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We show that two limit results from random matrix theory, due to
Maréenko Pastur and Bai—Yin, are also valid for matrices with independent
rows (as opposed to independent entries in the classical theory), when rows
are uniformly distributed on the unit ball of ¢;, under proper normalization.
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Let us start with the following classical results from Random Matrix Theory.
Let Z be a random variable such that

EZ =0 and EZ? = 1. (1)

Consider an infinite array (Z;;) of ii.d. copies of Z. For each couple (n,N) of
integers, let G, v be the N x n random matrix

1
VN Y 1IN, 1<<n

We consider also the matrix
Apn =Gl Gy

We may drop subscripts and write simply G and A. The matrix A is sometimes
called a sample covariance matriz. Let ()\;(A)) be the eigenvalues of A, arranged in
decreasing order. We write Apax(A) for A1 (A) and Ayin (A) for A, (A). The spectral
measure of A is the probability measure on R defined as

A= %25,\1(,4)-

In other words, p4(B) is the proportion of eigenvalues of A that fall in a Borel
set B C R. The following theorems describe the limit behaviour of the spectrum
of such large-dimensional matrices, in both global and local regime.
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o [6] Let (n,N) be a sequence of sizes tending to in-
ﬁmty n such a way that the ratio n/N has a limit 8 €)0,1[. Then, almost surely,
the sequence of (empirical) spectral measures (4, ) converges weakly to the de-
terministic measure ji(3) supported on the segment

A= (8),A+(B)] = 11— VB)*, (1 + V/B)’]

and with density

dug 1
= 2rgs V@A) () — ).

: [2] Assume moreover that EZ* < cc. Let (n, N) be a sequence
of sizes tendmg to infinity in such a way that the ratio n/N has a limit 5 €]0, 1].
Let A, n = GmNGn,N with Gy N defined as (2). Then almost surely, we have

i Ao (Anv) = A4 (8) = (1+ V/B)?

lim  Amin(A,n) = A_(8) = (1 — V/B)2

n,N—oo

In some cases it is natural to consider a more general model of random
matrices, and to weaken the hypothesis “independence of entries” to “independence
of rows”. A random vector X in R" is said to be isotropic if for every direction
6e S,

E(X,0) =0 and E(X,0)? =1. (3)
It is actually enough to check (3) for 6 being a vector of the canonical basis.
Condition (3) is the analogue of condition (1). Note also that any random vector
(unless it belongs almost surely to an affine hyplerplane) has an affine image which
is isotropic. Also, (3) can be rephrased as EX ® X = Id: the inertia matriz of X
equals the identity matrix. Here x ® z is the rank one positive operator on R"
defined by (z ® z)(y) = (x,y)x. Let (X;) be i.i.d. copies of X, and consider the
random matrices

X1
r L ()
PNTUN|

XN

and, as before
AN—FnN nN = — ZX@X

The matrix A, n is the empirical approx1mat10n of the inertia matrix of X, with
N sample points. A well-studied class of random vectors is the class of vectors
uniformly distributed on a convex body (see the survey [5]). If K is a convex body
in R™ (i.e. a compact full-dimensional convex subset), the random vector X is
defined as

vol(K N B)

P(XK S B) = VOI(K)
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for any Borel set B C R". If X is isotropic, we say that K is isotropic. It is
natural to wonder whether the theorems mentioned before can be extended to
large classes of random vectors, especially uniformly distributed on convex bodies.
We show that this holds for the simplest examples of convex bodies, the unit balls
of the ¢} spaces, defined as for 1 < p < +o0 by

Br = {(ml,...,xn) ER"st. Y o’ < 1}
=1

and B, = [-1,1]". We simply write X' instead of Xp». The random vector X
can be obtained by simple operations from one-dimensional random variables, as
shown by the following theorem due to Ball-Guédon-Mendelson-Naor [3]:

, L B, Let1<p< +oco and
(Y; ) be a n- tuple of 1.4 d random vamables distributed according to the probability
measure v, with density 1/(2T(1+1/p))e”!!1" (t € R). Let also Z be an exponential
random variable independent from Y (i.e. the density of Z is e~t,t > 0). Then the

random vector
W,...,Y,)

iy [Yilp + 2)Me
is uniformly distributed on By;.

We write ¢, ;, for the unique positive number such that ¢, , B, is isotropic,

; RN n.
and write B) = ¢, B}

) —1/2
_ 2
Cnp = (VOI(B )/n 1dx1...dxn> .

We prove the following results

, Let (n, N) be a sequence of sizes tending to infinity in such a way that
the ratio n/N has o limit 3 €]0,1[. Let A, Ny = FIL,NFn,N with Ty, n defined as
(4), where (X;) are independent and uniformly distributed on BI’}. Then, almost

surely, the sequence of empirical spectral measures (j1a,, ) converges weakly to the
Marcenko—Pastur limit i(g)-

Remark. Theorem 1 has been obtained independently by Pajor and Pastur [7]
using the Stieltjes transform method.

Let (n, N) be a sequence of sizes tendmg to infinity in such a way that
the ratio n/N has o limit 3 €]0,1[. Let A,y = Fn’NFn}N with Ty, v defined as

(4), where (X;) are independent and uniformly distributed on B;} Then, almost
surely,

Im  Apax(An n) = A1 (0),

n,N—oo

lim  Apin(An.n) = A_(6).

n,N—oo
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Remark. The author was able in [1] to adapt the techniques used by Bai—Yin to the
setting of random vectors uniformly distributed on unconditional convex bodies,
leading to a weaker conclusion (with estimates 1 + C'v/f3 instead of 1 + /3, for
some absolute constant C').

The proof uses the following lemma, which is an immediate consequence of
the Barthe-Guédon—Mendelson—Naor representation theorem.

Let T be defined as (4), where (X;) are i.i.d. copies of X]}. Let B = (b;;)
be a N xn random matrixz whose entries are independent and distributed according
tov,. Let A be a N x N diagonal matriz with entries 6,;; = (31, |bi;|P+ Z;) /7,
where Z; are i.i.d. exponential random variables independent from B. Then the
random matrices I' and C”ﬁA - B have the same distribution (here - is the usual

matriz product).

Proof of theorems 1 and 2. With notations from lemma 1, the matrices I';, x and
C”ﬁA - B have the same distribution. We set

L

B = —B,
Vp
A" = ¢, 1A,
where 7, = (Eb?,)/2. We claim that
|A"—1d|l,, — 0 almost surely. (5)

Using strong versions of the law of large numbers (see [2], Lemma 2) — note that
E|b;;|? < oo for all ¢ — we get that, almost surely

1 n
P P
~> b - Eb
i=1

Since lim,, N o0 SUp; |%Zj‘ = 0 almost surely, we deduce that

lim  sup
n,N—o0 1<GEN

lim  sup ‘(nE|b11|p)%§jj — 1‘ =0.

n,N— oo 1<i<N
Now (5) follows from the fact that

nl/P(E|b11 |p)1/p
S ()

Consider now A, y = I’L)NI‘,L’N and A}, y = (\/—%B’)T(ﬁB’). The normalization

was chosen so that the matrix B’ has independent entries with variance 1, so it
enters the setting of the Maréenko—Pastur and the Bai—Yin theorems. We now use
the following inequalities, which are proved using the min-max characterization of

eigenvalues
1
W&‘( wn) S Ai(An n) < JJAPA(A] ). (6)
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Theorem 2 is now a direct consequence of (5), (6) and the Bai—Yin theorem applied
to the matrices (4], y). Similarly, the use of Maréenko—Pastur theorem on the
matrices (A;, y) gives that for every interval I C R, the sequence (u4, (1))
converges almost surely to ju(g)(I). We conclude by arguing that it is enough to
test the weak convergence on intervals with rational endpoints (see [4], Theorem
2.2). O
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