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Abstract. We give a short argument why the tensor product semi-norm on K ⊗k L is multiplicative
when k is an algebraically closed valued �eld and K and L are valued extensions (valued in R). When
the valuation on k is non trivial we use the fact that ACV F , the theory of algebraically closed (non
trivially) valued �elds, has quanti�er elimination.

It is a classical fact (e.g., Zariski and Samuel [ZS58, Chapter IV, Theorem 40, Corollary 1]) that
any two extensions K and L of an algebraically closed �eld k the ring K ⊗k L is an integral domain
(and this characterises algebraically closed �elds). When K and L (and therefore k) are valued in
(R≥0, ·), the tensor product carries a natural semi-norm; by analogy with the non valued case, if k is
also algebraically closed, we would expect this norm to be �prime�, i.e., multiplicative, extending to a
valuation of the fraction �eld. This is indeed proved by Jérôme Poineau [Poi13, Corollaire 3.14], with
both the result and the proof stated in the language of Berkovich spaces, making them fairly obscure to
those not familiar with this formalism (such as the author, who is indebted to Amaury Thuillier for
having pointed to and explained Poineau's result). Here we propose a more direct proof, using quanti�er
elimination for the theory of algebraically closed valued �elds.

De�nition 1. A valued �eld is a pair k = (k,Ok) = (k,O) where k is a �eld and the valuation ring

O ⊆ k is a sub-ring such that k = O ∪
(
Or {0}

)−1
. We let O× denote the group of units of O, and call

(Γk, ·) = (Γ, ·) = k×/O× the value group. We let |·| : k× → Γ denote the quotient map, and add a formal
symbol 0 = |0|. We order Γ ∪ {0} by |a| ≤ |b| ⇐⇒ a ∈ bO. By a standard valued �eld we mean a valued
�eld together with an embedding (Γ, ·, <)→ (R>0, ·, <).

An embedding of valued �elds must respect the valuation ring (in both directions), and therefore
induces an embedding of the value groups. An embedding of standard valued �elds is also required to
respect the embeddings of the value groups in the reals.

A semi-normed k-vector space (or k-module) is a k-vector space U together with a semi-norm ‖·‖ : U →
ΓU ∪ {0}, where ΓU is an ordered multiplicative group extending Γk, satisfying ‖x+ y‖ ≤ max ‖x‖, ‖y‖
and ‖ax‖ ≤ |a|‖x‖ (whence ‖ax‖ = |a|‖x‖) for x, y ∈ U , a ∈ k. It is standard if k is standard and U is
equipped with an embedding ΓU → (R+, ·, <) extending that of Γk. In particular, a (standard) valued
�eld extending k is a (standard) normed k-vector space.

We refer the reader to any standard textbook on model theory, e.g., Poizat [Poi85] for a general
discussion of structures, quanti�er elimination, elementary extensions and ultra-powers.

Fact 2 ([HHM06, Theorem 2.1.1(i)]). Consider a valued �eld as a logical structure in the language of
�elds (i.e., of rings), together with a predicate symbol for the binary relation |x| ≤ |y|. Then the theory of
algebraically closed non trivially valued �elds (commonly denoted ACV F ) in this language has quanti�er
elimination. In particular, if K/k is an extension of such �elds then K � k is an elementary extension.

Fact 3. IfM is any structure, in the sense of �rst order logic (e.g., a valued �eld, or a pair of a valued
�eld and a sub-�eld) and U is an ultra-�lter then the ultra-powerMU is an elementary extension ofM.
Conversely, every elementary extension N �M embeds overM in some ultra-power ofM.

When K/k is a �eld extension, let 〈. . .〉k denote the span in K viewed as a k-vector space.

Lemma 4. Let K/k be an extension of valued �elds.

(i) For any ultra-�lter U , the embeddings k ⊆ kU ⊆ KU and k ⊆ K ⊆ KU yield a commutative
diagram. Given X ⊆ K, y ∈ K, and γ ∈ ΓK such that |y| ≤ γ|y′| for all y′ ∈ y+ 〈X〉k, we also
have |y| ≤ γ|y′| for all y′ ∈ y + 〈X〉kU .

(ii) If k is algebraically closed and non trivially valued, then there exists an ultra-�lter U and an
embedding ι : K → kU which is the identity on k.
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(iii) If K/k in the previous item is moreover an extension of standard valued �elds then the embedding

Γk ⊆ R>0 induces Γ(kU ) = (Γk)U ⊆ (RU )>0, and |a| = st |ιa| for all a ∈ K×, where st denotes
the standard part map (so in particular, |ιa| ∈ RU lies in the convex hull of R+).

Proof. For the �rst assertion, we use the fact that the pair (K, k)U = (KU , kU ) is an elementary extension
of (K, k). For the second assertion, we may assume that K is algebraically closed. By Fact 2 we have
K � k, and we may conclude using Fact 3. For the last assertion, for a ∈ k× we have st |ιa| = |ιa| = |a|.
Choose a ∈ k× such that in addition |a| > 1, and let b ∈ K×. Let m,n be integers such that m

n ≤
log|a| |b| ≤ m+1

n and n > 0. Then |am| ≤ |bn| ≤ |am+1|, so |a|m/n ≤ |ιb| ≤ |a|(m+1)/n and therefore

|a|m/n ≤ st |ιb| ≤ |a|(m+1)/n as well. Our assertion follows. �

Notation 5. Tuples, e.g., ā = (a0, . . . , am−1), are always indexed starting at zero. We shall consider
tuples as column vectors, so āt · b̄ =

∑
i aibi, and by analogy, x̄t ⊗ ȳ =

∑
xi ⊗ yi for tensors.

De�nition 6 ([BGR84, 2.1.7]). Let k be a standard valued �eld, U and V two standard semi-normed
vector spaces over k. For z ∈ U ⊗k V we de�ne

‖z‖ = inf
z=x̄t⊗ȳ

max
i
‖xi‖‖yi‖.(1)

There is a canonical embedding U ⊗k V ⊆ Homk(U∗, V ), and let rk z denote the (�nite) rank of z as
a morphism U∗ → V . A presentation z = x̄t ⊗ ȳ has length rk z if and only if it has minimal length if
and only if each of the tuples x̄ and ȳ is linearly independent over k.

Lemma 7. With the hypotheses of De�nition 6:

(i) The function z 7→ ‖z‖ de�ned in (1) is a semi-norm on U ⊗k V . If U and V are k-algebras
(commutative, or at least such that k is central) with sub-multiplicative semi-norms (namely,
‖xy‖ ≤ ‖x‖‖y‖) then the tensor product semi-norm is sub-multiplicative as well.

(ii) We may restrict (1) to presentations of z of length rk z without changing the result.
(iii) We have ‖x⊗ y‖ = ‖x‖‖y‖.

Proof. The �rst item is immediate (see [BGR84]). For the second, consider a presentation z = x̄t ⊗ ȳ of
lengthm+1, with x̄ linearly dependent over k. Up to a permutation we may assume that xm =

∑
i<m aixi

where ai ∈ k and ‖xm‖ = maxi<m ‖aixi‖. Then z =
∑
i<m xi ⊗ y′i, where y′i = yi + aiym, and

max
i≤m
‖xi‖‖yi‖ = max

i<m
max

(
‖xi‖‖yi‖, ‖aixi‖‖ym‖

)
≥ max

i<m
‖xi‖‖y′i‖.

The second item follows. The third item follows from the second. �

(If U and V are standard normed and k complete then U ⊗k V is normed, but for our purposes this
is beside the point.)

Lemma 8. Let k be a valued �eld, U a semi-normed k-vector space, Γ = ΓU , and let x̄ ∈ Um and
γ̄ ∈ Γm be such that:

‖xi‖ ≤ γi‖x‖ for all i < m and x ∈ xi + 〈x<i〉k.(∗γ̄,k)

(i) For every ā ∈ km:

‖āt · x̄‖
∏

γi ≥ max
i
|ai|‖xi‖.

(ii) Assume in addition that k is standard and U and V are standard semi-normed k-vector spaces.
Then for every ȳ ∈ V m:

‖x̄t ⊗ ȳ‖
∏

γi ≥ max
i
‖xi‖‖yi‖.

Proof. Dropping those xi such that ‖xi‖ = 0 and the corresponding ai or yi will not change either the
hypotheses or the conclusions. We may therefore assume that ‖xi‖ > 0 for all i, in which case the
hypothesis (∗γ̄,k) implies that x̄ is linearly independent over k and γi ≥ 1 for all i. For 0 ≤ j ≤ m let
βj =

∏
i<j γi.

For the �rst assertion, let α = maxi |ai|‖xi‖. Then α = ‖aixi‖ ≤ βi‖aixi‖ for some i, and we may
choose ` < m maximal such that α ≤ β`‖a`x`‖. By (∗γ̄,k) we have β`+1‖

∑
i≤` aixi‖ ≥ β`‖a`x`‖ ≥ α.

By choice of ` we have β`+1‖aixi‖ ≤ βi‖aixi‖ < α for i > `, so βm‖āt · x̄‖ ≥ β`+1‖āt · x̄‖ ≥ α.
For the second assertion we need to show that if x̄t ⊗ ȳ = z = x̄′t ⊗ ȳ′ then βm max ‖x′i‖‖y′i‖ ≥

maxi ‖xi‖‖yi‖. By Lemma 7 we may assume that ȳ′ is linearly independent over k. Then x̄′ ⊆ 〈x̄〉k
(otherwise there is a linear functional λ ∈ U∗ which vanishes on x̄ but not on x̄′, and λ · z ∈ V is both
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zero and non zero), so let us write x′i =
∑
j<m aijxj . By linear independence of x̄, a tensor calculation

yields, yj =
∑
i<n aijy

′
i. Thus by (i)

βm max
i
‖x′i‖‖y′i‖ ≥ max

i,j
|aij |‖xj‖‖y′i‖ ≥ max

j
‖xj‖‖yj‖,

as desired. �

We can now prove our main result. The argument goes roughly as follows. We consider an extension
of algebraically closed standard valued �elds K/k. As we saw earlier, an ultra-power KU contains two
extensions of k, namely K and kU , and by Lemma 8 the vector space they generate in KU is canonically
isometric to K ⊗k kU . In particular, since we may also embed L/k in kU/k (this is where quanti�er
elimination is used) we obtain an isometric embedding of the algebra K ⊗k L in KU , and we know that
the latter carries a multiplicative valuation. When k carries a trivial valuation but neither K nor L do,
the last step fails, and a completely di�erent argument is required. While the latter case is uninteresting
to us, it is included for the sake of completeness.

Theorem 9. Let k be a standard algebraically closed valued �eld, let K,L ⊇ k be standard valued �eld
extensions, and let A = K ⊗k L. Then the tensor semi-norm ‖·‖ on A is multiplicative, extending to a
standard valuation on F = Frac(A/ ker ‖·‖). This renders F an extension of both K and L.

Proof. Assume �rst that the valuation on k is not trivial, and let ι : L ↪→ kU be an embedding as per
Lemma 4(ii). Since K is a sub-�eld of KU , the universal property of tensor products gives rise to a
natural map ι : A→ KU such that ‖z‖ ≥ st |ιz| for all z ∈ A. For the converse inequality, let 1 < γ ∈ Γk

be rational. We may always express z as x̄t ⊗ ȳ, say of length m, where x̄ satis�es (∗(γ,γ,...),k), and by

Lemma 4(i), also (∗(γ,γ,...),kU ). Thus, by Lemma 8(i) applied to KU as a normed kU -vector space,

γm st |ιz| ≥ st max
i
|xiιyi| = max

i
|xi||yi| ≥ ‖z‖.(2)

Since k is algebraically closed, we can choose 1 < γ ∈ Γk ⊆ R arbitrarily close to one. Then (2) gives
st |ιz| ≥ ‖z‖ and therefore st |ιz| = ‖z‖. Thus, for every z, z′ ∈ A we have

‖zz′‖ = st |ι(zz′)| = st |ιz| st |ιz′| = ‖z‖‖z′‖,

as desired.
When k is trivially valued we need a di�erent argument. Call z ∈ A (α, β)-pure if it can be written

as x̄t ⊗ ȳ with |xi| = α and |yi| = β = ‖z‖/α for all i. When z, z′ ∈ A are pure, we can multiply them
by elements of K and L to reduce to the case where both are (1, 1)-pure, in which case ‖zz′‖ = ‖z‖‖z′‖
holds since the tensor product of the residue �elds is an integral domain.

Say that a presentation z = x̄t ⊗ ȳ is normalised if xi has least value in xi + 〈x<i〉 for each i: by
Lemma 8(ii) we then have ‖x̄t ⊗ ȳ‖ · 1 ≥ maxi |xi||yi|, i.e., ‖z‖ = maxi |xi||yi|. Since the valuation on k
is trivial, if V ⊂ K is a �nite-dimensional k-vector space, the valuation takes at most dimV + 1 possible
values on V . It follows that for any presentation z = x̄t ⊗ ȳ there exists a normalised presentation
z = ūt ⊗ v̄ where ui ∈ xi + 〈x<i〉. In other words, ū = Ctx̄ where C is unipotent upper triangular and
v̄ = C−1ȳ. Say then that C normalises z = x̄t ⊗ ȳ.

Normalising and reordering, any z ∈ A can be split as z0 + z1 where z0 is (α, β)-pure for some α, β,

and z1 ∈ Aα,β =
〈
x ⊗ y :

(
|x||y|, |y|

)
< (αβ, β) in lexicographic order

〉
. Conversely, we claim that if

z = z0 + z1 where z0 is (α, β)-pure and z1 ∈ Aα,β , as witnessed by z0 = x̄t ⊗ ȳ and z1 = x̄′t ⊗ ȳ′, then

‖z‖ = αβ. We may assume that |x′j ||y′j | = αβ, and therefore |y′j | < β, for all j. Let

(
C E
0 D

)
normalise

z = z0 +z1 = x̄t⊗ ȳ+ x̄′t⊗ ȳ′, where the blocks correspond to the two parts, so C normalises z0 = x̄t⊗ ȳ.
Thus z0 = ūt ⊗ v̄ and z = ūt ⊗ w̄ + ū′t ⊗ v̄′, where ū = Ctx̄, v̄ = C−1ȳ and(

ū
ū′

)
=

(
Ct 0
Et Dt

)(
x̄
x̄′

)
,

(
w̄
v̄′

)
=

(
C−1 F

0 D−1

)(
ȳ
ȳ′

)
=

(
C E
0 D

)−1(
ȳ
ȳ′

)
,

with F = −C−1ED−1. In particular, w̄ = v̄ + F ȳ′. Since ‖z0‖ = αβ there is at least one i such that
|ui| = α and |vi| = β. Since |wi − vi| < β by our assumption that |y′j | < β for all j, we obtain |wi| = β
as well and so ‖z‖ = αβ.

Now consider z, z′ ∈ A, and decompose them z = z0 +z1 and z′ = z′0 +z′0, where z0 is (α, β)-pure, z′0 is
(γ, δ)-pure and z1 ∈ Aα,β , z′1 ∈ Aγ,δ. By the case of product of two pure elements, z0z

′
0 is (αγ, βδ)-pure,

and clearly z1z
′
0 + z0z

′
1 + z1z

′
1 ∈ Aαγ,βδ, so ‖zz′‖ = αβγδ = ‖z‖‖z′‖, as desired. �
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When k is trivially valued and so is one of K or L, then a variant of the �rst argument does go though.
Indeed, if L is trivially valued then an embedding ι : L→ kU (of pure �elds, or of trivially valued �elds)
exists by quanti�er elimination for ACF (the theory of algebraically closed �elds), and the rest of the
argument remains the same.

Remark 10. Our de�nitions only allow for non Archimedean valued �elds. More generally, an absolute
value on a �eld k is a map |·| : k → R≥0, satisfying |ab| = |a||b|, |a + b| ≤ |a| + |b|, |0| = 0 and |1| = 1.
It is a standard fact (e.g., Artin [Art67]) that an absolute value is either Archimedean, i.e., |a| = |ιka|α,
where α = log2 |2| ∈ (0, 1] and ιk : k → C is uniquely determined up to complex conjugation, or is a
standard valuation as de�ned here. In particular, if K/k is an extension of valued �elds in this sense,
then one is Archimedean if and only if the other is, in which case we may choose ιK so that ιk ⊆ ιK , and
if k is algebraically closed (or merely such that the image of ιk is not contained in R), this determines
ιK . When K and L are two extensions of an algebraically closed Archimedean valued �eld k, we can
de�ne on A = K ⊗k L:

‖x̄t ⊗ ȳ‖ = |ιK x̄t · ιLȳ|.
This is clearly multiplicative, inducing an Archimedean absolute value on Frac(A/ ker ‖·‖).
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