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The goal of this note is to provide an elementary proof of the (most elementary version
of) Schur-Weyl duality, without using anything about representation theory.

1 Bicommutant theorem

If V is a finite-dimensional vector space over C, we denote the commutant of a subset
¢ C End(V) by
¢ ={Se€End(V) : VT €%, ST =TS}.

Note that ¢’ is a sub-algbera! of End(V), and also that € C %”. There are several
different results known as bicommutant or double centralizer theorems which give sufficient
conditions on a sub-algebra &/ C End(V) to ensure that &/ = &/”: this holds if &/ is «semi-
simpley, or if o is generated by a single operator, or if &/ is a sub-x-algebra (i.e. such that
A€ of = Al € o). For completeness, here is an example with o7 C o7”.

Example 1. Consider the algebra

Az
of = 0 A : A\ z,y, z€ C ) C End(C?).
00

> N

One checks that o7’ is the algebra generated by |e1){es|, and therefore that |e2)(es| € &\ o .

Theorem 1 is the finite-dimensional version of von Neumann’s bicommutant theorem,
which plays an important role in the study of von Neumann algebras.

Theorem 1 (Bicommutant theorem for x-algebras). Let o7 C End(C"™) be a sub-x-algebra
(containing 1d). Then &/" = o .

Proof. Consider # = o/ ® Id,, C End(C™ ® C"). One checks that its commutant and
bicommutant are &' = &/’ @ End(C") and B" = /" ®1d,,. Consider a tensor 1) € C"®@ C"
with full rank (e.g. maximally entangled), the subspace E = %y C C" ® C" and Pg the
orthogonal projection onto E. Since F and E+ are %-invariant, we have Pr € %'

lall sub-algebras are assumed to contain Id



Consider now any element X € &/”. Since (X ®Id) € #”, we have Pp(X ®1d) = (X ®
Id) Pg, and in particular (X ®1d)y = (X ®1d) Py = Pp(X ®1d)y, so that (X ®1d)y € E,
which means (X ® Id)y = (Y ® Id)y for some Y € o/. Since the map A — (A ® Id)% is
bijective, it follows that X € & O

2 Schur—Weyl duality

This is the simplest version of Schur-Weyl duality.

Theorem 2 (Schur-Weyl duality). Let n, k be positive integers, and consider the following
subalgebras of End((C™)®F)

o o/ :=span{A®F . A€ End(C")},
o B :=span{V; : 7w € &}, where V; is defined by the formula

V(@1 @ - @ xk) = Tp(1) @+ @ T (k)

Then of and 9B are equal to the commutant of each other.

Proof. Since Vil = —1, $B is a sub-x-algebra and Theorem 1 applies. In particular, it
suffices to prove that &/ = %’ and the identity &7/ = B" = A follows.

The inclusion % C 7’ is obvious. In order to prove %' C &/, consider X € %#'. In
particular we have X = 2 Y res, VaXVr-1. Since End((C™)®F) is generated as a vector
space by elements of the form X7 ® --- ® Xj with X; € End(C"), it suffices to show that
for any such k-tuple,

> ValXi® @ Xp)Ve € .
TeSE

This in turn is a consequence of the identity

Z Vi(Xi @ @ Xg) Ve = Z Xr(1) ® - & Xa(r)
TES eSS
®k

k k
=E (]i[&{) :E:gj)<7 s
i=1 j=1

where (g;) are independent unbiased +1 random variables. (To prove the last equality,
expand the right-hand side and use independence). O



3 Schur—Weyl duality for the unitary group

A more sophisticated version, often used in quantum information theory, is exactly similar
to Theorem 2, but with End(C") replaced by U(n).

Corollary 3 (Schur-Weyl duality, unitary group). Let n, k be positive integers, and con-
sider the following subalgebras of End((C™)%F)

o ¢ :=span{U®" : U e U(n)},
o B :=span{V; : me &}
Then € and A are equal to the commutant of each other.

Proof. With Theorem 2 already known, it suffices to show that o/ C €, the reverse inclu-
sion being obvious. Let A € End(C"); we show that A®* € & by producing an explicit
decomposition as a linear combination of unitary tensor powers. Without loss of generality,
assume [|Al[op < 1. Consider the singular value decomposition

A=) sile(fil
=1

with (e;), (f;) orthonormal bases and s; € [0,1). Denote by T C C the unit circle; for any
(21,...,2n) € T™, consider the unitary matrix

n
Usyoen = D 2ilei(fil:
i=1
We use Cauchy’s formula from complex analysis: whenever |s| < 1, we have (contour

integral) , .
. k_9% ok
297 /r : zZ—5 N

for any k € N. Using Fubini’s theorem, we obtain as a consequence a multivariate version:

whenever |s;| < 1, for any choice of indices i1,. .., € {1,...,n},
k k
1 H dZ]_ dZn
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It remains to compute

1 ek dzy . dz,
(20m)™ Jopn PP 2 — 51 Zn — Sp

n

1 dzy dz,
= Z W/nznzlk o |€i1®"'®eik><fi1®

) ~ 21— S1 Zn — Sn
114yl =1

n

= Z Sil"'sik|€i1 ®"'®eik><fi1 ®"'®fik‘

i1eeip=1
n ok

= (Z 5z’|6z'>(fz‘|> = A®F,
=1

This show that A®* € €.



