 < 2exp(—cd”N).

Lemma 3 (Lemma I1.4 in [13]). For 0 < 8 < 1 there exists a set N of pure states on C¢
with |N'| < (5/8)%, such that for every pure state ¢ on C%, there exists ¢o € N such
that || — @oll1 < 8. Such a set N is called a §-net.

The improvement on the result of [13] will follow from the next lemma

Lemma 4 (Computing norms on nets). Let A : B(C?) — B(C?) be a Hermitian-
preserving linear map. Let A be the quantity

A= sup [[A@leo= sup [TryrA(e)l.
@eD(CY) @. ¥ eD(C)

Let 0 < 8 < 1/2 and N be a §-net as provided by Lemma 3. We can estimate A as
follows:

1
1-26

A<

3
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where

B = sup |[TryoA(po)l.
@0, YoeN

Proof of Lemma 4. First note that for any self-adjoint operators a, b € B(C?), we have
ITrbA(a)| < Allall1 o] &)

By a convexity argument, the supremum in A can be restricted to pure states. Given pure
states ¢, ¥ € D(C), let ¢, Yo € N so that [l¢ — @olly < 8 and || — oll; < 8. Then

ITr  Alp)| < [Tr(y — Vo) A@)| + [Tr o Alp — @o)| + | Tr Yo Algo) |-

Using twice (5) and taking the supremum over ¢, ¥ gives A < §A +5A + B, hence the
result. O
Proof of the theorem. Let R be the randomizing channel. Fix a %-net N with |V <

20%4 | as provided by Lemma 3. Let A = R — ® and A, B as in Lemma 4. Here A and
B are random quantities and it follows from Lemma 4 that

(ao5)<r(s> %)

Using the union bound and Lemma 2, we get
P (B > %) <204 . 2exp(—ce?N/4).

This is less than % provided N > Cd/s2 for some constant C. O

4. Proof of Theorem 2: General Unitary Operators

A Bernoulli random variable is a random variable ¢ so that P(e = 1) = P(¢e = —1) =
1/2. Recall that C denotes an absolute constant whose value may change from occur-
rence to occurrence. We will derive Theorem 2 from the following lemma.

Lemma 5. Let Uy, ..., Uy € U(d) be deterministic unitary operators and let (&;) be a
sequence of independent Bernoulli random variables. Then
N N 1/2
E, sup Z:zs,-Ui,oUiT < C(logd)s/zw/logN sup Z Ui,oU;r (6)
peD(CY) | i=] o peD(CY) |i=] 00

Proof of Theorem 2 (assuming Lemma 5). Let ;1 be an isotropic measure on U (d) and
(U;) be independent p-distributed random unitary matrices. Let M be the random quan-
tity

M = sup

! #
v E UipU; — —
peD(CY)

i=1

oo

We are going to show that EM is small. The first step is a standard symmetrization
argument. Let (U/) be independent copies of (U;) and (&;) be a sequence of independent
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Bernoulli random variables. We make explicit as a subscript the random variables with
respect to which the expectation is taken

N
1 ¥ —
— E UipU; — U;pU;
i=1

EM < EU,U’ sup
peD(CT)

e¢]

N
1
=Eyu.. sup |— > &WipUf —U/pU")

peD(CY) i=1 00
1Y -
S > &UipU]
peD(CY) i=1

e¢]

The inequality of the first line is Jensen’s inequality for E;;/, while the equality on the
second line holds since the distribution of p +— U; ,oUl-T - U/ ,oUl./T is symmetric (as a

M(M(C?), M(C%))-valued random vector). We then decouple the expectations using
Lemma 5 for fixed (Uj;).

12

EM < logd)5/2\/logNE sup

peD(CT)

1

——(logd)*'*\/log NE,/ M +
/ 1

—(log d)’*/log N,\/EM + -

Using the elementary implication

Xga\/X+ﬁ=>X§(x2+oc\/,E

we find that EM < e/d provided N > Cdlog®d/s?. O

ZU,,OU

a g‘o

S5l

It remains to prove Lemma 5. We will use several standard concepts from
geometry and probability in Banach spaces. All the relevant definitions and statements
are postponed to the next section.

Proof of Lemma 5. Let Z be the quantity appearing in the left-hand side of (6). By a con-
vexity argument, the supremum is attained for an extremal p, i.e. a pure state P, = |x) (x|
for some unit vector x. Since the operator norm itself can be written as a supremum over
unit vectors, we get

= sup Zs, MU = sup Zel|TrU|x><y||
[x|=|y|=1 lx|=]y|=1
N
< sup Z£,|TrU,A|
AeB(S%)
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The last inequality follows from the fact that B(Sf) = conv{|x)(y|, |x| = |y| = 1}. Let
@ : B(S{) — RV defined as

D(A) = (|TrU AP, ..., | TrUNAP).

We now apply Dudley’s inequality (Theorem A2 in the next section) with K = ® (B(S fl )
to estimate EZ using covering numbers. This yields

EZ < C/Oo \/1ogN(c1>(B(sf)), |1, e)de,
0

where | - | denotes the Euclidean norm on R" . Define a distance 8 on B(Sld) as

1/2

N
5(A, B) = |B(A) — (B)| = (Z ‘lTr UiA]? — | Tr U,~B|2‘2) .

i=1

We are led to the estimate

o0
EZ < c/ \/IogN(B(Sf),(S,s)ds.
0

Using the inequality ||a|2 — |b|2| < |a — b| - |a + b|, the metric § can be upper bounded
as follows:

N
8(A,B)2<(Z|TrU,-(A+B)|2) sup |TrU;(A — B)|*.

o I<i<N
Let us introduce a new semi-norm ||| - ||| on M (C%),
Al = sup |TrU;Al
I<i<N

Let 0 be the number equal to

N
0 := sup Z|TrUiA|2= sup
AeB(SH =1 peD(CY)

i=1 .

We get that for A, B € B(Sf), 8(A, B) < 201||A — B]||, and therefore

o0
EZ < C9/ JIog N(BES. 11l - 111, e)de.
0

It remains to bound this new entropy integral. We split it into three parts, for o to be
determined. If ¢ is large (¢ > 1), since ||U;|lco = 1, we get that ||| - ||| < || - [|1. This
means that N(B(Sf), [1]- 11, €) = 1 and the integrand is zero. If ¢ is small (0 < ¢ < &p),
we use the volumetric argument of Lemma Al,

NBESD. (111, &) < NBED. |- 1. 8) < (3/e)*.
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In the intermediate range (¢g < € < 1),letg =logd and p = 1+ 1/(logd — 1) be the
conjugate exponent. We are going to approximate the Schatten 1-norm by the Schatten
p-norm. It is elementary to check that for A € M(C?), ||A ll; < ellAlloo. By dualizing

1Al < ellAll, = NGBS, 11 - 11, &) < NBSD, 11l - 11l &/e).

We are now in position to apply Lemma A5 to the space E = Sg. By Theorems A3 and

A4, the 2-convexity constant of S¢ and the type 2 constant of S{‘; (see the next section
for definitions) are bounded as follows:

T2(S§) < M(Sp) < Vg — 1< logd.

Since ||Ujll4 < e, the inequality given by Lemma AS is

C
Jiog (B 11 11.€) < = (og )2 Tog N.

We now gather all the estimations

o0 0] 1 1
/ \/logN(B(Sf),|||-|||,s)d8</ ,/2d210g(3/s)d8+C(10gd)3/2~/logN/ —dse.
0 0 e €

Choosing g9 = 1/d, an immediate computation shows that

oo
/ JIog N(B(SI. 11l - 111 )de < Cllogd)¥>\/log V.
0

This concludes the proof of the lemma. O

Appendix: Geometry of Banach Spaces

In this last section, we gather several definitions and results from geometry and probabil-
ity in Banach spaces. We denote by (E, || - ||) a real or complex Banach space (actually,
in our applications E will be finite-dimensional). We denote by (E*, || - ||«) the dual
Banach space.

4.1. Covering numbers.

Definition. If (K, §) is a compact metric space, the covering number or entropy num-
ber N (K, §, ¢€) is defined to be the smallest cardinality M of a set {x1,...,xy} C K
so that

M
K c|JBwi. e,

i=1
where B(x,e) ={y € K s.t. 6(x, y) < ¢}

An especially important case is when K is a subset of R” and § is induced by a norm.
The next lemma is proved by a volumetric argument (see [14], Lemma 9.5).

Lemma Al. If||-|| isanormonR" withunit ball K, then foreverye > 0, N(K, ||-]|, &) <
(1+2/e)".
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The following theorem gives upper bounds on Bernoulli averages involving covering
numbers. For a proof, see Lemma 4.5 and Theorem 11.17 in [14].

Theorem A2 (Dudley’s Inequality). Let (¢;) be independent Bernoulli random variables
and K be a compact subset of R". Denote by (x1, ..., x,) the coordinates of a vector
x € R"™. Then for some absolute constant C,

n 00
. < s -, s
Eglea%;e,x, c /O VIog N(K, |- |, &)de

where | - | denotes the Euclidean norm on R".

4.2. 2-convexity.

Definition. A Banach space (E, | - ||) is said to be 2-convex with constant X if for any
v,z € E, we have

_ 1
Iyll> + 272zl < §(||y+z||2+ Iy — zI1%).

The smallest such A is called the 2-convexity constant of E and denoted by \(E).

We say shortly that “E is 2-convex” while the usual terminology should be “E has
a modulus of convexity of power type 2”. This should not be confused with the notion
of 2-convexity for Banach lattices [15].

It follows from the parallelogram identity that a Hilbert space is 2-convex with con-
stant 1. Other examples are £, and S for 1 < p < 2. The next theorem has been proved
by Ball, Carlen and Lieb [5], refining early work by Tomczak—Jaegermann [17].

Theorem A3. For p < 2, the following inequality holds for A, B € M(C%):
1
2 2 2 2
1415+ (p = DIBIG < 5 (14+ BIS + 14— BI).

Therefore, SZ' is 2-convex with constant 1//p — 1.

This property nicely dualizes. Indeed, it is easily checked (see [5], Lemma 5) that E
is 2-convex with constant A if and only if, for every y, z € E*,

1
Iyll2 +22)1z)% > Sy + 212+ 1y — zII2).

In this case, E* is said to be 2-smooth with constant A.

4.3. Type 2.
Definition. A Banach space (E, | - ||) is said to have type 2 if there exists a constant
T» so that for any finite sequence y1, ..., yn of vectors of E, we have

N 2\ 172 N 1/2
> ey < (Z ||yl~||2) : (7)
i=1 i=l

The smallest possible T is called the type 2 constant of E and denoted T>(E). Here, the
expectation E is taken with respect to a sequence (&;) of independent Bernoulli random
variables.

E
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We already mentioned that if E is 2-convex, then E* is 2-smooth. It is easily checked
(by induction on the number of vectors involved) that a 2-smooth Banach space has type
2 with the same constant. We therefore have the inequality 7> (E*) < A(E). In particu-
lar, Theorem A3 implies the following result, first proved by Tomczak-Jaegermann [17]
with a worse constant.

Theorem A4. If g > 2, then Sg has type 2 with the estimate

T2 (S9) < Vg — 1.

4.4. An entropy lemma. The following lemma plays a key role in our proof. It appears
as Lemma 1 in [11].

Lemma AS5. Let E be a Banach space with unit ball B(E). Assume that E is 2-convex
with constant M(E). Let x1, ..., xy be elements of E*, and define a semi-norm ||| - |||
on E as

= max |[X; .
Iyl 1<i<1v| i)l

Then for any ¢ > 0 we have for some absolute constant C,

ev/log N(B(E), [[| - [II, &) < CA(E)*Ta(E*)y/log N  max il e ®)

The proof of Lemma AS5 is based on a duality argument for covering numbers com-
ing from [7]. A positive answer to the duality conjecture for covering numbers (see [3]
for a statement of the conjecture and recent results) would imply that the inequality (8)
is valid without the factor A(E)2. This would improve our estimate in Theorem 2 to
N > Cd(logd)*/&2.

Acknowledgement. 1thank Andreas Winter for several e-mail exchanges on the topic, and I am very grateful
to Alain Pajor for showing me that the results of [11] can be applied here.

References

1. Ambainis, A., Mosca, M., Tapp, A., de Wolf, R.: Private quantum channels. In: 4/st Annual Symposium
on Foundations of Computer Science (Redondo Beach, CA, 2000), New York: John Wiley/IEEE Comput.
Soc. Press, 2000 pp. 547-553

2. Ambainis, A., Smith, A.: Small Pseudo-random Families of Matrices: Derandomizing Approximate
Quantum Encryption. Proceedings of RANDOM’04, pp. 249-260

3. Artstein, S., Milman, V., Szarek, S., Tomczak—Jaegermann, N.: On convexified packing and entropy
duality. Geom. Funct. Anal. 14(5), 1134-1141 (2004)

4. Aubrun, G.: http://arXiv.org/abs/0802.4193v1[quant-ph], 2008

5. Ball,K.,Carlen, E., Lieb, E.: Sharp uniform convexity and smoothness inequalities for trace norms. Invent.
Math. 115(3), 463-482 (1994)

6. Bhatia, R.: Matrix analysis. Graduate Texts in Mathematics 169. Berlin-Heidelberg-New York: Springer-
Verlag, 1997

7. Bourgain, J., Pajor, A., Szarek, S., Tomczak-Jaegermann, N.: On the duality problem for entropy num-
bers of operators. In: Geometric aspects of functional analysis (1987-88), Lecture Notes in Math. 1376
Berlin-Heidelberg-New York-Springer (1989), pp. 50-63

8. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra and Appl. 10,
285-290 (1975)


http://arXiv.org/abs/0802.4193v1[quant-ph]

1116 G. Aubrun

9.

10.

11.

12.

13.

14.

15.

16.
17.

18.

Dickinson, P., Nayak, A.: Approximate Randomization of Quantum States With Fewer Bits of Key. AIP
Conference Proceedings 864, 18-36 (2006)

Durrett, R.: Probability. Theory and examples, The Wadsworth & Brooks/Cole Statistics/Probability
Series, 1991

Guédon, O., Mendelson, S., Pajor, A., Tomczak—Jaegermann, N.: Majorizing measures and proportional
subsets of bounded orthonormal systems, Preprint, 2008

Guédon, O., Rudelson, M.: Lp-moments of random vectors via majorizing measures. Adv.
Math. 208(2), 798-823 (2007)

Hayden, P., Leung, D., Shor, P.W., Winter, A.: Randomizing quantum states: constructions and applica-
tions. Commun. Math. Phys. 250, 371-391 (2004)

Ledoux, M., Talagrand, M.: Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) 23, Berlin-Heidelberg: Springer-Verlag, 1991

Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. 1. Function spaces. Ergebnisse der Mathematik
und ihrer Grenzgebiete 97. Berlin-Heidelberg: Springer-Verlag, 1979

Rudelson, M.: Random vectors in the isotropic position. J. Funct. Anal. 164(1), 60-72 (1999)
Tomczak-Jaegermann, N.: The moduli of smoothness and convexity and the Rademacher averages of
trace classes Sp (1 < p < 00). Studia Math. 50, 163-182 (1974)

Winter, A.: The maximum output p-norm of quantum channels is not multiplicative for any p> 2. http://
arXiv.org/abs/0707.0402v3[quant-ph], 2008; Hayden, P., Winter, A.: Counterexamples to the maximal
p-norm multiplicativity conjecture for all p > 1. Commun. Math. Phys. 284(1), 263-280 (2008)

Communicated by M. B. Ruskai


http://arXiv.org/abs/0707.0402v3[quant-ph]
http://arXiv.org/abs/0707.0402v3[quant-ph]

	On Almost Randomizing Channels with a ShortKraus Decomposition
	Abstract:
	Introduction
	Background and Presentation of Results
	Proof of Theorem 1: Haar-Distributed Unitary Operators
	Proof of Theorem 2: General Unitary Operators
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


