A naive look at Schur-Weyl duality

Guillaume Aubrun

The goal of this note is to provide an elementary proof of the (most elementary version of) Schur-Weyl duality, without using anything about representation theory.

1 Bicommutant theorem

If V is a finite-dimensional vector space over \mathbf{C}, we denote the commutant of a subset $\mathscr{C} \subset \operatorname{End}(V)$ by

$$
\mathscr{C}^{\prime}=\{S \in \operatorname{End}(V): \forall T \in \mathscr{C}, S T=T S\} .
$$

Note that \mathscr{C}^{\prime} is a sub-algbera ${ }^{1}$ of $\operatorname{End}(V)$, and also that $\mathscr{C} \subset \mathscr{C}^{\prime \prime}$. There are several different results known as bicommutant or double centralizer theorems which give sufficient conditions on a sub-algebra $\mathscr{A} \subset \operatorname{End}(V)$ to ensure that $\mathscr{A}=\mathscr{A}^{\prime \prime}$: this holds if \mathscr{A} is «semisimple», or if \mathscr{A} is generated by a single operator, or if \mathscr{A} is a sub-*-algebra (i.e. such that $\left.A \in \mathscr{A} \Longrightarrow A^{\dagger} \in \mathscr{A}\right)$. For completeness, here is an example with $\mathscr{A} \subsetneq \mathscr{A}^{\prime \prime}$.

Example 1. Consider the algebra

$$
\mathscr{A}=\left\{\left(\begin{array}{ccc}
\lambda & x & y \\
0 & \lambda & z \\
0 & 0 & \lambda
\end{array}\right): \lambda, x, y, z \in \mathbf{C}\right\} \subset \operatorname{End}\left(\mathbf{C}^{3}\right)
$$

One checks that \mathscr{A}^{\prime} is the algebra generated by $\left|e_{1}\right\rangle\left\langle e_{3}\right|$, and therefore that $\left|e_{2}\right\rangle\left\langle e_{2}\right| \in \mathscr{A}^{\prime \prime} \backslash \mathscr{A}$.
Theorem 1 is the finite-dimensional version of von Neumann's bicommutant theorem, which plays an important role in the study of von Neumann algebras.

Theorem 1 (Bicommutant theorem for $*$-algebras). Let $\mathscr{A} \subset \operatorname{End}\left(\mathbf{C}^{n}\right)$ be a sub-*-algebra (containing Id). Then $\mathscr{A}^{\prime \prime}=\mathscr{A}$.

Proof. Consider $\mathscr{B}:=\mathscr{A} \otimes \operatorname{Id}_{n} \subset \operatorname{End}\left(\mathbf{C}^{n} \otimes \mathbf{C}^{n}\right)$. One checks that its commutant and bicommutant are $\mathscr{B}^{\prime}=\mathscr{A}^{\prime} \otimes \operatorname{End}\left(\mathbf{C}^{n}\right)$ and $\mathscr{B}^{\prime \prime}=\mathscr{A}^{\prime \prime} \otimes \operatorname{Id}_{n}$. Consider a tensor $\psi \in \mathbf{C}^{n} \otimes \mathbf{C}^{n}$ with full rank (e.g. maximally entangled), the subspace $E=\mathscr{B} \psi \subset \mathbf{C}^{n} \otimes \mathbf{C}^{n}$ and P_{E} the orthogonal projection onto E. Since E and E^{\perp} are \mathscr{B}-invariant, we have $P_{E} \in \mathscr{B}^{\prime}$.

[^0]Consider now any element $X \in \mathscr{A}^{\prime \prime}$. Since $(X \otimes \mathrm{Id}) \in \mathscr{B}^{\prime \prime}$, we have $P_{E}(X \otimes \mathrm{Id})=(X \otimes$ Id) P_{E}, and in particular $(X \otimes \mathrm{Id}) \psi=(X \otimes \mathrm{Id}) P_{E} \psi=P_{E}(X \otimes \mathrm{Id}) \psi$, so that $(X \otimes \mathrm{Id}) \psi \in E$, which means $(X \otimes \operatorname{Id}) \psi=(Y \otimes \mathrm{Id}) \psi$ for some $Y \in \mathscr{A}$. Since the map $A \mapsto(A \otimes \mathrm{Id}) \psi$ is bijective, it follows that $X \in \mathscr{A}$.

2 Schur-Weyl duality

This is the simplest version of Schur-Weyl duality.
Theorem 2 (Schur-Weyl duality). Let n, k be positive integers, and consider the following subalgebras of $\operatorname{End}\left(\left(\mathbf{C}^{n}\right)^{\otimes k}\right)$

- $\mathscr{A}:=\operatorname{span}\left\{A^{\otimes k}: A \in \operatorname{End}\left(\mathbf{C}^{n}\right)\right\}$,
- $\mathscr{B}:=\operatorname{span}\left\{V_{\pi}: \pi \in \mathfrak{S}_{k}\right\}$, where V_{π} is defined by the formula

$$
V_{\pi}\left(x_{1} \otimes \cdots \otimes x_{k}\right)=x_{\pi(1)} \otimes \cdots \otimes x_{\pi(k)}
$$

Then \mathscr{A} and \mathscr{B} are equal to the commutant of each other.
Proof. Since $V_{\pi}^{\dagger}=V_{\pi^{-1}}, \mathscr{B}$ is a sub-*-algebra and Theorem 1 applies. In particular, it suffices to prove that $\mathscr{A}=\mathscr{B}^{\prime}$ and the identity $\mathscr{A}^{\prime}=\mathscr{B}^{\prime \prime}=\mathscr{B}$ follows.

The inclusion $\mathscr{B} \subset \mathscr{A}^{\prime}$ is obvious. In order to prove $\mathscr{B}^{\prime} \subset \mathscr{A}$, consider $X \in \mathscr{B}^{\prime}$. In particular we have $X=\frac{1}{k!} \sum_{\pi \in \mathfrak{S}_{k}} V_{\pi} X V_{\pi^{-1}}$. Since $\operatorname{End}\left(\left(\mathbf{C}^{n}\right)^{\otimes k}\right)$ is generated as a vector space by elements of the form $X_{1} \otimes \cdots \otimes X_{k}$ with $X_{i} \in \operatorname{End}\left(\mathbf{C}^{n}\right)$, it suffices to show that for any such k-tuple,

$$
\sum_{\pi \in \mathfrak{S}_{k}} V_{\pi}\left(X_{1} \otimes \cdots \otimes X_{k}\right) V_{\pi^{-1}} \in \mathscr{A}
$$

This in turn is a consequence of the identity

$$
\begin{aligned}
\sum_{\pi \in \mathfrak{S}_{k}} V_{\pi}\left(X_{1} \otimes \cdots \otimes X_{k}\right) V_{\pi^{-1}} & =\sum_{\pi \in \mathfrak{S}_{k}} X_{\pi(1)} \otimes \cdots \otimes X_{\pi(k)} \\
& =\mathbf{E}\left[\left(\prod_{i=1}^{k} \varepsilon_{i}\right)\left(\sum_{j=1}^{k} \varepsilon_{j} X_{j}\right)^{\otimes k}\right],
\end{aligned}
$$

where $\left(\varepsilon_{i}\right)$ are independent unbiased ± 1 random variables. (To prove the last equality, expand the right-hand side and use independence).

3 Schur-Weyl duality for the unitary group

A more sophisticated version, often used in quantum information theory, is exactly similar to Theorem 2, but with $\operatorname{End}\left(\mathbf{C}^{n}\right)$ replaced by $\mathrm{U}(n)$.

Corollary 3 (Schur-Weyl duality, unitary group). Let n, k be positive integers, and consider the following subalgebras of $\operatorname{End}\left(\left(\mathbf{C}^{n}\right)^{\otimes k}\right)$

- $\mathscr{C}:=\operatorname{span}\left\{U^{\otimes k}: U \in \mathrm{U}(n)\right\}$,
- $\mathscr{B}:=\operatorname{span}\left\{V_{\pi}: \pi \in \mathfrak{S}_{k}\right\}$.

Then \mathscr{C} and \mathscr{B} are equal to the commutant of each other.
Proof. With Theorem 2 already known, it suffices to show that $\mathscr{A} \subset \mathscr{C}$, the reverse inclusion being obvious. Let $A \in \operatorname{End}\left(\mathbf{C}^{n}\right)$; we show that $A^{\otimes k} \in \mathscr{C}$ by producing an explicit decomposition as a linear combination of unitary tensor powers. Without loss of generality, assume $\|A\|_{\mathrm{op}}<1$. Consider the singular value decomposition

$$
A=\sum_{i=1}^{n} s_{i}\left|e_{i}\right\rangle\left\langle f_{i}\right|
$$

with $\left(e_{i}\right),\left(f_{i}\right)$ orthonormal bases and $s_{i} \in[0,1)$. Denote by $\mathbf{T} \subset \mathbf{C}$ the unit circle; for any $\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{T}^{n}$, consider the unitary matrix

$$
U_{z_{1}, \ldots, z_{n}}=\sum_{i=1}^{n} z_{i}\left|e_{i}\right\rangle\left\langle f_{i}\right| .
$$

We use Cauchy's formula from complex analysis: whenever $|s|<1$, we have (contour integral)

$$
\frac{1}{2 i \pi} \int_{\mathbf{T}} z^{k} \frac{\mathrm{~d} z}{z-s}=s^{k}
$$

for any $k \in \mathbf{N}$. Using Fubini's theorem, we obtain as a consequence a multivariate version: whenever $\left|s_{i}\right|<1$, for any choice of indices $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$,

$$
\frac{1}{(2 i \pi)^{n}} \int_{\mathbf{T}^{n}}\left(\prod_{j=1}^{k} z_{i_{j}}\right) \frac{\mathrm{d} z_{1}}{z_{1}-s_{1}} \cdots \frac{\mathrm{~d} z_{n}}{z_{n}-s_{n}}=\prod_{j=1}^{k} s_{i_{j}}
$$

It remains to compute

$$
\begin{aligned}
& \frac{1}{(2 i \pi)^{n}} \int_{\mathbf{T}^{n}} U_{z_{1}, \ldots, z_{n}}^{\otimes k} \frac{\mathrm{~d} z_{1}}{z_{1}-s_{1}} \cdots \frac{\mathrm{~d} z_{n}}{z_{n}-s_{n}} \\
= & \sum_{i_{1}, \ldots, i_{k}=1}^{n} \frac{1}{(2 i \pi)^{n}} \int_{\mathbf{T}^{n}} z_{i_{1}} \ldots z_{i_{k}} \frac{\mathrm{~d} z_{1}}{z_{1}-s_{1}} \cdots \frac{\mathrm{~d} z_{n}}{z_{n}-s_{n}}\left|e_{i_{1}} \otimes \cdots \otimes e_{i_{k}}\right\rangle\left\langle f_{i_{1}} \otimes \cdots \otimes f_{i_{k}}\right| \\
= & \sum_{i_{1}, \ldots, i_{k}=1}^{n} s_{i_{1}} \ldots s_{i_{k}}\left|e_{i_{1}} \otimes \cdots \otimes e_{i_{k}}\right\rangle\left\langle f_{i_{1}} \otimes \cdots \otimes f_{i_{k}}\right| \\
= & \left(\sum_{i=1}^{n} s_{i}\left|e_{i}\right\rangle\left\langle f_{i}\right|\right)^{\otimes k}=A^{\otimes k} .
\end{aligned}
$$

This show that $A^{\otimes k} \in \mathscr{C}$.

[^0]: ${ }^{1}$ all sub-algebras are assumed to contain Id

