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The goal of this note is to provide an elementary proof of the (most elementary version
of) Schur–Weyl duality, without using anything about representation theory.

1 Bicommutant theorem

If V is a finite-dimensional vector space over C, we denote the commutant of a subset
C ⊂ End(V ) by

C ′ = {S ∈ End(V ) : ∀T ∈ C , ST = TS}.

Note that C ′ is a sub-algbera1 of End(V ), and also that C ⊂ C ′′. There are several
different results known as bicommutant or double centralizer theorems which give sufficient
conditions on a sub-algebra A ⊂ End(V ) to ensure that A = A ′′: this holds if A is «semi-
simple», or if A is generated by a single operator, or if A is a sub-∗-algebra (i.e. such that
A ∈ A =⇒ A† ∈ A ). For completeness, here is an example with A ( A ′′.

Example 1. Consider the algebra

A =


λ x y
0 λ z
0 0 λ

 : λ, x, y, z ∈ C

 ⊂ End(C3).

One checks that A ′ is the algebra generated by |e1〉〈e3|, and therefore that |e2〉〈e2| ∈ A ′′\A .

Theorem 1 is the finite-dimensional version of von Neumann’s bicommutant theorem,
which plays an important role in the study of von Neumann algebras.

Theorem 1 (Bicommutant theorem for ∗-algebras). Let A ⊂ End(Cn) be a sub-∗-algebra
(containing Id). Then A ′′ = A .

Proof. Consider B := A ⊗ Idn ⊂ End(Cn ⊗ Cn). One checks that its commutant and
bicommutant are B′ = A ′⊗End(Cn) and B′′ = A ′′⊗ Idn. Consider a tensor ψ ∈ Cn⊗Cn

with full rank (e.g. maximally entangled), the subspace E = Bψ ⊂ Cn ⊗Cn and PE the
orthogonal projection onto E. Since E and E⊥ are B-invariant, we have PE ∈ B′.

1all sub-algebras are assumed to contain Id
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Consider now any element X ∈ A ′′. Since (X ⊗ Id) ∈ B′′, we have PE(X ⊗ Id) = (X ⊗
Id)PE , and in particular (X⊗ Id)ψ = (X⊗ Id)PEψ = PE(X⊗ Id)ψ, so that (X⊗ Id)ψ ∈ E,
which means (X ⊗ Id)ψ = (Y ⊗ Id)ψ for some Y ∈ A . Since the map A 7→ (A ⊗ Id)ψ is
bijective, it follows that X ∈ A .

2 Schur–Weyl duality

This is the simplest version of Schur–Weyl duality.

Theorem 2 (Schur–Weyl duality). Let n, k be positive integers, and consider the following
subalgebras of End((Cn)⊗k)

• A := span{A⊗k : A ∈ End(Cn)},

• B := span{Vπ : π ∈ Sk}, where Vπ is defined by the formula

Vπ(x1 ⊗ · · · ⊗ xk) = xπ(1) ⊗ · · · ⊗ xπ(k).

Then A and B are equal to the commutant of each other.

Proof. Since V †π = Vπ−1 , B is a sub-∗-algebra and Theorem 1 applies. In particular, it
suffices to prove that A = B′ and the identity A ′ = B′′ = B follows.

The inclusion B ⊂ A ′ is obvious. In order to prove B′ ⊂ A , consider X ∈ B′. In
particular we have X = 1

k!

∑
π∈Sk

VπXVπ−1 . Since End((Cn)⊗k) is generated as a vector
space by elements of the form X1 ⊗ · · · ⊗Xk with Xi ∈ End(Cn), it suffices to show that
for any such k-tuple, ∑

π∈Sk

Vπ(X1 ⊗ · · · ⊗Xk)Vπ−1 ∈ A .

This in turn is a consequence of the identity∑
π∈Sk

Vπ(X1 ⊗ · · · ⊗Xk)Vπ−1 =
∑
π∈Sk

Xπ(1) ⊗ · · · ⊗Xπ(k)

= E

( k∏
i=1

εi

) k∑
j=1

εjXj

⊗k
 ,

where (εi) are independent unbiased ±1 random variables. (To prove the last equality,
expand the right-hand side and use independence).
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3 Schur–Weyl duality for the unitary group

A more sophisticated version, often used in quantum information theory, is exactly similar
to Theorem 2, but with End(Cn) replaced by U(n).

Corollary 3 (Schur–Weyl duality, unitary group). Let n, k be positive integers, and con-
sider the following subalgebras of End((Cn)⊗k)

• C := span{U⊗k : U ∈ U(n)},

• B := span{Vπ : π ∈ Sk}.

Then C and B are equal to the commutant of each other.

Proof. With Theorem 2 already known, it suffices to show that A ⊂ C , the reverse inclu-
sion being obvious. Let A ∈ End(Cn); we show that A⊗k ∈ C by producing an explicit
decomposition as a linear combination of unitary tensor powers. Without loss of generality,
assume ‖A‖op < 1. Consider the singular value decomposition

A =
n∑
i=1

si|ei〉〈fi|

with (ei), (fi) orthonormal bases and si ∈ [0, 1). Denote by T ⊂ C the unit circle; for any
(z1, . . . , zn) ∈ Tn, consider the unitary matrix

Uz1,...,zn =
n∑
i=1

zi|ei〉〈fi|.

We use Cauchy’s formula from complex analysis: whenever |s| < 1, we have (contour
integral)

1

2iπ

ˆ
T
zk

dz

z − s
= sk

for any k ∈ N. Using Fubini’s theorem, we obtain as a consequence a multivariate version:
whenever |si| < 1, for any choice of indices i1, . . . , ik ∈ {1, . . . , n},

1

(2iπ)n

ˆ
Tn

 k∏
j=1

zij

 dz1
z1 − s1

· · · dzn
zn − sn

=

k∏
j=1

sij .
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It remains to compute

1

(2iπ)n

ˆ
Tn

U⊗kz1,...,zn
dz1

z1 − s1
· · · dzn

zn − sn

=

n∑
i1,...,ik=1

1

(2iπ)n

ˆ
Tn

zi1 . . . zik
dz1

z1 − s1
· · · dzn

zn − sn
|ei1 ⊗ · · · ⊗ eik〉〈fi1 ⊗ · · · ⊗ fik |

=

n∑
i1,...,ik=1

si1 . . . sik |ei1 ⊗ · · · ⊗ eik〉〈fi1 ⊗ · · · ⊗ fik |

=

(
n∑
i=1

si|ei〉〈fi|

)⊗k
= A⊗k.

This show that A⊗k ∈ C .

4


