Permutation groups with metrizable universal minimal flow

Andy Zucker
Carnegie Mellon University

June 30, 2015
When Topological Dynamics Meets Model Theory
Marseille
In this talk, we are interested in the dynamics of closed subgroups of S_∞, which we endow with the pointwise convergence topology.
In this talk, we are interested in the dynamics of closed subgroups of S_∞, which we endow with the pointwise convergence topology.

Recall that the closed subgroups of S_∞ are exactly the automorphism groups of relational *Fraïssé structures*.
In this talk, we are interested in the dynamics of closed subgroups of S_∞, which we endow with the pointwise convergence topology.

Recall that the closed subgroups of S_∞ are exactly the automorphism groups of relational Fraïssé structures.

If K is a Fraïssé structure, then $\mathcal{K} = \text{Age}(K)$ is a Fraïssé class. Conversely, if \mathcal{K} is a Fraïssé class, there is up to isomorphism a unique Fraïssé structure $K = \text{Flim}(\mathcal{K})$ with $\text{Age}(K) = \mathcal{K}$.
For G a topological group, a G-flow is a compact Hausdorff space X along with a continuous right action $\tau : X \times G \rightarrow X$.
For G a topological group, a G-flow is a compact Hausdorff space X along with a continuous right action $\tau : X \times G \to X$.

A G-flow X is minimal if every orbit is dense, and X is universal if for any minimal G-flow Y, there is a map of G-flows $\pi : X \to Y$.
For G a topological group, a G-flow is a compact Hausdorff space X along with a continuous right action $\tau : X \times G \to X$.

A G-flow X is minimal if every orbit is dense, and X is universal if for any minimal G-flow Y, there is a map of G-flows $\pi : X \to Y$.

It is a fact that for any topological group G, there is up to G-flow isomorphism a unique flow $M(G)$ which is minimal and universal. $M(G)$ is called the universal minimal flow.
For \mathbf{K} a Fraïssé structure, there is a fascinating interplay between the dynamical properties of $G = \text{Aut}(\mathbf{K})$ and the combinatorics of $\mathcal{K} = \text{Age}(\mathbf{K})$.
For \mathbf{K} a Fraïssé structure, there is a fascinating interplay between the dynamical properties of $G = \text{Aut}(\mathbf{K})$ and the combinatorics of $\mathcal{K} = \text{Age}(\mathbf{K})$.

Let \mathcal{K} be a class of finite structures, and let $\mathbf{A} \in \mathcal{K}$. We say that \mathbf{A} is a *Ramsey object* if for every $\mathbf{B} \in \mathcal{K}$ with $\mathbf{B} \succeq \mathbf{A}$ and every $k \in \mathbb{N}$, there is a $\mathbf{C} \in \mathcal{K}$ with $\mathbf{C} \succeq \mathbf{B}$ for which we have

$$\mathbf{C} \hookrightarrow (\mathbf{B})^\mathbf{A}_k$$

We say that \mathcal{K} has the *Ramsey Property* if each $\mathbf{A} \in \mathcal{K}$ is a Ramsey object.
For K a Fraïssé structure, there is a fascinating interplay between the dynamical properties of $G = \text{Aut}(K)$ and the combinatorics of $\mathcal{K} = \text{Age}(K)$.

Let \mathcal{K} be a class of finite structures, and let $A \in \mathcal{K}$. We say that A is a *Ramsey object* if for every $B \in \mathcal{K}$ with $B \succeq A$ and every $k \in \mathbb{N}$, there is a $C \in \mathcal{K}$ with $C \succeq B$ for which we have

$$C \hookrightarrow (B)^A_k$$

This says that for every coloring $\gamma : \text{Emb}(A, C) \to [k]$, there is $f \in \text{Emb}(B, C)$ so that $|\gamma(f \circ \text{Emb}(A, B))| = 1$.
For K a Fraïssé structure, there is a fascinating interplay between the dynamical properties of $G = \text{Aut}(K)$ and the combinatorics of $\mathcal{K} = \text{Age}(K)$.

Let \mathcal{K} be a class of finite structures, and let $A \in \mathcal{K}$. We say that A is a Ramsey object if for every $B \in \mathcal{K}$ with $B \succeq A$ and every $k \in \mathbb{N}$, there is a $C \in \mathcal{K}$ with $C \succeq B$ for which we have

$$C \hookrightarrow (B)^A_k$$

This says that for every coloring $\gamma : \text{Emb}(A, C) \to [k]$, there is $f \in \text{Emb}(B, C)$ so that $|\gamma(f \circ \text{Emb}(A, B))| = 1$.

We say that \mathcal{K} has the Ramsey Property if each $A \in \mathcal{K}$ is a Ramsey object. We can now state the following theorem.
Theorem (Kechris-Pestov-Todorčević)

Let \mathcal{K} be a Fraïssé structure, $\mathcal{K} = \text{Age}(\mathcal{K})$, and $G = \text{Aut}(\mathcal{K})$. Then \mathcal{K} has the Ramsey Property iff G is extremely amenable (i.e. $M(G)$ is a singleton).

Problem

Is there a similar combinatorial characterization of when $M(G)$ is metrizable?

Yes!
Theorem (Kechris-Pestov-Todorčević)

Let \mathcal{K} be a Fraïssé structure, $\mathcal{K} = \text{Age}(\mathbf{K})$, and $G = \text{Aut}(\mathbf{K})$. Then \mathcal{K} has the Ramsey Property iff G is extremely amenable (i.e. $M(G)$ is a singleton).

Problem

Is there a similar combinatorial characterization of when $M(G)$ is metrizable?
Theorem (Kechris-Pestov-Todorčević)

Let \mathcal{K} be a Fraïssé structure, $\mathcal{K} = \text{Age}(\mathcal{K})$, and $G = \text{Aut}(\mathcal{K})$. Then \mathcal{K} has the Ramsey Property iff G is extremely amenable (i.e. $M(G)$ is a singleton).

Problem

Is there a similar combinatorial characterization of when $M(G)$ is metrizable?

Yes!
Let \mathcal{K} be a class of finite structures, and let $A \in \mathcal{K}$. We say that A has *finite Ramsey degree* if there is $\ell \in \mathbb{N}$
Let \mathcal{K} be a class of finite structures, and let $A \in \mathcal{K}$. We say that A has \textit{finite Ramsey degree} if there is $\ell \in \mathbb{N}$ so that for every $B \in \mathcal{K}$ with $B \geq A$ and every $k \geq \ell$, there is $C \in \mathcal{K}$ with $C \geq B$ for which we have $C \hookrightarrow \rightarrow (B)^A_k$, \textit{this says that for every $\gamma : \text{Emb}(A,C) \to [k]$, there is $f \in \text{Emb}(B,C)$ so that $|\gamma(f \circ \text{Emb}(A,B))| \leq \ell$.}
Let \mathcal{K} be a class of finite structures, and let $A \in \mathcal{K}$. We say that A has \textit{finite Ramsey degree} if there is $\ell \in \mathbb{N}$ so that for every $B \in \mathcal{K}$ with $B \geq A$ and every $k \geq \ell$, there is $C \in \mathcal{K}$ with $C \geq B$ for which we have

$$C \hookrightarrow (B)^A_{k,\ell}$$
Let \mathcal{K} be a class of finite structures, and let $A \in \mathcal{K}$. We say that A has \textit{finite Ramsey degree} if there is $\ell \in \mathbb{N}$ so that for every $B \in \mathcal{K}$ with $B \geq A$ and every $k \geq \ell$, there is $C \in \mathcal{K}$ with $C \geq B$ for which we have

$$C \hookrightarrow (B)^A_{k,\ell}$$

This says that for every $\gamma : \text{Emb}(A, C) \to [k]$, there is $f \in \text{Emb}(B, C)$ so that $|\gamma(f \circ \text{Emb}(A, B))| \leq \ell$.
Let \mathcal{K} be a class of finite structures, and let $A \in \mathcal{K}$. We say that A has \textit{finite Ramsey degree} if there is $\ell \in \mathbb{N}$ so that for every $B \in \mathcal{K}$ with $B \geq A$ and every $k \geq \ell$, there is $C \in \mathcal{K}$ with $C \geq B$ for which we have

$$C \hookrightarrow (B)^A_{k,\ell}$$

This says that for every $\gamma : \text{Emb}(A, C) \to [k]$, there is $f \in \text{Emb}(B, C)$ so that $|\gamma(f \circ \text{Emb}(A, B))| \leq \ell$.

\textbf{Theorem (Z.)}

\textit{Let \mathcal{K} be a Fraïssé structure, $\mathcal{K} = \text{Age}(K)$, and $G = \text{Aut}(K)$. Then $M(G)$ is metrizable iff each $A \in \mathcal{K}$ has finite Ramsey degree.}
So if $M(G)$ is metrizable, what can it look like? KPT-correspondence provides us with many examples:
So if $M(G)$ is metrizable, what can it look like? KPT-correspondence provides us with many examples:

- For \mathbb{N} the infinite set, $M(\text{Aut}(\mathbb{N})) = M(S_\infty)$ is the space of linear orderings of \mathbb{N}.
So if $M(G)$ is metrizable, what can it look like? KPT-correspondence provides us with many examples:

- For \mathbb{N} the infinite set, $M(\text{Aut}(\mathbb{N})) = M(S_\infty)$ is the space of linear orderings of \mathbb{N}.
- For V_∞ the infinite dimensional vector space over F_q, $M(\text{Aut}(V_\infty))$ is the space of lex. orderings of V_∞.
So if $M(G)$ is metrizable, what can it look like? KPT-correspondence provides us with many examples:

- For \mathbb{N} the infinite set, $M(\text{Aut}(\mathbb{N})) = M(S_\infty)$ is the space of linear orderings of \mathbb{N}.
- For V_∞ the infinite dimensional vector space over F_q, $M(\text{Aut}(V_\infty))$ is the space of lex. orderings of V_∞.

Sometimes we need more than just a linear order (Nguyen Van Thé).
So if $M(G)$ is metrizable, what can it look like? KPT-correspondence provides us with many examples:

- For \mathbb{N} the infinite set, $M(\text{Aut}(\mathbb{N})) = M(S_\infty)$ is the space of linear orderings of \mathbb{N}.
- For V_∞ the infinite dimensional vector space over F_q, $M(\text{Aut}(V_\infty))$ is the space of lex. orderings of V_∞.

Sometimes we need more than just a linear order (Nguyen Van Thé).

- For the tournament $S(2)$, $M(\text{Aut}(S(2)))$ is the space of admissible labelled 2-part partitions of $S(2)$.
The most general set-up for KPT-correspondence is as follows:
The most general set-up for KPT-correspondence is as follows:

Let \mathcal{K} be a Fraïssé class in a language L with limit \mathbf{K}. Let \mathcal{K}^* be a Fraïssé class in $L^* = L \cup \{S_i : i \in I\}$, where the S_i are countably many new relation symbols of arity $n(i)$, with limit \mathbf{K}^* and with the property that $\mathbf{K}^*|_L = \mathbf{K}$ (i.e. \mathcal{K}^* is a reasonable expansion of \mathcal{K}).
The most general set-up for KPT-correspondence is as follows:

Let \mathcal{K} be a Fraïssé class in a language L with limit \mathcal{K}. Let \mathcal{K}^* be a Fraïssé class in $L^* = L \cup \{S_i : i \in I\}$, where the S_i are countably many new relation symbols of arity $n(i)$, with limit \mathcal{K}^* and with the property that $\mathcal{K}^*|_L = \mathcal{K}$ (i.e. \mathcal{K}^* is a reasonable expansion of \mathcal{K}).

The topological space $X_{\mathcal{K}^*}$ is the collection of all structures of the form $\langle \mathcal{K}, \vec{S}^{\mathcal{K}} \rangle$. If $A \subseteq \mathcal{K}$, $A \in \mathcal{K}$, and $A^* \in \mathcal{K}^*$ with $A^*|_L = A$, then this determines a basic open neighborhood of $X_{\mathcal{K}^*}$ via

$$N(A^*) = \{ \vec{S}^{\mathcal{K}} \in X_{\mathcal{K}^*} : \langle A, \vec{S}^{\mathcal{K}}|_A \rangle = A^* \}$$
\(X_{\mathcal{K}^*}\) is compact iff for each \(A \in \mathcal{K}\), \(\{A^* \in \mathcal{K}^* : A^*|_L = A\}\) is finite (i.e. \(\mathcal{K}^*\) is precompact). \(G = \text{Aut}(\mathcal{K})\) acts on \(X_{\mathcal{K}^*}\) via the logic action, i.e. for \(K' \in X_{\mathcal{K}^*}\), \(g \in G\), and each \(i \in I\), we have

\[
S_i^{K'} \cdot g(x_1, \ldots, x_{n(i)}) = S_i^{K'}(g(x_1), \ldots, g(x_{n(i)}))
\]
$X_{\mathcal{K}^*}$ is compact iff for each $A \in \mathcal{K}$, $\{A^* \in \mathcal{K}^* : A^*|_L = A\}$ is finite (i.e. \mathcal{K}^* is precompact). $G = \text{Aut}(\mathcal{K})$ acts on $X_{\mathcal{K}^*}$ via the logic action, i.e. for $K' \in X_{\mathcal{K}^*}$, $g \in G$, and each $i \in I$, we have

$$S_i^{K'} \cdot g(x_1, \ldots, x_{n(i)}) = S_i^{K'}(g(x_1), \ldots, g(x_{n(i)}))$$

We say that \mathcal{K}^* has the Expansion Property if for any $A \in \mathcal{K}$, there is $B \in \mathcal{K}$ with $A \leq B$ so that for any expansions A^*, B^* of A and B respectively, we have $A^* \leq B^*$.

Theorem (Kechris-Pestov-Todorˇ cevi´ c, Nguyen Van Th´ e)

Let \mathcal{K} be a Fr¨ a¨ıss´ e structure, $\mathcal{K} = \text{Age}(\mathcal{K})$, and $G = \text{Aut}(\mathcal{K})$. Let \mathcal{K}^* be a reasonable, precompact Fr¨ a¨ıss´ e expansion of \mathcal{K}. Then $M(G) \cong X_{\mathcal{K}^*}$ iff \mathcal{K}^* has the ExpP and the RP.
$X_{\mathcal{K}^*}$ is compact iff for each $A \in \mathcal{K}$, $\{A^* \in \mathcal{K}^* : A^*|_L = A\}$ is finite (i.e. \mathcal{K}^* is precompact). $G = \text{Aut}(\mathcal{K})$ acts on $X_{\mathcal{K}^*}$ via the logic action, i.e. for $\mathcal{K}' \in X_{\mathcal{K}^*}$, $g \in G$, and each $i \in I$, we have

$$S_i^{\mathcal{K}'} \cdot g(x_1, \ldots, x_{n(i)}) = S_i^{\mathcal{K}'}(g(x_1), \ldots, g(x_{n(i)}))$$

We say that \mathcal{K}^* has the Expansion Property if for any $A \in \mathcal{K}$, there is $B \in \mathcal{K}$ with $A \leq B$ so that for any expansions A^*, B^* of A and B respectively, we have $A^* \leq B^*$.

Theorem (Kechris-Pestov-Todorčević, Nguyen Van Thé)

Let \mathcal{K} be a Fraïssé structure, $\mathcal{K} = \text{Age}(\mathcal{K})$, and $G = \text{Aut}(\mathcal{K})$. Let \mathcal{K}^ be a reasonable, precompact Fraïssé expansion of \mathcal{K}. Then $M(G) \cong X_{\mathcal{K}^*}$ iff \mathcal{K}^* has the ExpP and the RP.*
Problem

If G is a closed subgroup of S_∞ with $M(G)$ metrizable, can $M(G)$ be described using a logic action as above?
Problem

If G is a closed subgroup of S_∞ with $M(G)$ metrizable, can $M(G)$ be described using a logic action as above?

Yes!

Theorem (Z.)

Let K be a Fraïssé structure, $\mathcal{K} = \text{Age}(K)$, and $G = \text{Aut}(K)$. Suppose $M(G)$ is metrizable. Then \mathcal{K} admits a reasonable, precompact Fraïssé expansion class \mathcal{K}^* with the Expansion Property and the Ramsey Property.
This has the nice consequence of solving the Generic Point Problem for closed subgroups of S_∞.
This has the nice consequence of solving the Generic Point Problem for closed subgroups of S_∞.

If G is a topological group and X is a minimal G-flow, then $x \in X$ is a \textit{generic point} if $x \cdot G$ is comeager. G is said to have the \textit{Generic Point Property} if each minimal flow has a generic point. This holds iff $M(G)$ has a generic point.
This has the nice consequence of solving the Generic Point Problem for closed subgroups of S_∞.

If G is a topological group and X is a minimal G-flow, then $x \in X$ is a generic point if $x \cdot G$ is comeager. G is said to have the Generic Point Property if each minimal flow has a generic point. This holds iff $M(G)$ has a generic point.

If G, \mathcal{K}, and K are as always and \mathcal{K}^* is a reasonable Fraïssé expansion of \mathcal{K} with the Expansion Property, then the orbit of $K^* = \text{Flim}(\mathcal{K}^*)$ is generic.
This has the nice consequence of solving the Generic Point Problem for closed subgroups of \(S_\infty \).

If \(G \) is a topological group and \(X \) is a minimal \(G \)-flow, then \(x \in X \) is a \textit{generic point} if \(x \cdot G \) is comeager. \(G \) is said to have the \textit{Generic Point Property} if each minimal flow has a generic point. This holds iff \(M(G) \) has a generic point.

If \(G, \mathcal{K}, \text{ and } K \) are as always and \(K^* \) is a reasonable Fraïssé expansion of \(K \) with the Expansion Property, then the orbit of \(K^* = \text{Flim}(K^*) \) is generic.

\textbf{Corollary (Z.)}

\textit{Let \(G \) be a closed subgroup of \(S_\infty \), and suppose \(M(G) \) is metrizable. Then \(G \) has the Generic Point Property.}
However, the Generic Point Problem as originally asked is still open.
However, the Generic Point Problem as originally asked is still open.

Problem (Angel, Kechris, Lyons)

Let G be a Polish group, and suppose $M(G)$ is metrizable. Then does $M(G)$ have the Generic Point Property?
The first ingredient in the proof is a different way of thinking about the Ramsey Property.
The first ingredient in the proof is a different way of thinking about the Ramsey Property.

Let D be a countably infinite relational structure with $D = \text{Age}(D)$, and let $A \in D$. We say $T \subseteq \text{Emb}(A, D)$ is thick if for every $B \in D$, there is $f \in \text{Emb}(B, D)$ with $f \circ \text{Emb}(A, B) \subseteq T$.

We consider partial colorings $\gamma : \text{Emb}(A, D) \to [k]$; we say γ is full if $\text{dom}(\gamma) = \text{Emb}(A, D)$, and we say γ is large if $\text{dom}(\gamma)$ is thick.
The first ingredient in the proof is a different way of thinking about the Ramsey Property.

Let D be a countably infinite relational structure with $\mathcal{D} = \text{Age}(D)$, and let $A \in \mathcal{D}$. We say $T \subseteq \text{Emb}(A, D)$ is thick if for every $B \in \mathcal{D}$, there is $f \in \text{Emb}(B, D)$ with $f \circ \text{Emb}(A, B) \subseteq T$.

We consider partial colorings $\gamma : \text{Emb}(A, D) \rightarrow [k]$; we say γ is full if $\text{dom}(\gamma) = \text{Emb}(A, D)$, and we say γ is large if $\text{dom}(\gamma)$ is thick.
Proposition

Suppose D is a countably infinite relational structure, $D = \text{Age}(D)$, and C is cofinal in D. Let $A \in C$ and fix any $k \geq 2$. Then the following are equivalent:

1. A is a Ramsey object in C,
2. A is a Ramsey object in D,
3. For any full k-coloring γ of $\text{Emb}(A, D)$, there is some γ_i which is thick,
4. For any large k-coloring γ of $\text{Emb}(A, D)$, there is some γ_i which is thick.
There is a similar characterization for Ramsey degrees:
There is a similar characterization for Ramsey degrees:

Proposition

Suppose D is a countably infinite relational structure, $D = \text{Age}(D)$, and C is cofinal in D. Let $A \in C$ and fix any $r > k$. Then the following are equivalent:

1. A has Ramsey degree $t \leq k$ in C,
2. A has Ramsey degree $t \leq k$ in D,
3. Any full r-coloring of $\text{Emb}(A, D)$ has some subset of k colors which form a thick subset,
4. Any large r-coloring of $\text{Emb}(A, D)$ has some subset of k colors which form a thick subset.
However, there is another characterization of Ramsey degrees we will find useful.
However, there is another characterization of Ramsey degrees we will find useful.

With D, \mathcal{D} as above and $A \in \mathcal{D}$, we say that $S \subseteq \text{Emb}(A, D)$ is *syndetic* if $\text{Emb}(A, D) \setminus S$ is not thick.

Proposition With D, \mathcal{D}, and $A \in \mathcal{D}$, then A has Ramsey degree $t \geq k$ (possibly infinite) iff there is a syndetic k-coloring of $\text{Emb}(A, D)$.
However, there is another characterization of Ramsey degrees we will find useful.

With \mathbf{D}, \mathcal{D} as above and $\mathbf{A} \in \mathcal{D}$, we say that $S \subseteq \text{Emb}(\mathbf{A}, \mathbf{D})$ is \textit{syndetic} if $\text{Emb}(\mathbf{A}, \mathbf{D}) \setminus S$ is not thick.

If γ is a full k-coloring of $\text{Emb}(\mathbf{A}, \mathbf{D})$, we say that γ is syndetic if each γ_i is syndetic.
However, there is another characterization of Ramsey degrees we will find useful.

With D, \mathcal{D} as above and $A \in \mathcal{D}$, we say that $S \subseteq \text{Emb}(A, D)$ is syndetic if $\text{Emb}(A, D) \setminus S$ is not thick.

If γ is a full k-coloring of $\text{Emb}(A, D)$, we say that γ is syndetic if each γ_i is syndetic.

Proposition

With D, \mathcal{D}, and A as above, then A has Ramsey degree $t \geq k$ (possibly infinite) iff there is a syndetic k-coloring of $\text{Emb}(A, D)$.
Let $A, B \in \mathcal{D}$ with $f \in \text{Emb}(A, B)$. We define $\hat{f} : \text{Emb}(B, D) \to \text{Emb}(A, D)$ via $\hat{f}(x) = x \circ f$.

We often consider these "dual" maps when dealing with a Fra"{i}ssé structure K with age \mathcal{K}. Notice that K is a Fra"{i}ssé structure iff every such \hat{f} is surjective.

Using the amalgamation property, we obtain the following:

Proposition

Let K, K' be as above, and fix $A \leq B \in K$ and $f \in \text{Emb}(A, B)$. Then $X \subseteq \text{Emb}(A, K)$ is thick (resp. syndetic) iff $\hat{f}^{-1}(X) \subseteq \text{Emb}(B, K')$ is thick (resp. syndetic).
Let \(A, B \in \mathcal{D} \) with \(f \in \text{Emb}(A, B) \). We define \(\hat{f} : \text{Emb}(B, D) \to \text{Emb}(A, D) \) via \(\hat{f}(x) = x \circ f \).

We often consider these “dual” maps when dealing with a Fraïssé structure \(K \) with age \(\mathcal{K} \). Notice that \(K \) is a Fraïssé structure iff every such \(\hat{f} \) is surjective.

Using the amalgamation property, we obtain the following:
Let $A, B \in \mathcal{D}$ with $f \in \text{Emb}(A, B)$. We define $\hat{f} : \text{Emb}(B, D) \to \text{Emb}(A, D)$ via $\hat{f}(x) = x \circ f$.

We often consider these “dual” maps when dealing with a Fraïssé structure K with age \mathcal{K}. Notice that K is a Fraïssé structure iff every such \hat{f} is surjective.

Using the amalgamation property, we obtain the following:

Proposition

Let K, \mathcal{K} be as above, and fix $A \leq B \in \mathcal{K}$ and $f \in \text{Emb}(A, B)$. Then $X \subseteq \text{Emb}(A, K)$ is thick (resp. syndetic) iff $\hat{f}^{-1}(X) \subseteq \text{Emb}(B, K)$ is thick (resp. syndetic).
This has a useful corollary:
This has a useful corollary:

Corollary

Let $K, K, A \leq B$ be as above. Then if B has Ramsey degree k, then A has Ramsey degree $t \leq k$. In particular, if B is a Ramsey object, then so is A.
This has a useful corollary:

Corollary

Let $K, K, A \leq B$ be as above. Then if B has Ramsey degree k, then A has Ramsey degree $t \leq k$. In particular, if B is a Ramsey object, then so is A.

This is not in general true for the “substructure” version of the Ramsey property.
The next item we need to tackle is to provide an explicit construction of the greatest ambit. If G is a topological group, a G-ambit is a G-flow X and a distinguished point $x_0 \in X$ with dense orbit.
The next item we need to tackle is to provide an explicit construction of the greatest ambit. If G is a topological group, a G-ambit is a G-flow X and a distinguished point $x_0 \in X$ with dense orbit.

If (X, x_0) and (Y, y_0) are G-ambits, then $f : X \to Y$ is a map of G-ambits if f is a G-map sending x_0 to y_0. There is at most one map of ambits from (X, x_0) to (Y, y_0); if there is one, we write $(X, x_0) \succeq (Y, y_0)$.
The next item we need to tackle is to provide an explicit construction of the greatest ambit. If G is a topological group, a G-ambit is a G-flow X and a distinguished point $x_0 \in X$ with dense orbit.

If (X, x_0) and (Y, y_0) are G-ambits, then $f : X \to Y$ is a map of G-ambits if f is a G-map sending x_0 to y_0. There is at most one map of ambits from (X, x_0) to (Y, y_0); if there is one, we write $(X, x_0) \geq (Y, y_0)$.

It is a fact that every topological group G admits up to isomorphism a unique greatest ambit $(S(G), 1)$; any minimal subflow of $S(G)$ is universal, hence isomorphic to $M(G)$.
From now on, we fix once and for all a Fraïssé structure K with age \mathcal{K}. We also set $G = \text{Aut}(K)$. Fix finite substructures $A_1 \subseteq A_2 \subseteq \cdots$ with $K = \bigcup_n A_n$. Write $H_n = \text{Emb}(A_n, K)$.
From now on, we fix once and for all a Fraïssé structure K with age \mathcal{K}. We also set $G = \text{Aut}(K)$. Fix finite substructures $A_1 \subseteq A_2 \subseteq \cdots$ with $K = \bigcup_n A_n$. Write $H_n = \text{Emb}(A_n, K)$.

For $m \leq n$, let $i^n_m : A_m \hookrightarrow A_n$ be the inclusion map. This gives rise to a surjective dual map $\hat{i}^n_m : H_n \rightarrow H_m$. Note that if $m \leq n \leq N$, then $\hat{i}^N_n = \hat{i}^n_m \circ \hat{i}^N_n$.
From now on, we fix once and for all a Fraïssé structure K with age \mathcal{K}. We also set $G = \text{Aut}(K)$. Fix finite substructures $A_1 \subseteq A_2 \subseteq \cdots$ with $K = \bigcup_n A_n$. Write $H_n = \text{Emb}(A_n,K)$.

For $m \leq n$, let $i_m^n : A_m \hookrightarrow A_n$ be the inclusion map. This gives rise to a surjective dual map $\hat{i}_m^n : H_n \rightarrow H_m$. Note that if $m \leq n \leq N$, then $\hat{i}_n^n = \hat{i}_m^m \circ \hat{i}_n^N$.

Form βH_n, the space of all ultrafilters on H_n. Each \hat{i}_m^n extends to a continuous surjective $\tilde{i}_m^n : \beta H_n \rightarrow \beta H_m$. If $p \in \beta H_n$ and $S \subseteq H_m$, then $S \in \tilde{i}_m^n$ iff $(\hat{i}_m^n)^{-1}(S) \in p$.
From now on, we fix once and for all a Fraïssé structure K with age \mathcal{K}. We also set $G = \text{Aut}(K)$. Fix finite substructures $A_1 \subseteq A_2 \subseteq \cdots$ with $K = \bigcup_n A_n$. Write $H_n = \text{Emb}(A_n, K)$.

For $m \leq n$, let $i^n_m : A_m \hookrightarrow A_n$ be the inclusion map. This gives rise to a surjective dual map $\hat{i}_m^n : H_n \to H_m$. Note that if $m \leq n \leq N$, then $\hat{i}_N^n = \hat{i}_m^n \circ \hat{i}_n^N$.

Form βH_n, the space of all ultrafilters on H_n. Each \hat{i}_m^n extends to a continuous surjective $\tilde{i}_m^n : \beta H_n \to \beta H_m$. If $p \in \beta H_n$ and $S \subseteq H_m$, then $S \in \tilde{i}_m^n$ iff $(\hat{i}_m^n)^{-1}(S) \in p$.

Now form the inverse limit $\lim \beta H_n$ along the maps \tilde{i}_m^n. A basic open neighborhood of $\alpha \in \lim \beta H_n$ is given by $
abla \{ \alpha' \in \lim \beta H_n : S \in \alpha'(m) \}$ for some $m \in \mathbb{N}$ and $S \subseteq H_m$, $S \in \alpha(m)$.
G acts on $\lim_{\leftarrow} \beta H_n$ as follows: if $\alpha \in \lim_{\leftarrow} \beta H_n$, $g \in G$, and $S \in H_m$, then $S \in \alpha g(m)$ iff for some $n \geq m$, \[\{x \in H_n : x \circ g|_m \in S\} \in \alpha(n). \] This action is jointly continuous!
G acts on $\lim \beta H_n$ as follows: if $\alpha \in \lim \beta H_n$, $g \in G$, and $S \in H_m$, then $S \in \alpha g(m)$ iff for some $n \geq m$,
\[\{ x \in H_n : x \circ g|_m \in S \} \in \alpha(n). \]
This action is jointly continuous!

Let $1 \in \lim \beta H_n$ denote the element with each $1(m)$ principal on the inclusion embedding.
G acts on $\lim \beta H_n$ as follows: if $\alpha \in \lim \beta H_n$, $g \in G$, and $S \in H_m$, then $S \in \alpha g(m)$ iff for some $n \geq m$,
\[\{ x \in H_n : x \circ g \mid_m \in S \} \in \alpha(n). \]
This action is jointly continuous!

Let $1 \in \lim \beta H_n$ denote the element with each $1(m)$ principal on the inclusion embedding.

Theorem (Pestov)

$(\lim \beta H_n, 1)$ is the greatest G-ambit.
We can now give a new proof of the extreme amenability result from KPT. In fact, the proofs of many of the other results work by mimicking the methods in the proof I will present here, so this proof is in some ways representative.
We can now give a new proof of the extreme amenability result from KPT. In fact, the proofs of many of the other results work by mimicking the methods in the proof I will present here, so this proof is in some ways representative.

We say that $p \in \beta H_n$ is *thick* if every member of p is thick. Let $R_n \subseteq \beta H_n$ be the set of thick ultrafilters.

Proposition

If $m \leq n$, A_n is a Ramsey object, and $p \in R_m$, then there is $q \in R_n$ with $\tilde{i}_n^m(q) = p$.

Andy Zucker Carnegie Mellon University
Permutation groups with metrizable universal minimal flow
We can now give a new proof of the extreme amenability result from KPT. In fact, the proofs of many of the other results work by mimicking the methods in the proof I will present here, so this proof is in some ways representative.

We say that $p \in \beta H_n$ is thick if every member of p is thick. Let $R_n \subseteq \beta H_n$ be the set of thick ultrafilters.

Proposition

$R_n \neq \emptyset$ iff A_n is a Ramsey object.
We can now give a new proof of the extreme amenability result from KPT. In fact, the proofs of many of the other results work by mimicking the methods in the proof I will present here, so this proof is in some ways representative.

We say that \(p \in \beta H_n \) is **thick** if every member of \(p \) is thick. Let \(R_n \subseteq \beta H_n \) be the set of thick ultrafilters.

Proposition

\[R_n \neq \emptyset \text{ iff } \mathbf{A}_n \text{ is a Ramsey object}. \]

Proposition

If \(m \leq n \), \(\mathbf{A}_n \) is a Ramsey object, and \(p \in R_m \), then there is \(q \in R_n \) with \(\tilde{i}_m^n(q) = p \).
We see that K has the Ramsey Property iff $\lim\leftarrow R_n \neq \emptyset$.
We see that \mathcal{K} has the Ramsey Property iff $\lim_{\leftarrow} R_n \neq \emptyset$.

G is extremely amenable iff $M(G)$ is a singleton iff $S(G)$ contains a fixed point.
We see that \mathcal{K} has the Ramsey Property iff $\lim_{\leftarrow} R_n \neq \emptyset$.

G is extremely amenable iff $M(G)$ is a singleton iff $S(G)$ contains a fixed point.

Theorem

$\alpha \in \lim_{\leftarrow} \beta H_n$ is a fixed point iff $\alpha \in \lim_{\leftarrow} R_n$. In particular, G is extremely amenable iff \mathcal{K} has the Ramsey Property.
Let $\alpha \in \lim\limits_{\leftarrow} R_n$; suppose for sake of contradiction that there were some $g \in G$ with $\alpha g \neq \alpha$. In particular, there is $m \in \mathbb{N}$ and $S \subseteq H_m$, $S \in \alpha(m)$ with $S \not\in \alpha g(m)$.
Let $\alpha \in \varprojlim R_n$; suppose for sake of contradiction that there were some $g \in G$ with $\alpha g \neq \alpha$. In particular, there is $m \in \mathbb{N}$ and $S \subseteq H_m, S \in \alpha(m)$ with $S \not\in \alpha g(m)$.

For some $n \geq m$, we have $T_1 := \{x \in H_n : x \circ i^n_m \in S\} \in \alpha(n)$ and $T_2 := \{x \in H_n : x \circ g|_m \not\in S\} \in \alpha(n)$. So $T_1 \cap T_2 \in \alpha(n)$.
Let \(\alpha \in \lim_{\leftarrow} R_n \); suppose for sake of contradiction that there were some \(g \in G \) with \(\alpha g \neq \alpha \). In particular, there is \(m \in \mathbb{N} \) and \(S \subseteq H_m \), \(S \in \alpha(m) \) with \(S \notin \alpha g(m) \).

For some \(n \geq m \), we have \(T_1 := \{ x \in H_n : x \circ i^m_n \in S \} \in \alpha(n) \) and \(T_2 := \{ x \in H_n : x \circ g|_m \notin S \} \in \alpha(n) \). So \(T_1 \cap T_2 \in \alpha(n) \).

Now for large \(N \geq n \), find \(h \in H_N \) with \(h \circ \text{Emb}(A_n, A_N) \subseteq T_1 \cap T_2 \). Now consider \(h \circ g|_n \circ i^m_n = h \circ i^N_n \circ g|_m \). The left side is in \(S \), but the right side is not, a contradiction.
Suppose $\alpha(m)$ is not thick, with $S \in \alpha(m)$ not thick. Find $n \geq m$ with $f \circ \text{Emb}(A_m, A_n) \not\subseteq S$ for every $f \in H_n$.
Suppose $\alpha(m)$ is not thick, with $S \in \alpha(m)$ not thick. Find $n \geq m$ with $f \circ \text{Emb}(A_m, A_n) \not\subseteq S$ for every $f \in H_n$.

For $r \in \text{Emb}(A_m, A_n)$, set $T_r := \{ f \in H_n : f \circ r \in S \}$. Then:
Suppose $\alpha(m)$ is not thick, with $S \in \alpha(m)$ not thick. Find $n \geq m$ with $f \circ \text{Emb}(A_m, A_n) \not\subseteq S$ for every $f \in H_n$.

For $r \in \text{Emb}(A_m, A_n)$, set $T_r := \{f \in H_n : f \circ r \in S\}$. Then:

$$\bigcap_{r \in \text{Emb}(A_m, A_n)} T_r = \emptyset$$
Suppose \(\alpha(m) \) is not thick, with \(S \in \alpha(m) \) not thick. Find \(n \geq m \) with \(f \circ \text{Emb}(A_m, A_n) \not\subseteq S \) for every \(f \in H_n \).

For \(r \in \text{Emb}(A_m, A_n) \), set \(T_r := \{ f \in H_n : f \circ r \in S \} \). Then:

\[
\bigcap_{r \in \text{Emb}(A_m, A_n)} T_r = \emptyset
\]

Pick \(r \) with \(T_r \not\subseteq \alpha(n) \). Then for any \(g \in G \) with \(g|_{m} = r \), then \(\alpha g \neq \alpha \).
Thanks!