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ABSTRACT. We generalise the Vandermonde determinant identity to one which tests whether a family of hypersur-
faces in Pn has an unexpected intersection point.
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INTRODUCTION

The Vandermonde determinant identity tests by a single determinant whether a family of points on the
line are distinct. We generalise this to dimension n, testing by a single determinant whether some n + 1 hy-
perplanes among a large family intersect. This is further generalised for a family of hypersurfaces, up to an
asymptotically negligible error.

1. THE LINEAR IDENTITY

We work in Pn. Let Md denote the set of monomials of degree d in X = (X0, . . . , Xn). We order it lexico-
graphically, first comparing the exponents of Xn, if they are equal, comparing the exponent of Xn−1, and so on.
In particular, M1 is ordered X0 < X1 < · · · < Xn.

Given a finite set I, we let [ I
m] = {J ⊆ I : |J| = m}, so

∣∣∣[ I
m]
∣∣∣ = (|I|m ). In addition, any m ∈ N will be

identified with the set {0, . . . , m − 1}, allowing us to write [mk ]. If I is an ordered set, we also equip [ I
m] with the

lexicographic order: if σ = {s0 < · · · < sm−1} and τ = {t0 < · · · < tm−1}, then σ < τ if sm−1 < tm−1, or if
sm−1 = tm−1 and sm−2 < tm−2, and so on. Passage to the complement reverses the order.

Let us also fix a number m ∈ N, which will pop up several times later. It is a standard combinatorial fact
that |Mm| = (m+n

n ) = (m+n
m ). If (m + n)∖ σ = {s0 < s1 < · · · < sn−1}, then the unique order-preserving

bijection between [m+n
m ] and Mm sends σ to

mσ = Xm
n ∏

j<n
(Xj/Xj+1)

sj−j. (1)

Let Λ = (λi : i ∈ I) be a family of linear forms with coefficients in a ring A, i.e., λi ∈ A[X]1, and let
m = |I| − n. For each σ ∈ [ I

m], let

Λσ = ∏
i∈σ

λi ∈ A[X]m.

We define MΛ to be the square matrix of size (m+n
n )× (m+n

n ), whose rows are the coefficient vectors of Λσ for
σ ∈ [ I

m], where columns correspond to monomials. If we assume that I is totally ordered, then both rows and
columns of MΛ are ordered, so the sign of det MΛ is well defined.

Let us consider some special cases, assuming for simplicity that I = m + n.
• If m < 0, i.e., if |I| < n, then everything still makes sense. In particular, the matrix MΛ is empty, so

det Mλ = 1.
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• If m = 0, then MΛ = (1) and again det MΛ = 1.
• If m = 1, then [m+n

m ] = [n+1
1 ] is the set of singletons {i} for i ≤ n with the natural order, m{i} = Xi and

Λ{i} = λi. In this case, MΛ is simply the matrix of coefficients of Λ, and we shall write det MΛ = det Λ.
Now, to the general case.

Proposition 1.1 (Linear dual Vandermonde identity in arbitrary dimension). With Λ and MΛ as above, we have

det MΛ = ∏
Λ′∈[ Λ

n+1]

det Λ′, (2)

where Λ′ is taken with the induced order from Λ.

Proof. This is an identity between polynomial expressions in the coefficients of Λ. We may therefore assume
that all these coefficients are formal indeterminates, and that A is the generated free Z-algebra. In particular,
we may assume that A is an integral domain, and then replace it with its fraction field K.

A linear transformation of Kn+1, applied to Λ, can be decomposed into elementary transformations: sub-
stituting Xj + aXk (k ̸= j) or aXj for Xj (exchanging Xj and Xk can be obtained as a sequence of such). The
first kind changes neither side of (2) (the effect on MΛ is that of a sequence of elementary transformations of
the first kind applied directly to its rows). The second kind multiplies both by aN , where N = (m+n

n+1 ). Indeed,
for the right hand side this is clear. For the left hand side, the product of all monomials of degree m has total
degree m(m+n

n ) = (m+n)!
n!(m−1)! = (n + 1)N, so the sum of degrees of Xj in all monomials is N. Consequently, we

may compose Λ with any invertible linear transformation of Kn+1.
We may assume that I = m+ n, and proceed by induction on (n, m). The case where m ≤ 0 is covered by the

special cases discussed earlier. If n = 0 then each λi is of the form aiX0, and both sides of (2) are equal to ∏ ai.
Therefore, we may assume that m, n > 0. By the preceding discussion, we may also assume that λm+n−1 = Xn.

Let us partition [m+n
m ] as S1 ∪ S2, where

S1 =

{
σ ∈

[
m + n

m

]
: m + n − 1 /∈ σ

}
=

[
m + n − 1

m

]
,

S2 =

{
σ ∈

[
m + n

m

]
: m + n − 1 ∈ σ

}
=

{
σ′ ∪ {m + n − 1} : σ′ ∈

[
m + n − 1

m − 1

]}
.

Since we are now changing m and n, let us add them explicitly to the notation as superscripts. Thus, for
example, if σ ∈ S1, then mm,n

σ = mm,n−1
σ (in which Xn does not occur), and if σ = σ′ ∪ {m + n − 1} ∈ S2, then

mm,n
σ = Xnm

m−1,n
σ′ .

Let Λ1 =
(
λi(X0, . . . , Xn−1, 0) : i < m+ n− 1

)
, in dimension n− 1, with indeterminates (X0, . . . , Xn−1), and

Λ2 =
(
λi : i < m+n− 1

)
. If σ ∈ S1, then Λσ = Λσ

1 +XnP for some polynomial P, and if σ = σ′ ∪{m+n− 1} ∈
S2, then Λσ = λm+n−1Λσ′

= XnΛσ′
2 . Therefore,

Mm,n
Λ =

(
Mm,n−1

Λ1
?

0 Mm−1,n
Λ2

)
.

By our induction hypotheses,

det Mm,n−1
Λ1

= ∏
Λ′∈[Λ1

n ]

det Λ′ = ∏
Λ′∈[Λ2

n ]

det(Λ′, Xn) = ∏
Λ′∈[Λ2

n ]

det(Λ′, λm+n−1),

det Mm−1,n
Λ2

= ∏
Λ′∈[ Λ2

n+1]

det Λ′.

Our assertion follows. ■

Let us consider the case where n = 1, with the indeterminates X, Y. Let Λ = (λi : i ≤ m), say λi =

−biX + aiY. We have [m+1
m ] =

{
(m + 1) ∖ {i} : i ≤ m

}
, which we may identify with the set m + 1 with

reversed order. Since this affects both rows and columns, we may replace it with the usual order.
For i ≤ m, the monomial m(m+1)∖{i} is XiYm−i. Accordingly, let M′

Λ be the matrix (ai
jb

m−i
j )i,j≤m: its jth

column is the image of (aj, bj) under the m-fold Veronese map. The (i, j) entry of MΛ M′
Λ is Λ(m+1)∖{i}(aj, bj) =

∏k ̸=i(akbj − ajbk). This vanishes if i ̸= j, so

det MΛ det M′
Λ = ∏

j ̸=i
(ajbi − aibj).
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By Proposition 1.1, det MΛ = ∏i<j (aibj − ajbi), so

det M′
Λ = ∏

i<j
(ajbi − aibj). (3)

Substituting bi = 1, we get the classical (affine, dimension one) Vandermonde identity, which in turn easily
implies (3):

det


1 a0 · · · am

0
1 a1 · · · am

1
...

...
...

1 am · · · am
m

 = ∏
i<j≤m

(aj − ai). (4)

In other words, for n = 1, the identities (4) and (2) are equivalent, and in a sense dual, one referring to linear
forms and the other to their zeros.

For n > 1, one can still generalise the classical Vandermonde identity as a dual of (2), but the construction
of M′

Λ is more tedious. For any σ = (m + n) ∖ {s0 < · · · < sn−1} ∈ [m+n
m ], let aσ be the wedge product

λs0 ∧ . . . ∧ λsn−1 , namely the vector of minors (with appropriate signs) of the (n + 1)× n matrix (λs0 · · · λsn−1).
Let Vm(aσ) be its image under the m-fold Veronese map, namely the vector of values, at aσ, of all monomials of
degree m. We define M′

Λ to be the [m+n
m ]× [m+n

m ] matrix whose σth column is the vector Vm(aσ), with our usual
indexing of monomials by [m+n

m ].

Corollary 1.2 (Linear Vandermonde identity in arbitrary dimension). With Λ and M′
Λ as above, we have

det M′
Λ = ∏

Λ′∈[ Λ
n+1]

(−1)(
n+1

2 )(det Λ′)n, (5)

where Λ′ is taken with the induced order from Λ.

Proof. The argument follows the same path as for n = 1. The (σ, τ) entry of MΛ M′
Λ is Λσ(aτ) =

∏k∈σ det
(
λk, (λj)j/∈τ

)
, so again the product matrix is diagonal, and

det MΛ det M′
Λ = ∏

Λ′∈[ Λ
n+1]

(−1)(
n+1

2 )(det Λ′)n+1. (6)

Indeed, each det Λ′ occurs n + 1 times as det
(
λk, (λj)j/∈τ

)
, once for each choice of λk ∈ Λ′, giving a total of

0 + 1 + · · ·+ n = (n+1
2 ) changes of sign. Now divide by (2). ■

We observe that in dimension n > 1, the statement of the dual identity is more elegant. It is also the
one that admits a relatively simple “asymptotic” non-linear generalisation, in which that λi are replaced with
homogeneous polynomials of some higher degree.

Remark 1.3 (Ulysse Serres’s « usine à points »). It follows from Corollary 1.2 that given a family of n + d hy-
perplanes in general position in n-dimensional space, no polynomial of degree d can vanish at all intersection
points of subfamilies of n many hyperplanes. The classical Vandermonde determinant identity (4) provides us
with a particularly easy way to produce such a family of hyperplanes and calculate their intersection points
and an analogue of (6) allows us to prove that the determinant of the matrix of monomials is non-zero. We
obtain the following self-contained argument.

Let n, d ∈ N. Let I = {1, . . . , n + d}, and assume that a1, . . . , an+d are distinct members of some field k.
Let Σ denote the collection of all subsets of I of size n. For σ ∈ Σ, define a polynomial

fσ(T) = ∏
i∈σ

(T − ai) = Tn + bσ,1Tn−1 + · · ·+ bσ,n.

Let bσ = (bσ,1, . . . , bσ,n) ∈ kn be the vector of coefficients.
Let X = (X1, . . . , Xn) denote an indeterminate point in kn. For 1 ≤ i ≤ n + d, define an affine function

λi : kn → k by

λi(X) = an
i + an−1

i X1 + · · ·+ Xn.

Then

λi(bσ) = an
i + an−1

i bσ,1 + · · ·+ bσ,n = fσ(ai).
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Let Ξ = {ξ ∈ Nn : ξ1 + · · ·+ ξn ≤ d}. If σ ∈ Σ, then |I ∖ σ| = d, and we may define a polynomial

gσ(X) = ∏
i∈I∖σ

λi(X) = ∑
ξ∈Ξ

cσ,ξ Xξ .

Let us define two matrices B = (bξ
σ) and C = (cσ,ξ), whose rows are indexed by ξ ∈ Ξ and columns by

σ ∈ Σ. Let D = Ct B = (dσ,τ), where σ, τ ∈ Σ. Then

dσ,τ = ∑
ξ∈Ξ

cσ,ξbξ
τ = gσ(bτ) = ∏

i∈I∖σ

λi(bτ) = ∏
i∈I∖σ

fτ(ai) = ∏
i∈I∖σ

∏
j∈τ

(aj − ai).

Therefore, dσ,τ ̸= 0 ⇐⇒ τ ∩ (I ∖ σ) = ∅ ⇐⇒ τ ⊆ σ. Since |τ| = |σ| = n, we have dσ,τ ̸= 0 if and only if
σ = τ. Therefore D is diagonal, and det D ̸= 0.

It is a standard combinatorial fact that |Ξ| = (n+d
n ), so B and C are square matrices, and since det D ̸= 0,

they are invertible. Let h = ∑ξ∈Ξ hξ Xξ be a non-zero polynomial of degree at most d, and let H = (hξ : ξ ∈ Ξ).
Since B is invertible, HB =

(
h(bσ) : σ ∈ Σ

)
is non-zero. We conclude that the only polynomial of degree at

most d that vanishes at all the points bσ is the zero polynomial.
Finally, by (2) and (4), we have

det C = ∏
i<j

∏
{i,j}⊆σ∈[n+d

n+1]

(aj − ai) = ∏
i<j

(aj − ai)
(n+d−2

n−1 ).

By our calculations,

det D = ∏
σ∈Σ

∏
i∈I∖σ

∏
j∈σ

(aj − ai) = ±∏
i<j

(aj − ai)
2(n+d−2

n−1 ) = ±det C2.

Therefore det B = ±det C.

2. AN ASYMPTOTIC HIGHER-DEGREE IDENTITY

In Proposition 1.1, a line of the matrix MΛ represent a polynomial Λσ, which may be viewed as a split
polynomial f = ∏i<m+n λi from which n linear factors are dropped. In dimension n > 1, polynomials do not
necessarily split. This introduces two related issues. First of all, we need to replace the determinant of a family
of n + 1 linear forms, with the more general notion of resultant.

Fact 2.1. Let n ∈ N, and let X denote a tuple of n + 1 indeterminates, representing homogeneous coordinates in Pn.
For each i ≤ n, let di ≥ 1 and let T∗

i be a tuple of indeterminates representing the coefficients of a polynomial in X,
homogeneous of degree di. Then there exists an irreducible polynomial

R ∈ Z[T∗
i : i ≤ n]

called the Macaulay resultant, with the following property:
For any algebraically closed field K, and any family of homogeneous polynomials fi ∈ K[X]di

, for
i ≤ n, we have R( f≤n) = 0 if and only if the family f≤n has a common zero in Pn(K).

This polynomial is unique up to sign. It is homogeneous in each T∗
i , of degree ∏j ̸=i dj.

Proof. Macaulay [Mac02]. ■

We may even fix the sign of R, as follows. When d0 = d1 = · · · = dn = 1, we have R(λ0, . . . , λn) =
±det(λ0, . . . , λn), where λi are linear forms and we take the determinant of the coefficient matrix. In partic-
ular, R(X0, . . . , Xn) = ±1, and we may choose the sign so R(X0, . . . , Xn) = 1. In higher degrees, we have
R(λd0

0 , . . . , λdn
n ) = ±det(λ0, . . . , λn)∏ di , and again, we may choose the sign so R(Xd0

0 , . . . , Xdn
n ) = 1. Once the

signs have been fixed in this fashion, we have R(. . . , f g, . . .) = R(. . . , f , . . .)R(. . . , g, . . .).
We may extend the definition in a coherent fashion to the case where di = 0 for some i, letting

R(. . . , T∗
i , . . .) = (T∗

i )
∏j ̸=i dj (though this is not irreducible). If two degrees vanish, then R = 1.

When n = 1, R takes the familiar form as the determinant of the Sylvester matrix, with entries taken from
the coefficients T∗

0 and T∗
1 .

Notation 2.2. Since the resultant corresponds to intersections, we shall express R( f0, . . . , fn) as f0 ∧ · · · ∧ fn.
When F = ( f0, . . . , fn), we are going to write R(F) as F∧.

The second issue is that and dropping a single linear factor from a polynomial that does not split no longer
makes sense.
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Definition 2.3. A pseudo-split polynomial f over A, in indeterminates X and of degree m, consists of a set I f of
(indices of) pseudo-factors, together with polynomials f σ ∈ A[X]|σ| for each σ ⊆ I f , where f∅ = 1.

• If σ ⊆ I f , then g = f σ may be viewed as a pseudo-split polynomial, with Ig = σ and gτ = f τ for
τ ⊆ σ.

• If f , g are pseudo-split and I f ∩ Ig = ∅, then f g is pseudo-split with I f g = I f ∪ Ig and ( f g)σ =

f σ∩I f gσ∩Ig .

Intuitively, we think of f σ as the product of the pseudo-factors indexed by σ. Notice, however, that we do
not require that f σ∪τ = f σ f τ . When we want to view a pseudo-split polynomial f as a plain polynomial, we
identify it with f I f (all pseudo-factors retained).

Definition 2.4. Let f be pseudo-split of degree m + n, and assume that I = I f is ordered. We define M f to be
the matrix whose rows are the coefficient vector of f σ ∈ A[X]m for σ ∈ [ I

m]. We order [ I
m] and the monomials

Mm as in Section 1.
Given a family F = ( fi : i < k) of pseudo-split polynomials with disjoint ordered I fi

, we define IF = I∏ F =⋃
I fi

, ordered so I fi
< I fi+1

, and MF = M∏ fi
.

A split polynomial f = ∏i∈I λi is pseudo-split in the obvious fashion, namely, f σ = ∏i∈σ λi. Let Λ = (λi :
i < m + n) be a family of linear forms and f = ∏ Λ a pseudo-split polynomial in this sense. Then I f = m + n,
and f σ is exactly Λσ of Section 1. It follows that MΛ, as per Definition 2.4, coincides with the one defined in
Section 1, which we are attempting to generalise.

At the other extreme, an indeterminate pseudo-split polynomial of degree m + n is one where the coefficients
of f σ (with the exception of f∅ = 1) are indeterminates over the base ring. For such a polynomial, M f is an
indeterminate matrix (as soon as m ≥ 1), and we cannot expect any useful identities involving its determinant.

We are interested in a situation that lies somewhere in between these two extremes. We are given a poly-
nomial f that factors as ∏i<k fi, where the family F = ( fi : i < k) consists of polynomials of relatively low
degrees di = deg fi, and m + n = deg f = ∑ di. With no additional information being provided, we might
as well take the fi to be indeterminate pseudo-split polynomials, with I fi

ordered and pairwise disjoint. We
propose to prove an expression for det MF, generalising Proposition 1.1, that is asymptotically useful as k
grows, provided that the degrees di remain bounded. Let T∗ denote the indeterminate coefficients, so all the
polynomials involved are in A[X] where A = Z[T∗].

Lemma 2.5. Let Λ = (λj : j ∈ IF) be indeterminate linear forms, with coefficients S∗, and define a morphism

φ : Z[T∗] → Z[S∗]

by sending each fi to ∏j∈I fi
λj as a pseudo-split polynomial, namely, sending each coefficient of f σ

i (which is one of the
generators T∗) to the corresponding coefficient of φ( f σ

i ) = Λσ.
(i) With MF defined as per Definition 2.4,

φ(det MF) = ∏
Λ′∈[ Λ

n+1]

det Λ′.

Consequently, det MF ̸= 0, and has no non-zero factors in Z.
(ii) If P, Q ∈ Z[T∗] are homogeneous, φ(P) ̸= 0, P | Q and φ(Q) | φ(P), then P = ±Q. If φ(P) = φ(Q), then

P = Q.

Proof. The first assertion is just Proposition 1.1. For the second, we have PR = Q, with R homogeneous, and
φ(P)φ(R) | φ(P). Therefore φ(R) = ±1, which is only possible if R = ±1. If φ(P) = φ(Q), then R = 1. ■

Lemma 2.6. Let G, H ⊆ F. Then det MG | det MF, and (up to sign)

det MG∩H = gcd(det MG, det MH).

Proof. Let h = ∏(F ∖ G). If σ ⊆ IG, then Fσ∪Ih = Gσh. Assuming that IG is an final segment, sets of the form
σ ∪ Ih form an initial segment, and we have

MF =

(
MG A

B

)
=

(
MG 0

0 I

)(
A
B

)
,

where A is the matrix of multiplication by h. Therefore det MG | det MF.
In particular, if G, H ⊆ F, then det MG∩H | gcd(det MG, det MH). With φ as in Lemma 2.5, we

have φ(det MG∩H) = gcd
(

φ(det MG), φ(det MH)
)
. The desired equality (up to sign) now follows from

Lemma 2.5(ii). ■
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Let us define

∆F = ∏
G⊆F

det M(−1)|F∖G|

G , so det MF = ∏
G⊆F

∆G.

This inclusion/exclusion stratification applies of course for any map from finite sets into an Abelian (in our
case, multiplicative) group. A more sophisticated inclusion/exclusion principle allows us to calculate the least
common multiple in a unique factorisation domain (or more generally, the supremum in a lattice-ordered
Abelian group):

lcm(Pj : j ∈ J) = ∏
∅ ̸=K⊆J

gcd(Pk : k ∈ K)(−1)|K|−1
.

Let us apply this to Pj = det MGj , for Gj ⊆ F. Let GK =
⋂

k∈K Gk. Then by Lemma 2.6,

lcm(det MGj : j ∈ J) = ∏
∅ ̸=K⊆J

det M(−1)|K|−1

GK
.

Applying this to the family of F ∖ { f }, for f ∈ F, we obtain

lcm
(

det MF∖{ f } : f ∈ F
)
= ∏

∅ ̸=K⊆F
det M(−1)|K|−1

F∖K = det MF/∆F.

Since lcm
(

det MF∖{ f } : f ∈ F
)

divides det MF, the expression ∆F is a polynomial in the coefficients of F. In
particular, it can be evaluated for any family of pseudo-split polynomials, over any ring.

Let us attempt to calculate ∆F explicitly, in three cases, which we dub “easy”, “intractable”, and “interest-
ing”. First, the easy case, when |F| > n + 1. Applying Lemma 2.5, we have φ(∆F) = 1 (and 1 | ∆F), so ∆F = 1.
Next, the intractable case, when |F| ≤ n. In this case we cannot improve our prior observation that ∆F is a
polynomial (and not a rational function, as its form may suggest at first).

Finally, the interesting case, when |F| = n + 1. If, under some specialisation of Z[T∗] into an algebraically
closed field K, the family F has a common zero in Pn(K), then this is a zero of Fσ for all σ ∈ [IF

m] (since σ must
contain at least one I fi

entirely), and the matrix MF specialises to a singular one. In other words, every zero of
F∧ ∈ Z[T∗] (the resultant, see Notation 2.2) is a zero of det MF. Since F∧ is irreducible, it divides det MF, and
cannot divide det MG for any G ⊊ F, so F∧ | ∆F. Let us evoke Lemma 2.5 once more. Since the resultant is
multiplicative, and since the resultant of n + 1 linear forms is their determinant, we have

φ(F∧) = ∏
{

det(λi0 , . . . , λin) : i0 ∈ I f0 , . . . , in ∈ I fn

}
.

It is easy to check that φ(∆F) is equal to the same, so ∆F = F∧. (This is valid even when di = 0 for some i, in
which case fi = 1 and ∆F = F∧ = 1).

We have thus proved:

Theorem 2.7 (The dual Vandermonde identity in arbitrary dimension and degree). For any family F = ( fi : i <
k) of pseudo-split polynomials:

det MF = ∏
H∈[ F

n+1]

H∧ ∏
G⊆F, |G|≤n

∆G. (7)

Assume that we are given a family F of (ordinary) polynomials. In order to apply Theorem 2.7, we need to
make them pseudo-split, so we introduce, in an arbitrary fashion, auxiliary polynomials f σ

i for ∅ ̸= σ ⊊ I fi
.

The product of resultants on the right hand side of (7) is the “main term”, which only depends on the family F,
and is analogous to the right hand side of (2). The product of ∆G is the “error term”, which may also depend
on the auxiliary coefficients, and has no obvious meaning.

In the special case where deg fi = 1 for all i, there are no auxiliary coefficients nor error term, and Theo-
rem 2.7 specialises to Proposition 1.1 (the ∆G are all equal to one, since MG is I1 for |G| = n, and I0 for |G| < n).
In the general case, the error term is present. However, as F grows, the number of ∆G grows like |F|n, while
the number of H∧ grows like |F|n+1. Therefore, the error term is negligible asymptotically.

From Theorem 2.7 we may recover a relative identity with respect to a hypersurface. Again, this is an
asymptotic result, with growth rates |F|n−1 for the error term, against |F|n for the main term.

Corollary 2.8. Let F, g denote the sequence F followed by g, and assume that MF is nonsingular. Then

det MF,g

det MF
= ∏

H∈[Fn]
(H, g)∧ ∏

G⊆F, |G|<n
∆G,g. (8)
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The usefulness of either identity is of course conditioned on the non-vanishing of any of the terms. Let us
conclude with some particularly easy sufficient conditions for that.

Lemma 2.9. Let A be an integral domain, and let F be a finite family of pseudo-split polynomials, generic over A. In
other words, F is a family of pseudo-split polynomials over some larger ring B, that is freely generated over A by the
coefficients of the polynomials f σ, where f ∈ F and ∅ ̸= σ ⊆ I f . Then det MF ̸= 0 and ∆F ̸= 0 (when evaluated in B).

Moreover, assume that g ̸= 0 is an additional pseudo-split polynomial, such that (gσ : ∅ ⊊ σ ⊊ Ig) are also generic
(but not necessarily g itself). Then det MF,g ̸= 0 and ∆F,g ̸= 0.

Proof. It is enough to show that MF ̸= 0 and MF,g ̸= 0, and in order to show this, we may specialise the
members of F to split polynomials with generic linear factors. In other words, we may assume that F is a
family of generic linear forms. Then det MF ̸= 0 by Proposition 1.1, and therefore ∆F ̸= 0.

For the moreover part, we consider different cases according to |F|:
• If |F| > n, then ∆F,g = 1.
• If |F| = n, then F∧ = X∗ · x is the Chow form of the unique common zero of F. This is a generic point,

so ∆F,g = (F, g)∧ = ±g(x) ̸= 0.
• If |F| < n, then, when calculating ∆F,g we only consider gσ for σ ⊊ Ig. Therefore, we cannot distin-

guish this case from the one where g is also a generic pseudo-split polynomial, so ∆F,g ̸= 0 by our
main assertion.

Therefore det MF,g = ∏G⊆F ∆G∆G,g ̸= 0. ■

3. A REMARK REGARDING THE MACAULAY RESULTANT

The previous section yields a curious side result, namely, an expression of the Macaulay resultant of a fam-
ily of polynomials ( fi : i ≤ n) as an inclusion/exclusion expression. However, this not only requires the
polynomials to be indeterminate (this is reasonable, since the resultant is a polynomial in the indeterminate
coefficients), but indeed, requires them to be indeterminate pseudo-split polynomials. In other words, the ex-
pression requires the presence of auxiliary indeterminate coefficients for the polynomials f σ

i , and specialising
those to something “known” may cause determinates in both numerator and denominator to vanish.

In this section we propose a different inclusion/exclusion formula for the resultant, which only depends on
the indeterminate coefficients of the polynomials. Like the formula given by Macaulay [Mac02], it considers
products and quotients of determinants of matrices representing, in some sense or another, multiplication by
the polynomials fi. The exclusion/inclusion form of our formula makes is considerably longer than others we
found in the literature. While this makes our formula less useful for actual calculations, it is more symmetric
and amenable to formal manipulations. It was used in an early version of the present paper, but now it is no
more than a remark.

Let us fix, as usual, X = (X0, . . . , Xn), and let F = ( fi : i ≤ n) be an indeterminate family of polynomials,
i.e., each fi = ∑α T∗

i,αXα is homogeneous of degree di with indeterminate coefficients. As we recalled in Fact 2.1,
the Macaulay resultant F∧ ∈ Z[T∗] is irreducible (unless some of the di vanish), and uniquely determined if
we require that, when specialising fi to Xdi

i , F∧ specialise to 1.
For σ ⊆ n + 1 = {0, . . . , n}, define

fσ = ∏
i∈σ

fi, Xσ = ∏
i∈σ

Xdi
i , dσ = deg fσ = deg Xσ = ∑

i∈σ

di.

Let Mℓ denote all monomials of degree ℓ in X. For a monomial m, define

ρ(m) =
{

i ≤ n : Xdi
i | m

}
.

This is the set of i such that we may multiply m by fi/Xdi
i (and keep it a polynomial). Accordingly, let us define

[m]F =
m fρ(m)

Xρ(m)
.

We define AF,d to be the Md ×Md matrix, whose mth row consists of the coefficients of [m]F.

Lemma 3.1. Assume that d ≥ ∑ di − n, and that di ≥ 1 for all i. Then F∧ | det AF,d in Z[T∗].

Proof. Since F∧ is prime, B = Z[T∗]/(F∧) is an integral domain, and embeds in an algebraically closed field
L. Let φ : Z[T∗] → L be the corresponding morphism. Then φ sends each fi to a polynomial gi ∈ L[X]di

, and
G∧ = φ(F∧) = 0, so the family G admits a common zero [x] ∈ Pn(L).
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Let Vd(x) be the d-fold Veronese image of x (i.e., the evaluations of all monomials of degree d at x). Since
d ≥ ∑ di − n, each monomial in Md admits a factor Xdi

i for at least one i. Therefore, φ(AF,d)Vd(x) = 0, so
φ
(
det AF,d

)
= 0. Therefore det AF,d ∈ (F∧). ■

When n = 1 and d = d0 + d1 − 1, we have F∧ = det AF,d (see Example 3.3), but in general there may be other
factors to the determinant. In order to clean them up, so to speak, let us consider variants of the construction.
The general idea consists of adding certain “exclusions” to the definition of [m]F and AF,d.

For σ ⊆ n + 1, define

[m]σF =
m fρ(m)∖σ

Xρ(m)∖σ
.

Define Aσ
F,d to be the matrix whose lines are the coefficients of [m]σF for m ∈ Md−dσ

. Substituting Xdi
i for each

fi specialises each such matrix to the identity, and its determinant to one. In particular, the determinant is a
non-zero polynomial in Z[T∗], and specialises to a non-zero polynomial modulo any prime p. The same holds
of other variants we define below. We shall prove:

Theorem 3.2. Let d ∈ Z, and

ΞF,d = ∏
σ⊆n+1

(
det Aσ

F,d

)(−1)|σ|
.

Then ΞF,d ∈ Z[T∗]. If d ≥ ∑i≤n di − n, then ΞF,d is the Macaulay resultant F∧.

Example 3.3. Let n = 1, so F = ( f0, f1), and assume that d = d0 + d1 − 1. Then for each monomial m ∈ Md

we have either ρ(m) = {0} or ρ(m) = {1}, but not both. The matrix AF,d is the Sylvester matrix S( f0, f1), A{0}
F,d

and A{1}
F,d are the identity matrices in their respective dimensions, and A{0,1}

F,d is empty.
We obtain the familiar formula for the resultant of two polynomials f and g as det S( f , g).

We are going to prove Theorem 3.2 by induction on n. Therefore, assume for the time being that n ≥ 1. We
are going to treat the index n somewhat differently, so from now on let σ ⊆ n.

Lemma 3.4. Let gi = fi(X0, . . . , Xn−1, 0) ∈ Z[T∗, X<n], and let G = (gi : i < n). Accordingly, for σ ⊆ n, we have
matrices Aσ

G,d, indexed by monomials of degree d in X<n. Then

det Aσ∪{n}
F,d+dn

= ∏
d′≤d

det Aσ
G,d′ .

For d′ < dσ the matrix Aσ
G,d′ is empty, and its determinant is one, so there is no need to specify an explicit lower limit

for d′.

Proof. Ordering Md as in Section 1, we have

Aσ∪{n}
F,d+dn

=


Aσ

G,d ∗ ∗ ∗
. . . ∗ ∗

Aσ
G,d′ ∗

. . .

 .

The block Aσ
G,d′ correspond to monomials m of degree d − d′ in Xn. In particular, if d < dσ then Aσ∪{n}

F,d+dn
is

empty. ■

For an even finer system of exclusions, consider two parameters σ ⊆ n and T ⊆ P(n ∖ σ). Define

[m]σ,T
F =

{
[m]

σ∪{n}
F ρ(m)∖ σ ∖ {n} ∈ T

[m]σF otherwise.

Notice that the two cases are distinct only if n ∈ ρ(m). Define Aσ,T
F,d to be the matrix whose lines are the

coefficients of [m]σ,T
F for m ∈ Md−dσ

. In particular, Aσ,∅
F,d = Aσ

F,d, and Aσ,P(n∖σ)
F,d = Aσ∪{n}

F,d+dn
.

Lemma 3.5. Let σ ⊆ n and T′ ⊆ T ⊆ P(n ∖ σ). Then, in Q(T∗), we have

det Aσ,T′

F,d

det Aσ,T
F,d

= ∏
τ∈T∖T′

det Aσ∪τ
F,d

det Aσ∪τ,{∅}
F,d

.
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Proof. We may assume that σ = ∅ (replacing d with d − dσ, and fi for i ∈ σ with 1). We may then reduce to the
case where T′ = ∅, and from that, to the case where τ ∈ T is maximal and T′ = T ∖ {τ}. Then it will suffice
to prove that

det A∅,T′

F,d

det A∅,T
F,d

=
det Aτ

F,d

det Aτ,{∅}
F,d

.

Let us order Md so XτMd−dτ
is an initial segment, ordered as Md−dτ

. Let B be the matrix of multiplication
of monomials in Md−dτ

by fτ . Let m ∈ Md, and let g and h be the polynomials given by the mth rows of AT
F,d

and AT′
F,d, respectively:

• If m = Xτm
′, where m′ ∈ Md−dτ

, then g = fτ g′ and h = fτh′. By maximality of τ in T, it is the only

exclusion that possibly applies, so g′ is given by the m′th row of Aτ,{∅}
F,d , while h′ is given by that of

Aτ
F,d.

• Otherwise, ρ(m)∖ {n} ̸= τ, so T and T′ impose the same exclusions, and g = h.
Therefore,

A∅,T
F,d =

(
Aτ,{∅}

F,d B
C

)
, A∅,T′

F,d =

(
Aτ

F,dB
C

)
.

Let D =

(
B

0 I

)
. As usual, we can specialise it to the identity, so it is invertible over Q(T∗). Now:

A∅,T
F,d D−1 =

(
Aτ,{∅}

F,d 0
CD−1

)
, A∅,T′

F,d D−1 =

(
Aτ

F,d 0
CD−1

)
.

Our assertion follows. ■

Lemma 3.6. With n ≥ 1 and G as in Lemma 3.4, we have

ΞF,d =
det A∅,P(n)∖{∅}

F,d

det A{n}
F,d+dn

∏
k<dn

ΞG,d−k.

Proof. By definition,

ΞF,d = ∏
σ⊆n

 det Aσ
F,d

det Aσ∪{n}
F,d

(−1)|σ|

= ∏
σ⊆n

 det Aσ
F,d

det Aσ∪{n}
F,d+dn

(−1)|σ|

∏
σ⊆n

det Aσ∪{n}
F,d+dn

det Aσ∪{n}
F,d

(−1)|σ|

.

Let us develop the first factor, applying Lemma 3.5 twice:

∏
σ⊆n

 det Aσ
F,d

det Aσ,P(n∖σ)
F,d

(−1)|σ|

= ∏
σ⊆n

∏
τ⊆n∖σ

 det Aσ∪τ
F,d

det Aσ∪τ,{∅}
F,d

(−1)|σ|

=
det A∅

F,d

det A∅,{∅}
F,d

=
det A∅,P(n)∖{∅}

F,d

det A∅,P(n)
F,d+dn

=
det A∅,P(n)∖{∅}

F,d

det A{n}
F,d+dn

.

By Lemma 3.4, the second factor is

∏
σ⊆n

(
∏

k<dn

det Aσ
G,d−k

)(−1)|σ|

= ∏
k<dn

ΞG,d−k,

completing the proof. ■

Proof of Theorem 3.2. Let us first show that ΞF,d ∈ Z[T∗] for all d ∈ Z. We proceed by induction on n. If n = 0,

then the only term in the denominator is det A{0}
F,d = 1. For n ≥ 1, the induction hypothesis together with

Lemma 3.6 imply that T∗
n does not appear in the denominator of ΞF,d. By symmetry, the denominator must be

constant. Since it divides a polynomial that can be specialised to one, it is one, and ΞF,d is polynomial.

By Lemma 3.6 we have degT∗
n

ΞF,d = degT∗
n

det A∅,P(n)∖{∅}
F,d . The latter is the number of monomials m =

Xα ∈ Md such that ρ(m) = {n}, i.e., such that αi < di for all i < n. If we add the hypothesis that d ≥
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∑i≤n di − n, then each such sequence (αi : i < n) is possible, with αn = d−∑i<n αi ≥ 0. Therefore degT∗
n

ΞF,d =

∏i<n di = degT∗
n

F∧, and similarly for every other index.
If di ≥ 1 for all i, then F∧ is irreducible and divides AF,d by Lemma 3.1. It cannot divide any other factor of

ΞF,d, so F∧ | ΞF,d in Z[T∗]. Since the degrees in each T∗
i are the same, ΞF,d/F∧ is a constant in Z. If di = 0 for

some i, then F∧ = (T∗
i )

∏j ̸=i dj , and by the same degree calculation ΞF,d/F∧ is a constant.
Finally, specialising fi to Xdi

i , we see that ΞF,d/F∧ = 1. ■
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