

CONVEX BODIES WITH A DENSE PROJECTIVE ORBIT

GUILLAUME AUBRUN

ABSTRACT. For every n , there exists an n -dimensional convex body such that the set of its images under projective transformations is dense.

Denote by K_n the space of nonempty convex compact subsets of the Euclidean space \mathbf{R}^n . When equipped with the Hausdorff distance, K_n is a complete metric space [2, Chapter 1.8].

An homography on \mathbf{R}^n is a partially defined map of the form $x \mapsto A(x)/f(x)$, where $A : \mathbf{R}^n \rightarrow \mathbf{R}^n$ and $f : \mathbf{R}^n \rightarrow \mathbf{R}$ are affine maps of maximal rank. If we think of \mathbf{R}^n as a subset of the projective plane \mathbf{P}^n , every homography extends to an automorphism of \mathbf{P}^n . For $K \in \mathsf{K}_n$, we consider the *projective orbit* of K

$$\text{Orb}(K) := \{\Phi(K) : \Phi \text{ homography which is well-defined on } K\} \subset \mathsf{K}_n.$$

Theorem 1. *For any $n \geq 2$, there is a convex body $K \in \mathsf{K}_n$ with the property that $\text{Orb}(K)$ is dense in K_n .*

Theorem 1 can be reformulated without mentioning explicitly homographies. Identify \mathbf{R}^n with the hyperplane $H := \{x_{n+1} = 1\} \subset \mathbf{R}^{n+1}$ and consider the $(n+1)$ -dimensional cone $\mathcal{C} := \{(tx, t) : t \geq 0, x \in K\}$, with K given by Theorem 1. The cone \mathcal{C} has the following property: the family of convex compact subsets which appear as $T(\mathcal{C}) \cap H$ for some $T \in \text{GL}(n+1, \mathbf{R})$ is dense in K_n .

We show actually that a generic K (in the Baire category sense) satisfies the conclusion of Theorem 1 (for a survey of Baire category methods in convexity, see [1]). The key point is the following lemma.

Lemma 2. *Let U, V be two non-empty open subsets in K_n . Then there exists $K \in U$ such that $\text{Orb}(K)$ intersects V .*

It is easy to derive Theorem 1 from Lemma 2. For every nonempty open subset $V \subset \mathsf{K}_n$, the set $\{K \in \mathsf{K}_n : \text{Orb}(K) \cap V \neq \emptyset\}$ is open (this is easy) and dense (this follows from Lemma 2). Since K_n is second-countable, Baire category theorem implies that the set $\{K \in \mathsf{K}_n : \text{Orb}(K) \text{ dense}\}$ is a dense G_δ subset of K_n ; in particular it is not empty.

Let $B(0, 1)$ be the unit Euclidean ball, and consider also the family of ellipsoids

$$\mathcal{E}_t := \{(x_1, \dots, x_n) \in \mathbf{R}^n : (x_1 - (1+t))^2 + tx_2^2 + \dots + tx_n^2 \leq t^2\}$$

Date: January 22, 2019.

We thank Bo'az Klartag for stimulating discussions on related topics.

which converge to $\{(1, 0, \dots, 0)\}$ as t tends to 0. For $0 < t < 1$, we define an homography Φ_t by

$$\Phi_t(x_1, \dots, x_n) = \frac{(1 + 3t - (1 + t)x_1, 2tx_2, \dots, 2tx_n)}{1 + t - (1 - t)x_1}.$$

The following properties of Φ_t can be checked by elementary computations

- (1) Φ_t is defined on $\text{conv}(B(0, 1) \cup \mathcal{E}_t)$,
- (2) $\Phi_t = \Phi_t^{-1}$,
- (3) $\Phi_t(B(0, 1)) = \mathcal{E}_t$, and therefore $\Phi_t(\mathcal{E}_t) = B(0, 1)$.

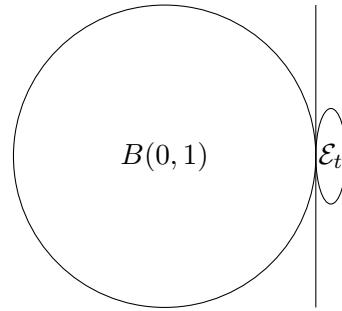


FIGURE 1. The unit disk $B(0, 1)$ and the ellipse \mathcal{E}_t for $t = 1/10$. The involutive homography Φ_t exchanges \mathcal{E}_t and $B(0, 1)$, has the line $x = 1$ as a set of fixed points, and sends the dotted line $x = \frac{1+t}{1-t}$ to infinity.

Proof of Lemma 2. Fix $K_1 \in U$ and $K_2 \in V$. By replacing K_1 and K_2 with an affine image, we may assume that

$$(1, 0, \dots, 0) \in K_i \subset B(0, 1).$$

For $t > 0$, consider the convex body $L(t) := \text{conv}(K_1 \cup \Phi_t(K_2))$. Since $\lim_{t \rightarrow 0} L(t) = K_1$, we have $L(t) \in U$ for t small enough. Similarly, $\Phi_t(L(t)) = \text{conv}(\Phi_t(K_1) \cup K_2)$ belongs to V for t small enough. Therefore, for t small enough, the choice $K = L(t)$ satisfies the conclusion of the lemma. \square

REFERENCES

- [1] Peter M. Gruber. Baire categories in convexity. In *Handbook of convex geometry, Vol. A, B*, pages 1327–1346. North-Holland, Amsterdam, 1993.
- [2] Rolf Schneider. *Convex bodies: the Brunn-Minkowski theory*, volume 151 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, Cambridge, expanded edition, 2014.