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Abstract. We prove the following result: for any ε > 0, only C(ε)n sample points are enough to
obtain (1+ε)-approximation of the inertia ellipsoid of an unconditional convex body in Rn. Moreover,
for any ρ > 1, already ρn sample points give isomorphic approximation of the inertia ellipsoid. The
proofs rely on an adaptation of the moments method from the Random Matrix Theory.

Warning: this version differs from the (to be) published one (the proof of the main theorem is
actually slightly simpler here).

1. Introduction and the main results

Notation kept throughout the paper: The letters C, c, C ′... denote absolute positive constants,
notably independent of the dimension. The value of such constants may change from line to line.
Similarly, C(ε) denotes a constant depending only on the parameter ε. The canonical basis of R

n is
(e1, . . . , en), and the Euclidean norm and scalar product are denoted by | · | and 〈·, ·〉. The operator
norm of a matrix is denoted by ‖ · ‖. For a real symmetric matrix A, we write λmax(A) (respectively
λmin(A)) for the largest (respectively smallest) eigenvalue of A. A convex body is a convex compact
subset of R

n with non-empty interior. A convex body K is said to be unconditional if it is invariant
under sign flips of the coordinates: for any η = (η1, . . . , ηn) ∈ {−1, 1}n,

(x1, . . . , xn) ∈ K ⇐⇒ (η1x1, . . . , ηnxn) ∈ K.

We reserve the letters X, Y to denote an R
n-valued random vector; X1, . . . , XN are i.i.d. copies of

X . If EX = 0, X is said to be centered. The random vector X is said to be isotropic if it is centered
and for all y ∈ R

n

E〈X, y〉2 = |y|2.
This is equivalent to the inertia matrix EX ⊗ X being is the identity matrix. We will consider the
special case when X is uniformly distributed on a convex body K. We will then say “inertia matrix
of K”, “K is isotropic1”... for “inertia matrix of X”, “X is isotropic”... . The inertia ellipsoid of K is
the unique ellipsoid with the same inertia matrix as K. For recent results on isotropic convex bodies,
a good reference is the survey [9]. Any random vector has an affine image which is isotropic, and this
image is unique up to orthogonal transformation. Thus, for affinely invariant problems we can restrict
ourselves to isotropic random vectors. If we do not know the law but only N samples of the random
vector X , we can only consider the empirical inertia matrix

AN (X) :=
1

N

N
∑

i=1

Xi ⊗ Xi.
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The matrices AN (X) tend almost surely to the identity matrix when N tends to infinity; a natural
question is to quantify this convergence. This problem was considered with algorithmic motivations by
Kannan, Lovász and Simonovits [12] in the case when X is uniformly distributed on a convex body. It
was proved in [12] that ‖AN (X)−Id‖ 6 ε with probability larger than 1−ε provided N > C(ε)n2. This

was improved by Bourgain [6] to N > C(ε)n log3 n and later by Rudelson [20] to N > C(ε)n log2 n.
Rudelson proved actually the following inequality, valid for a general random vector.

Theorem (Rudelson’s inequality). For any isotropic random vector X we have

(1) E
∥

∥AN (X) − Id
∥

∥ 6 C

√

log n

N
(E|X |log N )1/ log N

provided the right-hand side is smaller than 1.

If X is uniformly distributed on an isotropic convex body, then it satisfies

(2) (E|X |p)1/p 6 C
√

n for 2 6 p 6 c
√

n.

This estimate was proved by Bobkov and Nazarov [4] for unconditional convex bodies and recently
extended by Paouris [18] to general isotropic bodies. When plugged in Rudelson’s inequality, it yields
that if N > C(ε)n log n, we have ‖AN (X) − Id‖ 6 ε with probability larger than 1 − ε (see [10, 18]).
On the other hand, when X is isotropic we have E|X |2 = n and consequently we must take N
larger than cn log n to use Rudelson’s inequality. Note that this value N ∼ n log n is sharp for some
discrete examples. The simplest is given by the isotropic random vector Y uniformly distributed on
the (properly normalized) vertices of the cross-polytope

{±√
ne1, . . . ,±

√
nen}.

The matrix AN (Y ) is then diagonal and its diagonal coefficients are distributed as

n

N
(p1, . . . , pn) ,

where pi denote the number of balls falling in the ith urn when we put randomly, uniformly and
independently N balls in n urns. This problem, known as the random allocation problem, is well-
studied and it is known (see [13], chapter 2.6) than we must take N > c(ε)n log n in order to get
max(pi) 6 (1 + ε) min(pi) with probability larger than 1

2 .
We prove that for the class of unconditional convex bodies, it is possible to go below this bound of

n logn and to take N proportional to n

Theorem 1. There are absolute constants C, c such that the following holds. Let 0 < ε 6 1. Let X
be uniformly distributed on an unconditional isotropic convex body in R

n. Then for N > Cn/ε2, we

have with probability larger than 1 − exp(−cn1/5)

‖AN (X) − Id‖ 6 ε.

In other words, for every y in R
n

(3) (1 − ε)|y|2 6
1

N

N
∑

i=1

〈Xi, y〉2 6 (1 + ε)|y|2.

We can also obtain the isomorphic analogue of theorem 1, using as few sample points as possible
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Theorem 2. Let ρ > 1 and N > ρn. Let X be uniformly distributed on an unconditional isotropic

convex body in R
n. Then, with probability larger than 1− 2 exp(−c(ρ)n1/5) we have for every y in R

n

1

C(ρ)
|y|2 6

1

N

N
∑

i=1

〈Xi, y〉2 6 C(ρ)|y|2.

Question 1. Do both results extend to all isotropic convex bodies ?

Remark. With slight modifications of the proofs, one can prove the same results for all isotropic

random vectors with a law being log-concave and unconditional.

2. The random matrix approach: auxiliary results and the structure of the proof

Our proof uses standard techniques from Random Matrix Theory (RMT). A part of the classical
random matrix theory deals with random vectors X with i.i.d. coordinates. Here is a reformulation of
a result of Bai and Yin [2]

Theorem (Bai–Yin). Let Z be a random variable with mean 0, variance 1 and finite fourth moment.

Let X(n) be a random vector on R
n whose coordinates are i.i.d. copies of Z. We consider a sequence

of integers (Nn) tending to infinity in such a way that the ratio n/Nn tends to a limit β ∈ (0, 1). Then,

almost surely,

lim
n→∞

λmax

(

ANn(X(n))
)

= (1 +
√

β)2,

lim
n→∞

λmin

(

ANn(X(n))
)

= (1 −
√

β)2.

This theorem is restricted to random vectors with independent coordinates. Moreover, as often in
RMT, this is a limit-result. Therefore it may be hard to use to get a result in a fixed dimension. In
a few cases, quantified analogues (sometimes called localized) of limit-theorems from RMT have been
proved; see [14]. For Bai–Yin theorem, this has been done by S. Sodin in the special case of random
signs [21], but we still lack a quantified version for general entries. Bai and Yin proved their theorem
as a consequence of the following result

(4) lim sup
n→∞

∥

∥

∥ANn(X(n)) − (1 + β)Id
∥

∥

∥ 6 2
√

β a.s.

We follow an similar approach, except that we will rather estimate

(5)
∥

∥

∥ANn(X(n)) − Id
∥

∥

∥ .

When β � 1, the quantities involved in (4) and (5) are comparable. This is no longer true when β
becomes large (i.e. when matrices involved become close to being square matrices). Because of λmax,
it is even impossible to obtain from (5) any non-trivial information on λmin when β is larger than

3 − 2
√

2 ≈ 0.172.
In this framework, the expected norm of a self-adjoint random matrix A is usually bounded from

above by (EtrAk)1/k, for even integer k (usually large, but not very large). We are led to some
combinatorial problems to estimate EtrAk. This is the so-called moments method initiated by Wigner.
The main advantage of considering (5) rather than (4) is that the combinatorics involved are simpler.
We prove the following proposition.



4 GUILLAUME AUBRUN

Proposition 1. Let X be a random vector uniformly distributed on an unconditional convex body in

R
n, and (Xi) be i.i.d. copies of X. We write A for AN (X), the empirical inertia matrix of X with

N > n sample points. For k = n1/5, we have

(6)
(

E‖A − Id‖k
)1/k

6 C

√

n

N
,

where C is a universal constant.

We postpone the proof of proposition 1 to section 3. Then, the lower estimate in theorem 2 is
proved using the Laplace transform technique from [15] (see section 4).

Remark. A natural question is whether the Bai–Yin theorem can be extended to random vectors

uniformly distributed on convex bodies. This question needs sharper tools than the problem which is

treated here. The author obtained an affirmative answer for the case of the unit ball of `n
p [1].

We now show how proposition 1 implies the theorems

Proof of theorem 1. We write A = AN (X). Let N > 4C2n/ε2, where C is the constant appearing in

proposition 1. By proposition 1, for k = n1/5 we have
(

E‖A − Id‖k
)1/k

6 ε/2. Markov’s inequality

now implies that P(‖A − Id‖ > ε) 6 2−k = exp(−cn1/5). �

Proof of theorem 2. We get as a consequence of proposition 1 a good estimate for the largest eigenvalue
of A using the inequality ‖A‖ 6 ‖A− Id‖+ 1 (or alternatively, using the moments method directly on
A instead of A − Id): for any N > n

P(‖A‖ > C) 6 C exp(−cn1/5).

The smallest eigenvalue is automatically controlled by the following general proposition, proved in
section 4. �

Proposition 2. For every M > 0 and ρ > 1 there are constants c = c(M, ρ) and κ = κ(M, ρ) such

that, for every random vector X uniformly distributed on an isotropic convex body and any N > ρn,

the empirical inertia matrix A = AN (X) automatically satisfies

P (λmin(A) 6 c) 6 P (λmax(A) > M) + exp(−κn).

Remark. Usually in random matrix theory, it is substantially harder to deal with the smallest eigen-

value than with the largest, hence the above proposition may surprise. We emphasize that it this is

only an isomorphic result.

3. Proof of proposition 1: the moments method

Proof of proposition 1. We start with the following standard symmetrization lemma

Lemma 1. Let (Xi) be i.i.d. copies of an isotropic random vector X. Let (εi) be i.i.d. copies of a

Bernoulli random variable (P(ε = 1) = P(ε = −1) = 1/2), independent from (Xi). Then for any

k > 1,

E

∥

∥

∥

∥

∥

1

N

N
∑

i=1

Xi ⊗ Xi − Id

∥

∥

∥

∥

∥

k

6 2k
E

∥

∥

∥

∥

∥

1

N

N
∑

i=1

εiXi ⊗ Xi

∥

∥

∥

∥

∥

k

.
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Proof of lemma 1. Let (X ′

i) be an independent copy of the sequence (Xi), also independent from (εi).
We write respectively E, E

′ and Eε for expectations relative to (Xi), (X ′

i) and (εi).

E

∥

∥

∥

∥

∥

1

N

N
∑

i=1

Xi ⊗ Xi − Id

∥

∥

∥

∥

∥

k

= E

∥

∥

∥

∥

∥

1

N

N
∑

i=1

Xi ⊗ Xi −E
′
1

N

N
∑

i=1

X ′

i ⊗ X ′

i

∥

∥

∥

∥

∥

k

6 EE
′

∥

∥

∥

∥

∥

1

N

N
∑

i=1

Xi ⊗ Xi − X ′

i ⊗ X ′

i

∥

∥

∥

∥

∥

k

= EE
′
Eε

∥

∥

∥

∥

∥

1

N

N
∑

i=1

εi(Xi ⊗ Xi − X ′

i ⊗ X ′

i)

∥

∥

∥

∥

∥

k

6 2k
EEε

∥

∥

∥

∥

∥

1

N

N
∑

i=1

εiXi ⊗ Xi

∥

∥

∥

∥

∥

k

.

We used Jensen’s inequality to obtain the first inequality. �

Let k be an even integer (we will choose later k ≈ n1/5). We write A for AN (X). Using lemma 1
and the moments method, we get

E‖A − Id‖k 6 2k
Etr

(

1

N

N
∑

i=1

εiXi ⊗ Xi

)k

=
2k

Nk
E

∑

r1,...,rk

εr1
. . . εrk

〈Xr1
, Xr2

〉 . . . 〈Xrk−1
, Xrk

〉〈Xrk
, Xr1

〉

=
2k

Nk

∑

r1,...,rk

(Eεr1
. . . εrk

)(E〈Xr1
, Xr2

〉 . . . 〈Xrk−1
, Xrk

〉〈Xrk
, Xr1

〉).

The summation runs a priori on multi-indices (r1, . . . , rk) ∈ {1, . . . , N}k. However, note that the
quantity Eεr1

. . . εrk
equals 0 or 1, and that it equals 1 if and only if every i ∈ {1, . . . , N} appears

an even (possibly 0) number of times among (r1, . . . , rk). Call such a multi-index paired ; we actually
sum over paired multi-indices. We write Xi = (xi1, . . . , xin) for the coordinates of Xi in the canonical
basis, and expand the k scalar products as follows

〈Xrp
, Xrp+1

〉 =

n
∑

sp=1

xrpsp
xrp+1sp

.

This yields

E‖A − Id‖k 6
2k

Nk

∑

r1,...,rk paired

s1,...,sk

Exr1s1
xr2s1

xr2s2
xr3s2

. . . xrksk
xr1sk

,

where the sum is taken over all indices r1, . . . , rk in {1, . . . , N} and s1, . . . , sk in {1, . . . , n}. We
now use unconditionality to show that most of these terms are actually 0. Since the random vectors
(X1, . . . , XN) are independent, each expectation appearing in the sum can be factorized as the product
of N factors of the form

(7) Exα1

1 xα2

2 . . . xαn

n
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for some integers α1, . . . , αn, where X = (x1, . . . , xn). Since the vector X is unconditional, it is
invariant under sign flips of coordinates, and this shows that the expectation (7) is zero if one of the
αi is odd. We are led to the following inequality (note that we changed the indexation)

E‖A − Id‖k 6
2k

Nk

∑

[(r1,s1),...,(r2k,s2k)]V-graph

Exr1s1
xr2s2

. . . xr2k−1s2k−1
xr2ks2k

,

where a V-graph is a 2k-tuple of pairs (ri, si) ∈ {1, . . . , N} × {1, . . . , n} such that

(V1) r2i+1 = r2i (and r1 = r2k),
(V2) s2i = s2i−1,
(V3) Each couple (r, s) ∈ {1, . . . , N} × {1, . . . , n} appears an even (possibly 0) number of times

among [(ri, si)],
(V4) The number of occurences of each r ∈ {1, . . . , N} among (ri) is a multiple of 4 (possibly 0).

Condition (V4) has to be satisfied since we restricted ourself to paired multi-indices. We associate
several parameters to a V-graph G = [(r1, s1), . . . , (r2k, s2k)], following the standard combinatorial
techniques of [8, 22]. Let r(G) = #{ri}, c(G) = #{si} and `(G) = r(G) + c(G); `(G) is the number
of distinct indices appearing in G. Let also d(G) = #{(ri, si)} be the number of distinct couples of
indices that appear in G. Let n2(G) be the number of indices i such that the couple (ri, si) appears
exactly 2 times in G and n+(G) be the number of indices i such that the couple (ri, si) appears 4 times
or more in G. We clearly have n2(G) + n+(G) = 2k.

Lemma 2. If G = [(r1, s1), . . . , (r2k , s2k)] is a V-graph then

Exr1s1
. . . xr2ks2k

6 Ckkn+(G).

Proof. First, we use the fact that the vectors (Xi) are independent to write the whole expectation as
a product of N factors of the form (7). Note that the sum of all exponents αi appearing in factors
(7) is exactly 2k, while the sum restricted to the exponents satisfying αi > 4 is exactly n+(G). We
use the following comparison theorem by Bobkov and Nazarov. Let Bn

1 = {x ∈ R
n s.t.

∑ |xj | 6 1}
denote the unit ball of `n

1 ; the convex body αnBn
1 is isotropic for αn =

√

(n + 1)(n + 2)/2. It has been
proved in [4] that for some absolute constant C, if X = (x1, . . . , xn) is uniformly distributed on an
isotropic unconditional convex body, and if Y = (y1, . . . , yn) is uniformly distributed on CnBn

1 , then
for any increasing functions fi : R+ → R

E

n
∏

i=1

fi(|xi|) 6 E

n
∏

i=1

fi(|yi|).

On each factor (7), we use this result with fi(x) = xαi (recall that αi is necessarily even). The
resulting expectation for Y can then be estimated using sub-independence [3], a special property of
`n
p -balls asserting that for any increasing functions fi : R+ → R

E

n
∏

i=1

fi(|yi|) 6

n
∏

i=1

Efi(|yi|).

Now, by Borell’s lemma (see [5], or [17] p.135), there is an absolute constant C such that Ψ1(yi) 6 C,
which means that E|yi|p 6 (Cp)p. If αi > 4, we use the following bound

Eyαi

i 6

(

Ey
n+(G)
i

)αi/n+(G)

6 (Cn+(G))αi 6 (2Ck)αi .

Using this method to bound separately all the factors of the form (7), we are led to

Exr1s1
. . . xr2ks2k

6 (Ey2
1)

n2(G)/2(2Ck)n+(G),
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and the lemma is proved. �

Applying lemma 2, we obtain the inequality

(8) E‖A − Id‖k 6

(

C

N

)k
∑

G V-graph

kn+(G).

We now state some bounds on the parameters associated to a V-graph.

Lemma 3. Let G = [(r1, s1), . . . , (r2k , s2k)] be a V-graph. Then

(a) d(G) 6 k.

(b) `(G) 6 d(G) + 1 6 k + 1.
(c) r(G) 6 k/2.
(d) n+(G) 6 4(k − `(G) + 1).

Proof. Assertion (a) is an immediate consequence of property (V3). To prove (b), read the V-graph
from (r1, s1) to (r2k , s2k). Each of the d(G) first occurences (ri, si) of some couple of indices may bring
a new row index or a new column index, but not both (except for i = 1) because of properties (V1-V2).
This shows `(G) 6 d(G) + 1, and (b) follows from (a). Assertion (c) is an immediate consequence of
property (V3). For (d), note that d(G) 6 1

2n2(G) + 1
4n+(G) (with equality iff no couple (r, s) appears

6 times or more). The result then follows from (b) and the equality n2(G) + n+(G) = 2k. �

We now need a bound on the number of V-graphs with given r and c. This can be done using
standard combinatorial techniques developed in [8, 22]. We present here a different approach, suggested
to us by S. Szarek, based on the facts that the combinatorics of V -graphs do not depend on the
specific entries of the random matrix, and that for Gaussian random matrices very precise information
is available.

Lemma 4. Let I ⊂ {1, . . . , N} and J ⊂ {1, . . . , n}, such that r + c 6 k +1, with r = #I and c = #J .

Then the number of V-graphs G = [(r1, s1), . . . , (r2k , s2k)] such that {ri} ⊂ I and {si} ⊂ J is bounded

from above by (Ck)k, for some absolute constant C.

Proof. We can assume that I = {1, . . . , r} and J = {1, . . . , c}. Let Gr,c = (gij) a random r × c
matrix with entries being independent N(0, 1) random variables. It is well-known (as a consequence
of Slepian’s lemma, see [7] chapter 2.3, or using a net argument) that for some absolute constant C,

E‖Gr,c‖ 6 C(
√

r +
√

c) 6 C ′
√

k. Moreover, the operator norm is a 1-Lipschitz function with respect
to the entries of the matrix (in the Hilbert–Schmidt metric), and standard concentration property of
the Gaussian measure ([7], chapter 2.2) implies that for any t > 0

P(‖Gr,c‖ > E‖Gr,c‖ + t) 6 exp(−t2/2).

This in turn implies that

E‖Gr,c‖2k =

∫

∞

0

2kt2k−1
P(‖Gr,c‖ > t)dt 6 (C

√
k)2k.

Also, since tr(Gt
r,cGr,c)

k is the sum of 2kth powers of singular values of Gr,c, we have

Etr(Gt
r,cGr,c)

k 6 min(r, c)E‖Gr,c‖2k 6 (C ′k)k.

On the other hand, the quantity Etr(Gt
r,cGr,c)

k itself can also be expanded as

Etr(Gt
r,cGr,c)

k =
∑

Egr1s1
. . . gr2ks2k

,
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where the sum is taken over 2k-tuples of pairs (ri, si) ⊂ I × J satisfying conditions (V1), (V2), (V3).
Notably, all V-graphs considered in the statement of the lemma enter this setting. Moreover, all terms
in the sum are positive, and even larger than 1 since Egp

ij > 1 for p even integer. This shows that the

number of V-graphs with indices contained in I × J is bounded from above by Etr(Gt
r,cGr,c)

k, which
proves the lemma. �

Lemma 4 implies that the number of V-graphs G such that r(G) = r and c(G) = c is bounded by
(

N

r

)(

n

c

)

(Ck)k 6 Ck
1 Nrnc kk

`(G)`(G)
6 Ck

2 Nrnckk−`(G),

where we used the inequalities
(

B
b

)

6 (Be/b)b, rrcc > (`/2)` and kk/`` 6 (ke)k−`. By lemma 3c, for
any V-graph G we have

Nr(G)nc(G)
6

{

N `(G) if `(G) 6 k/2,

Nk/2n`(G)−k/2 if `(G) > k/2,

6 Nk
( n

N

)k/2 1

nk−`(G)
.

Gathering the V-graphs with the same `, we get as a consequence of inequality (8) and lemma 3d
that (setting m = l − 1)

E‖A − Id‖k
6

(

C

N

)k k+1
∑

l=2

k4(k−l+1)kCk
2 kk−lNk

( n

N

)k/2 1

nk−l
,

6

(

C

√

n

N

)k

n
k
∑

m=1

(

k5

n

)k−m

.

We now choose k to be the smallest even integer such that k > n1/5. We then use the inequality
n
∑

(k5/n)k−m 6 Ck to finish the proof (note that the l.h.s. in (6) is an increasing function of k). �

4. Proof of proposition 2: the role of log-concavity

Proof. The proof is similar to the proof of the main theorem in [15], but here the log-concavity makes
things much easier. We introduce the matrix Γ defined by

(9) Γ =
1√
N











X1

X2

...
XN











.

We have the equality A = ΓtΓ ; we think of Γ as an operator from `n
2 to `N

2 . We write smin(Γ) for the

smallest singular value of Γ, which equals
√

λmin(A). For ε > 0 to be determined later, let N be a
ε-net in Sn−1 with cardinality smaller that (3/ε)n (existence of such a net is proved using volumetric

arguments, see Lemma 4.10 in [19]). Set also t = ε
√

M . Let Ω be the event “‖Γ‖ <
√

M ”. By the
standard approximation argument, the event

Ω ∩ {∃x ∈ Sn−1 s.t. |Γx| 6 t}
is contained in the event

Ω ∩ {∃x ∈ N s.t. |Γx| 6 2t}.
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Consequently,

P(smin(Γ) 6 t) 6 P(Ω
c
) + #N max

x∈Sn−1
P(|Γx| 6 2t).

For fixed x in the sphere Sn−1 and j between 1 and N , let fj be the random variable 〈Xj , x〉. It is
well-known [11, 9] that when K is an isotropic convex body in R

n, the (n − 1)-dimensional volume
of hyperplane sections is controlled: for any affine hyperplane H , we have voln−1(K ∩ H) 6 C for a
universal constant C. Consequently, for any s > 0 we have P(|fj | 6 s) 6 Cs. Calculations are now
straightforward:

P(|Γx| 6 2t) = P

(

N
∑

i=1

f2
i 6 4t2N

)

= P

(

N −
N
∑

i=1

f2
j /4t2 > 0

)

6 E exp

(

N −
N
∑

i=1

f2
j /4t2

)

=
(

eE exp(−f2
1/4t2)

)N

= eN

(∫ 1

0

P(exp(−f2
1/4t2) > s)ds

)N

= eN

(∫ 1

0

P(f1 6 2t
√

log(1/s))ds

)N

6 eN

(

2Ct

∫ 1

0

√

log(1/s)ds

)N

= (Ce
√

πt)N .

And consequently

P(smin(Γ) 6 t) 6 P(‖A‖ > M) +

(

3
√

M

t

)n

(Ce
√

πt)N .

thus for any ρ > 1, we can choose t (and thus ε) such that the conclusion of the proposition holds. �
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