A naive look at Schur–Weyl duality

Guillaume Aubrun

The goal of this note is to provide an elementary proof of the (most elementary version of) Schur–Weyl duality, without using anything about representation theory.

1 Bicommutant theorem

If V is a finite-dimensional vector space over \mathbf{C} , we denote the *commutant* of a subset $\mathscr{C} \subset \mathsf{End}(V)$ by

$$\mathscr{C}' = \{ S \in \mathsf{End}(V) : \forall T \in \mathscr{C}, ST = TS \}.$$

Note that \mathscr{C}' is a sub-algebra¹ of $\operatorname{End}(V)$, and also that $\mathscr{C} \subset \mathscr{C}''$. There are several different results known as *bicommutant* or *double centralizer* theorems which give sufficient conditions on a sub-algebra $\mathscr{A} \subset \operatorname{End}(V)$ to ensure that $\mathscr{A} = \mathscr{A}''$: this holds if \mathscr{A} is «semi-simple», or if \mathscr{A} is generated by a single operator, or if \mathscr{A} is a sub-*-algebra (i.e. such that $A \in \mathscr{A} \Longrightarrow A^{\dagger} \in \mathscr{A}$). For completeness, here is an example with $\mathscr{A} \subsetneq \mathscr{A}''$.

Example 1. Consider the algebra

$$\mathscr{A} = \left\{ \begin{pmatrix} \lambda & x & y \\ 0 & \lambda & z \\ 0 & 0 & \lambda \end{pmatrix} : \lambda, x, y, z \in \mathbf{C} \right\} \subset \mathsf{End}(\mathbf{C}^3).$$

One checks that \mathscr{A}' is the algebra generated by $|e_1\rangle\langle e_3|$, and therefore that $|e_2\rangle\langle e_2| \in \mathscr{A}'' \setminus \mathscr{A}$.

Theorem 1 is the finite-dimensional version of von Neumann's bicommutant theorem, which plays an important role in the study of von Neumann algebras.

Theorem 1 (Bicommutant theorem for *-algebras). Let $\mathscr{A} \subset \text{End}(\mathbb{C}^n)$ be a sub-*-algebra (containing Id). Then $\mathscr{A}'' = \mathscr{A}$.

Proof. Consider $\mathscr{B} := \mathscr{A} \otimes \mathrm{Id}_n \subset \mathrm{End}(\mathbf{C}^n \otimes \mathbf{C}^n)$. One checks that its commutant and bicommutant are $\mathscr{B}' = \mathscr{A}' \otimes \mathrm{End}(\mathbf{C}^n)$ and $\mathscr{B}'' = \mathscr{A}'' \otimes \mathrm{Id}_n$. Consider a tensor $\psi \in \mathbf{C}^n \otimes \mathbf{C}^n$ with full rank (e.g. maximally entangled), the subspace $E = \mathscr{B}\psi \subset \mathbf{C}^n \otimes \mathbf{C}^n$ and P_E the orthogonal projection onto E. Since E and E^{\perp} are \mathscr{B} -invariant, we have $P_E \in \mathscr{B}'$.

¹all sub-algebras are assumed to contain Id

Consider now any element $X \in \mathscr{A}''$. Since $(X \otimes \mathrm{Id}) \in \mathscr{B}''$, we have $P_E(X \otimes \mathrm{Id}) = (X \otimes \mathrm{Id})P_E$, and in particular $(X \otimes \mathrm{Id})\psi = (X \otimes \mathrm{Id})P_E\psi = P_E(X \otimes \mathrm{Id})\psi$, so that $(X \otimes \mathrm{Id})\psi \in E$, which means $(X \otimes \mathrm{Id})\psi = (Y \otimes \mathrm{Id})\psi$ for some $Y \in \mathscr{A}$. Since the map $A \mapsto (A \otimes \mathrm{Id})\psi$ is bijective, it follows that $X \in \mathscr{A}$.

2 Schur–Weyl duality

This is the simplest version of Schur–Weyl duality.

Theorem 2 (Schur–Weyl duality). Let n, k be positive integers, and consider the following subalgebras of $End((\mathbf{C}^n)^{\otimes k})$

- $\mathscr{A} := \operatorname{span}\{A^{\otimes k} : A \in \operatorname{End}(\mathbf{C}^n)\},\$
- $\mathscr{B} := \operatorname{span}\{V_{\pi} : \pi \in \mathfrak{S}_k\}, \text{ where } V_{\pi} \text{ is defined by the formula}$

$$V_{\pi}(x_1 \otimes \cdots \otimes x_k) = x_{\pi(1)} \otimes \cdots \otimes x_{\pi(k)}.$$

Then \mathscr{A} and \mathscr{B} are equal to the commutant of each other.

Proof. Since $V_{\pi}^{\dagger} = V_{\pi^{-1}}$, \mathscr{B} is a sub-*-algebra and Theorem 1 applies. In particular, it suffices to prove that $\mathscr{A} = \mathscr{B}'$ and the identity $\mathscr{A}' = \mathscr{B}'' = \mathscr{B}$ follows.

The inclusion $\mathscr{B} \subset \mathscr{A}'$ is obvious. In order to prove $\mathscr{B}' \subset \mathscr{A}$, consider $X \in \mathscr{B}'$. In particular we have $X = \frac{1}{k!} \sum_{\pi \in \mathfrak{S}_k} V_{\pi} X V_{\pi^{-1}}$. Since $\mathsf{End}((\mathbf{C}^n)^{\otimes k})$ is generated as a vector space by elements of the form $X_1 \otimes \cdots \otimes X_k$ with $X_i \in \mathsf{End}(\mathbf{C}^n)$, it suffices to show that for any such k-tuple,

$$\sum_{\pi\in\mathfrak{S}_k}V_{\pi}(X_1\otimes\cdots\otimes X_k)V_{\pi^{-1}}\in\mathscr{A}.$$

This in turn is a consequence of the identity

$$\sum_{\pi \in \mathfrak{S}_k} V_{\pi}(X_1 \otimes \cdots \otimes X_k) V_{\pi^{-1}} = \sum_{\pi \in \mathfrak{S}_k} X_{\pi(1)} \otimes \cdots \otimes X_{\pi(k)}$$
$$= \mathbf{E} \left[\left(\prod_{i=1}^k \varepsilon_i \right) \left(\sum_{j=1}^k \varepsilon_j X_j \right)^{\otimes k} \right],$$

where (ε_i) are independent unbiased ± 1 random variables. (To prove the last equality, expand the right-hand side and use independence).

3 Schur–Weyl duality for the unitary group

A more sophisticated version, often used in quantum information theory, is exactly similar to Theorem 2, but with $End(\mathbb{C}^n)$ replaced by U(n).

Corollary 3 (Schur–Weyl duality, unitary group). Let n, k be positive integers, and consider the following subalgebras of $End((\mathbb{C}^n)^{\otimes k})$

- $\mathscr{C} := \operatorname{span}\{U^{\otimes k} : U \in \mathsf{U}(n)\},\$
- $\mathscr{B} := \operatorname{span}\{V_{\pi} : \pi \in \mathfrak{S}_k\}.$

Then $\mathscr C$ and $\mathscr B$ are equal to the commutant of each other.

Proof. With Theorem 2 already known, it suffices to show that $\mathscr{A} \subset \mathscr{C}$, the reverse inclusion being obvious. Let $A \in \mathsf{End}(\mathbb{C}^n)$; we show that $A^{\otimes k} \in \mathscr{C}$ by producing an explicit decomposition as a linear combination of unitary tensor powers. Without loss of generality, assume $||A||_{op} < 1$. Consider the singular value decomposition

$$A = \sum_{i=1}^{n} s_i |e_i\rangle \langle f_i|$$

with (e_i) , (f_i) orthonormal bases and $s_i \in [0, 1)$. Denote by $\mathbf{T} \subset \mathbf{C}$ the unit circle; for any $(z_1, \ldots, z_n) \in \mathbf{T}^n$, consider the unitary matrix

$$U_{z_1,\dots,z_n} = \sum_{i=1}^n z_i |e_i\rangle \langle f_i|.$$

We use Cauchy's formula from complex analysis: whenever |s| < 1, we have (contour integral)

$$\frac{1}{2i\pi} \int_{\mathbf{T}} z^k \frac{\mathrm{d}z}{z-s} = s^k$$

for any $k \in \mathbf{N}$. Using Fubini's theorem, we obtain as a consequence a multivariate version: whenever $|s_i| < 1$, for any choice of indices $i_1, \ldots, i_k \in \{1, \ldots, n\}$,

$$\frac{1}{(2i\pi)^n} \int_{\mathbf{T}^n} \left(\prod_{j=1}^k z_{i_j} \right) \frac{\mathrm{d}z_1}{z_1 - s_1} \cdots \frac{\mathrm{d}z_n}{z_n - s_n} = \prod_{j=1}^k s_{i_j}$$

It remains to compute

$$\frac{1}{(2i\pi)^n} \int_{\mathbf{T}^n} U_{z_1,\dots,z_n}^{\otimes k} \frac{\mathrm{d}z_1}{z_1 - s_1} \cdots \frac{\mathrm{d}z_n}{z_n - s_n}$$

$$= \sum_{i_1,\dots,i_k=1}^n \frac{1}{(2i\pi)^n} \int_{\mathbf{T}^n} z_{i_1} \dots z_{i_k} \frac{\mathrm{d}z_1}{z_1 - s_1} \cdots \frac{\mathrm{d}z_n}{z_n - s_n} |e_{i_1} \otimes \dots \otimes e_{i_k}\rangle \langle f_{i_1} \otimes \dots \otimes f_{i_k}|$$

$$= \sum_{i_1,\dots,i_k=1}^n s_{i_1} \dots s_{i_k} |e_{i_1} \otimes \dots \otimes e_{i_k}\rangle \langle f_{i_1} \otimes \dots \otimes f_{i_k}|$$

$$= \left(\sum_{i=1}^n s_i |e_i\rangle \langle f_i|\right)^{\otimes k} = A^{\otimes k}.$$

This show that $A^{\otimes k} \in \mathscr{C}$.