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1 Introduction

A metric structure is a many-sorted structure in which each sort is a
complete metric space of finite diameter. Additionally, the structure
consists of some distinguished elements as well as some functions (of
several variables) (a) between sorts and (b) from sorts to bounded sub-
sets of R, and these functions are all required to be uniformly continu-
ous. Examples arise throughout mathematics, especially in analysis and
geometry. They include metric spaces themselves, measure algebras,
asymptotic cones of finitely generated groups, and structures based on
Banach spaces (where one takes the sorts to be balls), including Banach
lattices, C*-algebras, etc.

The usual first-order logic does not work very well for such structures,
and several good alternatives have been developed. One alternative is
the logic of positive bounded formulas with an approximate semantics
(see [23, 25, 24]). This was developed for structures from functional
analysis that are based on Banach spaces; it is easily adapted to the
more general metric structure setting that is considered here. Another
successful alternative is the setting of compact abstract theories (cats;
see [1, 3, 4]). A recent development is the realization that for metric
structures the frameworks of positive bounded formulas and of cats are
equivalent. (The full cat framework is more general.) Further, out
of this discovery has come a new continuous version of first-order logic
that is suitable for metric structures; it is equivalent to both the positive
bounded and cat approaches, but has many advantages over them.

The logic for metric structures that we describe here fits into the
framework of continuous logics that was studied extensively in the 1960s
and then dropped (see [12]). In that work, any compact Hausdorff space
X was allowed as the set of truth values for a logic. This turned out to
be too general for a completely successful theory.

We take the space X of truth values to be a closed, bounded interval
of real numbers, with the order topology. It is sufficient to focus on the
case where X is [0, 1]. In [12], a wide variety of quantifiers was allowed
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and studied. Since our truth value set carries a natural complete linear
ordering, there are two canonical quantifiers that clearly deserve special
attention; these are the operations sup and inf, and it happens that these
are the only quantifiers we need to consider in the setting of continuous
logic and metric structures.

The continuous logic developed here is strikingly parallel to the usual
first-order logic, once one enlarges the set of possible truth values from
{0, 1} to [0, 1]. Predicates, including the equality relation, become func-
tions from the underlying set A of a mathematical structure into the
interval [0, 1]. Indeed, the natural [0, 1]-valued counterpart of the equal-
ity predicate is a metric d on A (of diameter at most 1, for convenience).
Further, the natural counterpart of the assumption that equality is a
congruence relation for the predicates and operations in a mathematical
structure is the requirement that the predicates and operations in a met-
ric structure be uniformly continuous with respect to the metric d. In
the [0, 1]-valued continuous setting, connectives are continuous functions
on [0, 1] and quantifiers are sup and inf.

The analogy between this continuous version of first-order logic (CFO)
for metric structures and the usual first-order logic (FOL) for ordinary
structures is far reaching. In suitably phrased forms, CFO satisfies
the compactness theorem, Löwenheim-Skolem theorems, diagram argu-
ments, existence of saturated and homogeneous models, characteriza-
tions of quantifier elimination, Beth’s definability theorem, the omitting
types theorem, fundamental results of stability theory, and appropriate
analogues of essentially all results in basic model theory of first-order
logic. Moreover, CFO extends FOL: indeed, each mathematical struc-
ture treated in FOL can be viewed as a metric structure by taking the
underlying metric d to be discrete (d(a, b) = 1 for distinct a, b). All
these basic results true of CFO are thus framed as generalizations of the
corresponding results for FOL.

A second type of justification for focusing on this continuous logic
comes from its connection to applications of model theory in analysis and
geometry. These often depend on an ultraproduct construction [11, 15]
or, equivalently, the nonstandard hull construction (see [25, 24] and their
references). This construction is widely used in functional analysis and
also arises in metric space geometry (see [19], for example). The logic of
positive bounded formulas was introduced in order to provide a model
theoretic framework for the use of this ultraproduct (see [24]), which
it does successfully. The continuous logic for metric structures that is
presented here provides an equivalent background for this ultraproduct
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construction and it is easier to use. Writing positive bounded formulas to
express statements from analysis and geometry is difficult and often feels
unnatural; this goes much more smoothly in CFO. Indeed, continuous
first-order logic provides model theorists and analysts with a common
language; this is due to its being closely parallel to first-order logic while
also using familiar constructs from analysis (e.g., sup and inf in place of
∀ and ∃).

The purpose of this article is to present the syntax and semantics of
this continuous logic for metric structures, to indicate some of its key
theoretical features, and to show a few of its recent application areas.

In Sections 1 through 10 we develop the syntax and semantics of con-
tinuous logic for metric structures and present its basic properties. We
have tried to make this material accessible without requiring any back-
ground beyond basic undergraduate mathematics. Sections 11 and 12
discuss imaginaries and omitting types; here our presentation is some-
what more brisk and full understanding may require some prior expe-
rience with model theory. Sections 13 and 14 sketch a treatment of
quantifier elimination and stability, which are needed for the applica-
tions topics later in the paper; here we omit many proofs and depend
on other articles for the details. Sections 15 through 18 indicate a few
areas of mathematics to which continuous logic for metric structures has
already been applied; these are taken from probability theory and func-
tional analysis, and some background in these areas is expected of the
reader.

The development of continuous logic for metric structures is very much
a work in progress, and there are many open problems deserving of
attention. What is presented in this article reflects work done over
approximately the last three years in a series of collaborations among
the authors. The material presented here was taught in two graduate
topics courses offered during that time: a Fall 2004 course taught in
Madison by Itäı Ben Yaacov and a Spring 2005 course taught in Urbana
by Ward Henson. The authors are grateful to the students in those
courses for their attention and help. The authors’ research was partially
supported by NSF Grants: Ben Yaacov, DMS-0500172; Berenstein and
Henson, DMS-0100979 and DMS-0140677; Henson, DMS-0555904.
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2 Metric structures and signatures

Let (M,d) be a complete, bounded metric space1. A predicate on M is
a uniformly continuous function from Mn (for some n ≥ 1) into some
bounded interval in R. A function or operation on M is a uniformly
continuous function from Mn (for some n ≥ 1) into M . In each case n
is called the arity of the predicate or function.

A metric structure M based on (M,d) consists of a family (Ri | i ∈ I)
of predicates on M , a family (Fj | j ∈ J) of functions on M , and a family
(ak | k ∈ K) of distinguished elements of M . When we introduce such
a metric structure, we will often denote it as

M = (M,Ri, Fj , ak | i ∈ I, j ∈ J, k ∈ K).

Any of the index sets I, J,K is allowed to be empty. Indeed, they might
all be empty, in which case M is a pure bounded metric space.

The key restrictions on metric structures are: the metric space is com-
plete and bounded, each predicate takes its values in a bounded interval
of reals, and the functions and predicates are uniformly continuous. All
of these restrictions play a role in making the theory work smoothly.

Our theory also applies to many-sorted metric structures, and they
will appear as examples. However, in this article we will not explicitly
bring them into our definitions and theorems, in order to avoid distract-
ing notation.

2.1 Examples. We give a number of examples of metric structures to
indicate the wide range of possibilities.

(1) A complete, bounded metric space (M,d) with no additional
structure.

(2) A structure M in the usual sense from first-order logic. One puts
the discrete metric on the underlying set (d(a, b) = 1 when a, b are
distinct) and a relation is considered as a predicate taking values
(“truth” values) in the set {0, 1}. So, in this sense the theory
developed here is a generalization of first-order model theory.

(3) If (M,d) is an unbounded complete metric space with a distin-
guished element a, we may view (M,d) as a many-sorted metric
structure M; for example, we could take a typical sort to be a
closed ball Bn of radius n around a, equipped with the metric ob-
tained by restricting d. The inclusion mappings Imn : Bm → Bn

1 See the appendix to this section for some relevant basic facts about metric spaces.
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(m < n) should be functions in M, in order to tie together the
different sorts.

(4) The unit ball B of a Banach space X over R or C: as functions we
may take the maps fαβ , defined by fαβ(x, y) = αx+ βy, for each
pair of scalars satisfying |α|+ |β| ≤ 1; the norm may be included
as a predicate, and we may include the additive identity 0X as a
distinguished element. Equivalently, X can be viewed as a many-
sorted structure, with a sort for each ball of positive integer radius
centered at 0, as indicated in the previous paragraph.

(5) Banach lattices: this is the result of expanding the metric struc-
ture corresponding to X as a Banach space (see the previous
paragraph) by adding functions such as the absolute value oper-
ation on B as well as the positive and negative part operations.
In section 17 of this article we discuss the model theory of some
specific Banach lattices (namely, the Lp-spaces).

(6) Banach algebras: multiplication is included as an operation; if
the algebra has a multiplicative identity, it may be included as a
constant.

(7) C∗-algebras: multiplication and the ∗-map are included as oper-
ations.

(8) Hilbert spaces with inner product may be treated like the Banach
space examples above, with the addition that the inner product
is included as a binary predicate. (See section 15.)

(9) If (Ω,B, µ) is a probability space, we may construct a metric
structure M from it, based on the metric space (M,d) in which
M is the measure algebra of (Ω,B, µ) (elements of B modulo sets
of measure 0) and d is defined to be the measure of the symmetric
difference. As operations on M we take the Boolean operations
∪,∩, c, as a predicate we take the measure µ, and as distinguished
elements the 0 and 1 of M . In section 16 of this article we discuss
the model theory of these metric structures.

Signatures

To each metric structure M we associate a signature L as follows. To
each predicate R of M we associate a predicate symbol P and an integer
a(P ) which is the arity of R; we denote R by PM. To each function
F of M we associate a function symbol f and an integer a(f) which
is the arity of F ; we denote F by fM. Finally, to each distinguished
element a of M we associate a constant symbol c; we denote a by cM.
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So, a signature L gives sets of predicate, function, and constant symbols,
and associates to each predicate and function symbol its arity. In that
respect, L is identical to a signature of first-order model theory. In
addition, a signature for metric structures must specify more: for each
predicate symbol P , it must provide a closed bounded interval IP of
real numbers and a modulus of uniform continuity2 ∆P . These should
satisfy the requirements that PM takes its values in IP and that ∆P is
a modulus of uniform continuity for PM. In addition, for each function
symbol f , L must provide a modulus of uniform continuity ∆f , and this
must satisfy the requirement that ∆f is a modulus of uniform continuity
for fM. Finally, L must provide a non-negative real number DL which
is a bound on the diameter of the complete metric space (M,d) on which
M is based.3 We sometimes denote the metric d given by M as dM;
this would be consistent with our notation for the interpretation in M
of the nonlogical symbols of L. However, we also find it convenient
often to use the same notation “d” for the logical symbol representing
the metric as well as for its interpretation in M; this is consistent with
usual mathematical practice and with the handling of the symbol = in
first-order logic.

When these requirements are all met and when the predicate, func-
tion, and constant symbols of L correspond exactly to the predicates,
functions, and distinguished elements of which M consists, then we say
M is an L-structure.

The key added features of a signature L in the metric structure set-
ting are that L specifies (1) a bound on the diameter of the underlying
metric space, (2) a modulus of uniform continuity for each predicate and
function, and (3) a closed bounded interval of possible values for each
predicate.

For simplicity, and without losing any generality, we will usually as-
sume that our signatures L satisfy DL = 1 and IP = [0, 1] for every
predicate symbol P .

2.2 Remark. If M is an L-structure and A is a given closed subset of
Mn, then M can be expanded by adding the predicate x 7→ dist(x,A),
where x ranges over Mn and dist denotes the distance function with
respect to the maximum metric on the product space Mn. Note that
only in very special circumstances may A itself be added to M as a
predicate (in the form of the characteristic function χA of A); this could

2 See the appendix to this section for a discussion of this notion.
3 If L is many-sorted, each sort will have its own diameter bound.
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be done only if χA were uniformly continuous, which forces A to be a
positive distance from its complement in Mn.

Basic concepts such as embedding and isomorphism have natural de-
finitions for metric structures:

2.3 Definition. Let L be a signature for metric structures and suppose
M and N are L-structures.

An embedding from M into N is a metric space isometry

T : (M,dM) → (N, dN )

that commutes with the interpretations of the function and predicate
symbols of L in the following sense:

Whenever f is an n-ary function symbol of L and a1, . . . , an ∈M , we
have

fN (T (a1), . . . , T (an)) = T (fM(a1, . . . , an));

whenever c is a constant symbol c of L, we have

cN = T (cM);

and whenever P is an n-ary predicate symbol of L and a1, . . . , an ∈M ,
we have

PN (T (a1), . . . , T (an)) = PM(a1, . . . , an).

An isomorphism is a surjective embedding. We say that M and N are
isomorphic, and write M ∼= N , if there exists an isomorphism between
M and N . (Sometimes we say isometric isomorphism to emphasize that
isomorphisms must be distance preserving.) An automorphism of M is
an isomorphism between M and itself.
M is a substructure of N (and we write M⊆ N ) if M ⊆ N and the

inclusion map from M into N is an embedding of M into N .

Appendix

In this appendix we record some basic definitions and facts about metric
spaces and uniformly continuous functions; they will be needed when
we develop the semantics of continuous first-order logic. Proofs of the
results we state here are straightforward and will mostly be omitted.

Let (M,d) be a metric space. We say this space is bounded if there is
a real number B such that d(x, y) ≤ B for all x, y ∈ M . The diameter
of (M,d) is the smallest such number B.
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Suppose (Mi, di) are metric spaces for i = 1, . . . , n and we take M
to be the product M = M1 × · · · ×Mn. In this article we will always
regard M as being equipped with the maximum metric, defined for x =
(x1, . . . , xn), y = (y1, . . . , yn) by d(x, y) = max{di(xi, yi)|i = 1, . . . , n}.

A modulus of uniform continuity is any function ∆: (0, 1] → (0, 1].
If (M,d) and (M ′, d′) are metric spaces and f : M →M ′ is any func-

tion, we say that ∆: (0, 1] → (0, 1] is a modulus of uniform continuity
for f if for every ε ∈ (0, 1] and every x, y ∈M we have

(UC) d(x, y) < ∆(ε) =⇒ d′(f(x), f(y)) ≤ ε.

We say f is uniformly continuous if it has a modulus of uniform conti-
nuity.

The precise way (UC) is stated makes the property ∆ is a modulus
of uniform continuity for f a topologically robust notion. For example,
if f : M → M ′ is continuous and (UC) holds for a dense set of pairs
(x, y), then it holds for all (x, y). In particular, if ∆ is a modulus of
uniform continuity for f : M → M ′ and we extend f in the usual way
to a continuous function f̄ : M → M ′ (where M,M ′ are completions
of M,M ′, resp.), then, with this definition, ∆ is a modulus of uniform
continuity for the extended function f̄ .

If ∆ is a function from (0,∞) to (0,∞) and it satisfies (UC) for all
ε ∈ (0,∞) and all x, y ∈M , then we will often refer to ∆ as a “modulus
of uniform continuity” for f . In that case, f is uniformly continuous and
the restriction of the function min(∆(ε), 1) to ε ∈ (0, 1] is a modulus of
uniform continuity according to the strict meaning we have chosen to
assign to this phrase, so no confusion should result.

2.4 Proposition. Suppose f : M → M ′ and f ′ : M ′ → M ′′ are func-
tions between metrics spaces M,M ′,M ′′. Suppose ∆ is a modulus of
uniform continuity for f and ∆′ is a modulus of uniform continuity for
f ′. Then the composition f ′◦f is uniformly continuous; indeed, for each
r ∈ (0, 1) the function ∆(r∆′(ε)) is a modulus of uniform continuity for
f ′ ◦ f .

Let M,M ′ be metric spaces (with metrics d, d′ resp.) and let f and
(fn | n ≥ 1) be functions from M into M ′. Recall that (fn | n ≥ 1)
converges uniformly to f on M if

∀ε > 0 ∃N ∀n > N ∀x ∈M
(
d′(fn(x), f(x)) ≤ ε

)
.
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2.5 Proposition. Let M,M ′, f and (fn | n ≥ 1) be as above, and sup-
pose (fn | n ≥ 1) converges uniformly to f on M . If each of the functions
fn : M → M ′ is uniformly continuous, then f must also be uniformly
continuous. Indeed, a modulus of uniform continuity for f can be ob-
tained from moduli ∆n for fn, for each n ≥ 1, and from a function
N : (0, 1] → N that satisfies

∀ε > 0 ∀n > N(ε) ∀x ∈M
(
d′(fn(x), f(x)) ≤ ε

)
.

Proof A modulus ∆ for f may be defined as follows: given ε > 0, take
∆(ε) = ∆n(ε/3) where n = N(ε/3) + 1.

2.6 Proposition. Suppose f, fn : M → M ′ and f ′, f ′n : M ′ → M ′′ are
functions (n ≥ 1) between metric spaces M,M ′,M ′′. If (fn | n ≥ 1)
converges uniformly to f on M and (f ′n | n ≥ 1) converges uniformly to
f ′ on M ′, then (f ′n ◦ fn | n ≥ 1) converges uniformly to f ′ ◦ f on M .

Fundamental to the continuous logic described in this article are the
operations sup and inf on bounded sets of real numbers. We use these
to define new functions from old, as follows. Suppose M,M ′ are metric
spaces and f : M × M ′ → R is a bounded function. We define new
functions supy f and infy f from M to R by

(sup
y
f)(x) = sup{f(x, y)|y ∈M ′}

(inf
y
f)(x) = inf{f(x, y)|y ∈M ′}

for all x ∈M . Note that these new functions mapM into the same closed
bounded interval in R that contained the range of f . Our perspective is
that supy and infy are quantifiers that bind or eliminate the variable y,
analogous to the way ∀ and ∃ are used in ordinary first-order logic.

2.7 Proposition. Suppose M,M ′ are metric spaces and f is a bounded
uniformly continuous function from M×M ′ to R . Let ∆ be a modulus of
uniform continuity for f . Then supy f and infy f are bounded uniformly
continuous functions from M to R, and ∆ is a modulus of uniform
continuity for both of them.

Proof Fix ε > 0 and consider u, v ∈ M such that d(u, v) < ∆(ε). Then
for every z ∈M ′ we have

f(v, z) ≤ f(u, z) + ε ≤ (supy f)(u) + ε.
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Taking the sup over z ∈M ′ and interchanging the role of u and v yields

|(supy f)(u)− (supy f)(v)| ≤ ε.

The function infy f is handled similarly.

2.8 Proposition. Suppose M is a metric space and fs : M → [0, 1] is
a uniformly continuous function for each s in the index set S. Let ∆ be
a common modulus of uniform continuity for (fs | s ∈ S). Then sups fs

and infs fs are uniformly continuous functions from M to [0, 1], and ∆
is a modulus of uniform continuity for both of them.

Proof In the previous proof, take M ′ to be S with the discrete metric,
and define f(x, s) = fs(x).

2.9 Proposition. Suppose M,M ′ are metric spaces and let (fn | n ≥ 1)
and f all be bounded functions from M ×M ′ into R. If (fn | n ≥ 1)
converges uniformly to f on M ×M ′, then (supy fn | n ≥ 1) converges
uniformly to supy f on M and (infy fn | n ≥ 1) converges uniformly to
infy f on M .

Proof Similar to the proof of Proposition 2.7.

In many situations it is natural to construct a metric space as the
quotient of a pseudometric space (M0, d0); here we mean that M0 is a
set and d0 : M0 ×M0 → R is a pseudometric. That is,

d0(x, x) = 0

d0(x, y) = d0(y, x) ≥ 0

d0(x, z) ≤ d0(x, y) + d0(y, z)

for all x, y, z ∈M0; these are the same conditions as in the definition of
a metric, except that d0(x, y) = 0 is allowed even when x, y are distinct.

If (M0, d0) is a pseudometric space, we may define an equivalence
relation E on M0 by E(x, y) ⇔ d0(x, y) = 0. It follows from the triangle
inequality that d0 is E-invariant; that is, d0(x, y) = d0(x′, y′) whenever
xEx′ and yEy′. Let M be the quotient set M0/E and π : M0 →M the
quotient map, so π(x) is the E-equivalence class of x, for each x ∈ M0.
Further, define d on M by setting d(π(x), π(y)) = d0(x, y) for any x, y ∈
M0. Then (M,d) is a metric space and π is a distance preserving function
from (M0, d0) onto (M,d). We will refer to (M,d) as the quotient metric
space induced by (M0, d0).
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Suppose (M0, d0) and (M ′
0, d

′
0) are pseudometric spaces with quotient

metric spaces (M,d) and (M ′, d′) and quotient maps π, π′, respectively.
Let f0 : M0 →M ′

0 be any function. We say that f0 is uniformly contin-
uous, with modulus of uniform continuity ∆, if

d0(x, y) < ∆(ε) =⇒ d′0(f0(x), f0(y)) ≤ ε

for all x, y ∈M0 and all ε ∈ (0, 1]. In that case it is clear that d0(x, y) = 0
implies d′0(f0(x), f0(y)) = 0 for all x, y ∈ M0. Therefore we get a well
defined quotient function f : M → M ′ by setting f(π(x)) = π′(f0(x))
for all x ∈ M0. Moreover, f is uniformly continuous with modulus of
uniform continuity ∆.

The following results are useful in many places for expressing cer-
tain kinds of implications in continuous logic, and for reformulating the
concept of uniform continuity.

2.10 Proposition. Let F,G : X → [0, 1] be arbitrary functions such
that

(?) ∀ε > 0 ∃δ > 0 ∀x ∈ X (F (x) ≤ δ ⇒ G(x) ≤ ε) .

Then there exists an increasing, continuous function α : [0, 1] → [0, 1]
such that α(0) = 0 and

(??) ∀x ∈ X (G(x) ≤ α(F (x))) .

Proof Define a (possibly discontinuous) function g : [0, 1] → [0, 1] by

g(t) = sup{G(x) | F (x) ≤ t}

for t ∈ [0, 1]. It is clear that g is increasing and that G(x) ≤ g(F (x))
holds for all x ∈ X. Moreover, statement (?) implies that g(0) = 0 and
that g(t) converges to 0 as t→ 0.

To complete the proof we construct an increasing, continuous function
α : [0, 1] → [0, 1] such that α(0) = 0 and g(t) ≤ α(t) for all t ∈ [0, 1].
Let (tn | n ∈ N) be any decreasing sequence in [0, 1] with t0 = 1 and
limn→∞ tn = 0. Define α : [0, 1] → [0, 1] by setting α(0) = 0, α(1) = 1,
and α(tn) = g(tn−1) for all n ≥ 1, and by taking α to be linear on each
interval of the form [tn+1, tn], n ∈ N. It is easy to check that α has
the desired properties. For example, if t1 ≤ t ≤ t0 = 1 we have that
α(t) is a convex combination of g(1) and 1 so that g(t) ≤ g(1) ≤ α(t).
Similarly, if tn+1 ≤ t ≤ tn and n ≥ 1, we have that α(t) is a convex
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combination of g(tn) and g(tn−1) so that g(t) ≤ g(tn) ≤ α(t). Together
with g(0) = α(0) = 0, this shows that g(t) ≤ α(t) for all t ∈ [0, 1].

2.11 Remark. Note that the converse to Proposition 2.10 is also true.
Indeed, if statement (??) holds and we fix ε > 0, then taking

δ = sup{s | α(s) ≤ ε} > 0

witnesses the truth of statement (?).

2.12 Remark. The proof of Proposition 2.10 can be revised to show
that the continuous function α can be chosen so that it only depends on
the choice of an increasing function ∆: (0, 1] → (0, 1] that witnesses the
truth of statement (?), in the sense that

∀x ∈ X (F (x) ≤ ∆(ε) ⇒ G(x) ≤ ε)

holds for each ε ∈ (0, 1]. Given such a ∆, define g : [0, 1] → [0, 1] by
g(t) = inf{s ∈ (0, 1] | ∆(s) > t}. It is easy to check that g(0) = 0 and
that g is an increasing function. Moreover, for any ε > 0 we have from
the definition that g(t) ≤ ε for any t in [0,∆(ε)); therefore g(t) converges
to 0 as t tends to 0. Finally, we claim that G(x) ≤ g(F (x)) holds for
any x ∈ X. Otherwise we have x ∈ X such that g(F (x)) < G(x). The
definition of g yields s ∈ (0, 1] with s < G(x) and ∆(s) > F (x); this
contradicts our assumptions.

Now α is constructed from g as in the proof of Proposition 2.10. This
yields an increasing, continuous function α : [0, 1] → [0, 1] with α(0) = 0
such that whenever F,G : X → [0, 1] are functions satisfying

∀x ∈ X (F (x) ≤ ∆(ε) ⇒ G(x) ≤ ε)

for each ε ∈ (0, 1], then we have

∀x ∈ X (G(x) ≤ α(F (x))) .

3 Formulas and their interpretations

Fix a signature L for metric structures, as described in the previous
section. As indicated there (see page 6), we assume for simplicity of
notation that DL = 1 and that IP = [0, 1] for every predicate symbol P .
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Symbols of L

Among the symbols of L are the predicate, function, and constant sym-
bols; these will be referred to as the nonlogical symbols of L and the
remaining ones will be called the logical symbols of L. Among the logi-
cal symbols is a symbol d for the metric on the underlying metric space
of an L-structure; this is treated formally as equivalent to a predicate
symbol of arity 2. The logical symbols also include an infinite set VL

of variables; usually we take VL to be countable, but there are situa-
tions in which it is useful to permit a larger number of variables. The
remaining logical symbols consist of a symbol for each continuous func-
tion u : [0, 1]n → [0, 1] of finitely many variables n ≥ 1 (these play the
role of connectives) and the symbols sup and inf, which play the role of
quantifiers in this logic.

The cardinality of L, denoted card(L), is the smallest infinite cardinal
number ≥ the number of nonlogical symbols of L.

Terms of L

Terms are formed inductively, exactly as in first-order logic. Each vari-
able and constant symbol is an L-term. If f is an n-ary function symbol
and t1, . . . , tn are L-terms, then f(t1, . . . , tn) is an L-term. All L-terms
are constructed in this way.

Atomic formulas of L.

The atomic formulas of L are the expressions of the form P (t1, . . . , tn),
in which P is an n-ary predicate symbol of L and t1, . . . , tn are L-terms;
as well as d(t1, t2), in which t1 and t2 are L-terms.

Note that the logical symbol d for the metric is treated formally as a
binary predicate symbol, exactly analogous to how the equality symbol
= is treated in first-order logic.

Formulas of L

Formulas are also constructed inductively, and the basic structure of the
induction is similar to the corresponding definition in first-order logic.
Continuous functions play the role of connectives and sup and inf are
used formally in the way that quantifiers are used in first-order logic.
The precise definition is as follows:
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3.1 Definition. The class of L-formulas is the smallest class of expres-
sions satisfying the following requirements:

(1) Atomic formulas of L are L-formulas.
(2) If u : [0, 1]n → [0, 1] is continuous and ϕ1, . . . , ϕn are L-formulas,

then u(ϕ1, . . . , ϕn) is an L-formula.
(3) If ϕ is an L-formula and x is a variable, then supx ϕ and infx ϕ

are L-formulas.

3.2 Remark. We have chosen to take all continuous functions on [0, 1]
as our connectives. This is both too restrictive (see section 9 in which we
want to close our set of formulas under certain kinds of limits, in order
to develop a good notion of definability) and too general (see section
6). We made this choice in order to introduce formulas as early and as
directly as possible.

An L-formula is quantifier free if it is generated inductively from
atomic formulas without using the last clause; i.e., neither supx nor
infx are used.

Many syntactic notions from first-order logic can be carried over word
for word into this setting. We will assume that this has been done by
the reader for many such concepts, including subformula and syntactic
substitution of a term for a variable, or a formula for a subformula, and
so forth.

Free and bound occurrences of variables in L-formulas are defined
in a way similar to how this is done in first-order logic. Namely, an
occurrence of the variable x is bound if lies within a subformula of the
form supx ϕ or infx ϕ, and otherwise it is free.

An L-sentence is an L-formula that has no free variables.
When t is a term and the variables occurring in it are among the

variables x1, . . . , xn (which we always take to be distinct in this context),
we indicate this by writing t as t(x1, . . . , xn).

Similarly, we write an L-formula as ϕ(x1, . . . , xn) to indicate that its
free variables are among x1, . . . , xn.

Prestructures

It is common in mathematics to construct a metric space as the quo-
tient of a pseudometric space or as the completion of such a quotient,
and the same is true of metric structures. For that reason we need to
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consider what we will call prestructures and to develop the semantics of
continuous logic for them.

As above, we take L to be a fixed signature for metric structures.
Let (M0, d0) be a pseudometric space, satisfying the requirement that
its diameter is ≤ DL. (That is, d0(x, y) ≤ DL for all x, y ∈ M0.) An
L-prestructure M0 based on (M0, d0) is a structure consisting of the
following data:

(1) for each predicate symbol P of L (of arity n) a function PM0 from
Mn

0 into IP that has ∆P as a modulus of uniform continuity;
(2) for each function symbol f of L (of arity n) a function fM0 from

Mn
0 into M0 that has ∆f as a modulus of uniform continuity; and

(3) for each constant symbol c of L an element cM0 of M0.

Given an L-prestructure M0, we may form its quotient prestructure
as follows. Let (M,d) be the quotient metric space induced by (M0, d0)
with quotient map π : M0 →M . Then

(1) for each predicate symbol P of L (of arity n) define PM from Mn

into IP by setting PM(π(x1), . . . , π(xn)) = PM0(x1, . . . , xn) for
each x1, . . . , xn ∈M0;

(2) for each function symbol f of L (of arity n) define fM from Mn

into M by setting fM(π(x1), . . . , π(xn)) = π(fM0(x1, . . . , xn))
for each x1, . . . , xn ∈M0;

(3) for each constant symbol c of L define cM = π(cM0).

It is obvious that (M,d) has the same diameter as (M0, d0). Also, as
noted in the appendix to section 2, for each predicate symbol P and each
function symbol f of L, the predicate PM is well defined and has ∆P as
a modulus of uniform continuity and the function fM is well defined and
has ∆f as a modulus of uniform continuity. In other words, this defines
an L-prestructure (which we will denote as M) based on the (possibly
not complete) metric space (M,d).

Finally, we may define an L-structure N by taking a completion of
M. This is based on a complete metric space (N, d) that is a completion
of (M,d), and its additional structure is defined in the following natural
way (made possible by the fact that the predicates and functions given
by M are uniformly continuous):

(1) for each predicate symbol P of L (of arity n) define PN from Nn

into IP to be the unique such function that extends PM and is
continuous;
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(2) for each function symbol f of L (of arity n) define fN from Nn

into N to be the unique such function that extends fM and is
continuous;

(3) for each constant symbol c of L define cN = cM.

It is obvious that (N, d) has the same diameter as (M,d). Also, as
noted in the appendix to section 2, for each predicate symbol P and
each function symbol f of L, the predicate PN has ∆P as a modulus of
uniform continuity and the function fN has ∆f as a modulus of uniform
continuity. In other words, N is an L-structure.

Semantics

Let M be any L-prestructure, with (M,dM) as its underlying pseudo-
metric space, and let A be a subset of M . We extend L to a signature
L(A) by adding a new constant symbol c(a) to L for each element a of A.
We extend the interpretation given by M in a canonical way, by taking
the interpretation of c(a) to be equal to a itself for each a ∈ A. We call
c(a) the name of a in L(A). Indeed, we will often write a instead of c(a)
when no confusion can result from doing so.

Given an L(M)-term t(x1, . . . , xn), we define, exactly as in first-order
logic, the interpretation of t in M, which is a function tM : Mn →M .

We now come to the key definition in continuous logic for metric
structures, in which the semantics of this logic is defined. For each
L(M)-sentence σ, we define the value of σ in M. This value is a real
number in the interval [0, 1] and it is denoted σM. The definition is by
induction on formulas. Note that in the definition all terms mentioned
are L(M)-terms in which no variables occur.

3.3 Definition. (1)
(
d(t1, t2)

)M = dM(tM1 , tM2 ) for any t1, t2;
(2) for any n-ary predicate symbol P of L and any t1, . . . , tn,(

P (t1, . . . , tn)
)M = PM(tM1 , . . . , tMn );

(3) for any L(M)-sentences σ1, . . . , σn and any continuous function
u : [0, 1]n → [0, 1],(

u(σ1, . . . , σn)
)M = u(σM1 , . . . , σMn );

(4) for any L(M)-formula ϕ(x),(
sup

x
ϕ(x)

)M
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is the supremum in [0, 1] of the set {ϕ(a)M | a ∈M};
(5) for any L(M)-formula ϕ(x),(

inf
x
ϕ(x)

)M
is the infimum in [0, 1] of the set {ϕ(a)M | a ∈M}.

3.4 Definition. Given an L(M)-formula ϕ(x1, . . . , xn) we let ϕM de-
note the function from Mn to [0, 1] defined by

ϕM(a1, . . . , an) =
(
ϕ(a1, . . . , an)

)M.

A key fact about formulas in continuous logic is that they define uni-
formly continuous functions. Indeed, the modulus of uniform continuity
for the predicate does not depend on M but only on the data given by
the signature L.

3.5 Theorem. Let t(x1, . . . , xn) be an L-term and ϕ(x1, . . . , xn) an L-
formula. Then there exist functions ∆t and ∆ϕ from (0, 1] to (0, 1] such
that for any L-prestructure M, ∆t is a modulus of uniform continuity for
the function tM : Mn →M and ∆ϕ is a modulus of uniform continuity
for the predicate ϕM : Mn → [0, 1].

Proof The proof is by induction on terms and then induction on for-
mulas. The basic tools concerning uniform continuity needed for the
induction steps in the proof are given in the appendix to section 2.

3.6 Remark. The previous result is the counterpart in this logic of the
Perturbation Lemma in the logic of positive bounded formulas with the
approximate semantics. See [24, Proposition 5.15].

3.7 Theorem. Let M0 be an L-prestructure with underlying pseudo-
metric space (M0, d0); let M be its quotient L-structure with quotient
map π : M0 → M and let N be the L-structure that results from com-
pleting M (as explained on page 15). Let t(x1, . . . , xn) be any L-term
and ϕ(x1, . . . , xn) be any L-formula. Then:
(1) tM(π(a1), . . . , π(an)) = tM0(a1, . . . , an) for all a1, . . . , an ∈M0;
(2) tN (b1, . . . , bn) = tM(b1, . . . , bn) for all b1, . . . , bn ∈M .
(3) ϕM(π(a1), . . . , π(an)) = ϕM0(a1, . . . , an) for all a1, . . . , an ∈M0;
(4) ϕN (b1, . . . , bn) = ϕM(b1, . . . , bn) for all b1, . . . , bn ∈M .
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Proof The proofs are by induction on terms and then induction on
formulas. In handling the quantifier cases in (3) the key is that the
quotient map π is surjective. For the quantifier cases in (4), the key is
that the functions ϕN are continuous and that M is dense in N .

3.8 Caution. Note that we only use words such as structure when the
underlying metric space is complete. In some constructions this means
that we must take a metric space completion at the end. Theorem 3.7
shows that this preserves all properties expressible in continuous logic.

Logical equivalence

3.9 Definition. Two L-formulas ϕ(x1, . . . , xn) and ψ(x1, . . . , xn) are
said to be logically equivalent if

ϕM(a1, . . . , an) = ψM(a1, . . . , an)

for every L-structure M and every a1, . . . , an ∈M .

If ϕ(x1, . . . , xn) and ψ(x1, . . . , xn) are L-formulas, we can extend the
preceding definition by taking the logical distance between ϕ and ψ to
be the supremum of all numbers

|ϕM(a1, . . . , an)− ψM(a1, . . . , an)|

where M is any L-structure and a1, . . . , an ∈M . This defines a pseudo-
metric on the set of all formulas with free variables among x1, . . . , xn,
and two formulas are logically equivalent if and only if the logical dis-
tance between them is 0.

3.10 Remark. Note that by Theorem 3.7, we could use L-prestructures
in place of L-structures in the preceding Definition without changing the
meaning of the concepts defined.

3.11 Remark. (Size of the space of L-formulas)
Some readers may be concerned that the set of L-formulas is be too
large, because we allow all continuous functions as connectives. What
matters, however, is the size of a set of L-formulas that is dense in the
set of all L-formulas with respect to the logical distance defined in the
previous paragraph. By Weierstrass’s Theorem, there is a countable set
of functions from [0, 1]n to [0, 1] that is dense in the set of all continuous
functions, with respect to the sup-distance between such functions. (The
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sup-distance between f and g is the supremum of |f(x) − g(x)| as x
ranges over the common domain of f, g.) If we only use such connectives
in building L-formulas, then (a) the total number of formulas that are
constructed is card(L), and (b) any L-formula can be approximated
arbitrarily closely in logical distance by a formula constructed using
the restricted connectives. Thus the density character of the set of L-
formulas with respect to logical distance is always ≤ card(L). (We
explore this topic in more detail in section 6.)

Conditions of L

An L-condition E is a formal expression of the form ϕ = 0, where ϕ
is an L-formula. We call E closed if ϕ is a sentence. If x1, . . . , xn are
distinct variables, we write an L-condition as E(x1, . . . , xn) to indicate
that it has the form ϕ(x1, . . . , xn) = 0 (in other words, that the free
variables of E are among x1, . . . , xn).

If E is the L(M)-condition ϕ(x1, . . . , xn) = 0 and a1, . . . , an are in
M , we say E is true of a1, . . . , an in M and write M |= E[a1, . . . , an] if
ϕM(a1, . . . , an) = 0.

3.12 Definition. Let Ei be the L-condition ϕi(x1, . . . , xn) = 0, for
i = 1, 2. We say that E1 and E2 are logically equivalent if for every
L-structure M and every a1, . . . , an we have

M |= E1[a1, . . . , an] iff M |= E2[a1, . . . , an].

3.13 Remark. When ϕ and ψ are formulas, it is convenient to in-
troduce the expression ϕ = ψ as an abbreviation for the condition
|ϕ−ψ| = 0. (Note that u : [0, 1]2 → [0, 1] defined by u(t1, t2) = |t1−t2| is
a connective.) Since each real number r ∈ [0, 1] is a connective (thought
of as a constant function), expressions of the form ϕ = r will thereby
be regarded as conditions for any L-formula ϕ and r ∈ [0, 1]. Note
that the interpretation of ϕ = ψ is semantically correct; namely for any
L-structure M and elements a of M , |ϕ − ψ|M(a) = 0 if and only if
ϕM(a) = ψM(a).

Similarly, we introduce the expressions ϕ ≤ ψ and ψ ≥ ϕ as abbre-
viations for certain conditions. Let −· : [0, 1]2 → [0, 1] be the connective
defined by −· (t1, t2) = max(t1−t2, 0) = t1−t2 if t1 ≥ t2 and 0 otherwise.
Usually we write t1−· t2 in place of −· (t1, t2). We take ϕ ≤ ψ and ψ ≥ ϕ

to be abbreviations for the condition ϕ −· ψ = 0. (See section 6, where
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this connective plays a central role.) In [0, 1]-valued logic, the condition
ϕ ≤ ψ can be seen as family of implications, from the condition ψ ≤ r

to the condition ϕ ≤ r for each r ∈ [0, 1].

4 Model theoretic concepts

Fix a signature L for metric structures. In this section we introduce
several of the most fundamental model theoretic concepts and discuss
some of their basic properties.

4.1 Definition. A theory in L is a set of closed L-conditions. If T is
a theory in L and M is an L-structure, we say that M is a model of
T and write M |= T if M |= E for every condition E in T . We write
ModL(T ) for the collection of all L-structures that are models of T . (If
L is clear from the context, we write simply Mod(T ).)

If M is an L-structure, the theory of M, denoted Th(M), is the set
of closed L-conditions that are true in M. If T is a theory of this form,
it will be called complete.

If T is an L-theory and E is a closed L-condition, we say E is a logical
consequence of T and write T |= E if M |= E holds for every model M
of T .

4.2 Caution. Note that we only use words such as model when the
underlying metric space is complete. Theorem 3.7 shows that whenever
T is an L-theory and M0 is an L-prestructure such that ϕM0 = 0 for
every condition ϕ = 0 in T , then the completion of the canonical quotient
of M0 is indeed a model of T .

4.3 Definition. Suppose that M and N are L-structures.

(1) We say that M and N are elementarily equivalent, and write
M ≡ N , if σM = σN for all L-sentences σ. Equivalently, this
holds if Th(M) = Th(N ).

(2) If M ⊆ N we say that M is an elementary substructure of N ,
and write M� N , if whenever ϕ(x1, . . . , xn) is an L-formula and
a1, . . . , an are elements of M , we have

ϕM(a1, . . . , an) = ϕN (a1, . . . , an).

In this case, we also say that N is an elementary extension of M.
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(3) A function F from a subset of M into N is an elementary map
from M into N if whenever ϕ(x1, . . . , xn) is an L-formula and
a1, . . . , an are elements of the domain of F , we have

ϕM(a1, . . . , an) = ϕN (F (a1), . . . , F (an)).

(4) An elementary embedding of M into N is a function from all of
M into N that is an elementary map from M into N .

4.4 Remark. (1) Every elementary map from one metric structure into
another is distance preserving.
(2) The collection of elementary maps is closed under composition and
formation of the inverse.
(3) Every isomorphism between metric structures is an elementary em-
bedding.

In the following result we refer to sets S of L-formulas that are dense
with respect to logical distance. (See page 18.) That is, such a set has
the following property: for any L-formula ϕ(x1, . . . , xn) and any ε > 0
there is ψ(x1, . . . , xn) in S such that for any L-structure M and any
a1, . . . , an ∈M

|ϕM(a1, . . . , an)− ψM(a1, . . . , an)| ≤ ε.

4.5 Proposition. (Tarski-Vaught Test for �) Let S be any set of L-
formulas that is dense with respect to logical distance. Suppose M, N
are L-structures with M⊆ N . The following statements are equivalent:

(1) M� N ;
(2) For every L-formula ϕ(x1, . . . , xn, y) in S and a1, . . . , an ∈M ,

inf{ϕN (a1, . . . , an, b) | b ∈ N} = inf{ϕN (a1, . . . , an, c) | c ∈M}

Proof If (1) holds, then we may conclude (2) for the set of all L-formulas
directly from the meaning of �. Indeed, if ϕ(x1, . . . , xn, y) is any L-
formula and a1, . . . , an ∈ A, then from (1) we have

inf{ϕN (a1, . . . , an, b) | b ∈ N} =
(

inf
y
ϕ(a1, . . . , an, y)

)N =

(
inf
y
ϕ(a1, . . . , an, y)

)M = inf{ϕM(a1, . . . , an, c) | c ∈M} =

inf{ϕN (a1, . . . , an, c) | c ∈M}.
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For the converse, suppose (2) holds for a set S that is dense in the
set of all L-formulas with respect to logical distance. First we will prove
that (2) holds for the set of all L-formulas. Let ϕ(x1, . . . , xn, y) be
any L-formula. Given ε > 0, let ψ(x1, . . . , xn, y) be an element of S
that approximates ϕ(x1, . . . , xn, y) to within ε in logical distance. Let
a1, . . . , an be elements of M . Then we have

inf{ϕN (a1, . . . , an, b) | b ∈ N}
≤ inf{ψN (a1, . . . , an, b) | b ∈ N}+ ε

= inf{ψN (a1, . . . , an, c) | c ∈M}+ ε

≤ inf{ϕN (a1, . . . , an, c) | c ∈M}+ 2ε.

Letting ε tend to 0 and recalling M ⊆ N we obtain the desired equality
for ϕ(x1, . . . , xn, y).

Now assume that (2) holds for the set of all L-formulas. One proves
the equivalence

ψM(a1, . . . , an) = ψN (a1, . . . , an)

(for all a1, . . . , an in M) by induction on the complexity of ψ, using (2)
to cover the case when ψ begins with sup or inf.

5 Ultraproducts and compactness

First we discuss ultrafilter limits in topology. Let X be a topological
space and let (xi)i∈I be a family of elements of X. If D is an ultrafilter
on I and x ∈ X, we write

lim
i,D

xi = x

and say x is the D-limit of (xi)i∈I if for every neighborhood U of x, the
set { i ∈ I | xi ∈ U } is in the ultrafilter D. A basic fact from general
topology is that X is a compact Hausdorff space if and only if for every
family (xi)i∈I in X and every ultrafilter D on I the D-limit of (xi)i∈I

exists and is unique.
The following lemmas are needed below when we connect ultrafilter

limits and the semantics of continuous logic.

5.1 Lemma. Suppose X,X ′ are topological spaces and F : X → X ′ is
continuous. For any family (xi)i∈I from X and any ultrafilter D on I,
we have that

lim
i,D

xi = x =⇒ lim
i,D

F (xi) = F (x)
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where the ultrafilter limits are taken in X and X ′ respectively.

Proof Let U be an open neighborhood of F (x) in X ′. Since F is con-
tinuous, F−1(U) is open in X, and it contains x. If x is the D-limit of
(xi)i∈I , there exists A ∈ D such that for all i ∈ A we have xi ∈ F−1(U)
and hence F (xi) ∈ U .

5.2 Lemma. Let X be a closed, bounded interval in R. Let S be any
set and let (Fi | i ∈ I) be a family of functions from S into X. Then,
for any ultrafilter D on I

sup
x

(
lim
i,D

Fi(x)
)

≤ lim
i,D

(
sup

x
Fi(x)

)
, and

inf
x

(
lim
i,D

Fi(x)
)

≥ lim
i,D

(
inf
x
Fi(x)

)
.

where in both cases, supx and infx are taken over x ∈ S. Moreover, for
each ε > 0 there exist (xi)i∈I and (yi)i∈I in S such that

lim
i,D

Fi(xi) + ε ≥ lim
i,D

(
sup

x
Fi(x)

)
, and

lim
i,D

Fi(yi)− ε ≤ lim
i,D

(
inf
x
Fi(x)

)
.

Proof We prove the statements involving sup; the inf statements are
proved similarly (or by replacing each Fi by its negative).

Let ri = supx Fi(x) for each i ∈ I and let r = limi,D ri. For each
ε > 0, let A(ε) ∈ D be such that r − ε < ri < r + ε for every i ∈ A(ε).

First we show supx limi,D Fi(x) ≤ r. For each i ∈ A(ε) and x ∈ S

we have Fi(x) ≤ ri < r + ε. Hence the D-limit of (Fi(x))i∈I is ≤ r + ε.
Letting ε tend to 0 gives the desired inequality.

For the other sup statement, fix ε > 0 and for each i ∈ I choose xi ∈ S
so that ri ≤ Fi(xi) + ε/2. Then for i ∈ A(ε/2) we have r ≤ Fi(xi) + ε.
Taking the D-limit gives the desired inequality.

Ultraproducts of metric spaces

Let ((Mi, di) | i ∈ I) be a family of bounded metric spaces, all having
diameter ≤ K. Let D be an ultrafilter on I. Define a function d on the
Cartesian product

∏
i∈I Mi by

d(x, y) = lim
i,D

di(xi, yi)
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where x = (xi)i∈I and y = (yi)i∈I . This D-limit is taken in the interval
[0,K]. It is easy to check that d is a pseudometric on

∏
i∈I Mi.

For x, y ∈
∏

i∈I Mi, define x ∼D y to mean that d(x, y) = 0. Then
∼D is an equivalence relation, so we may define( ∏

i∈I

Mi

)
D

=
( ∏

i∈I

Mi

)/
∼D.

The pseudometric d on
∏

i∈I Mi induces a metric on this quotient space,
and we also denote this metric by d.

The space (
∏

i∈I Mi)D with the induced metric d is called the D-
ultraproduct of ((Mi, di) | i ∈ I). We denote the equivalence class of
(xi)i∈I ∈

∏
i∈I Mi under ∼D by ((xi)i∈I)D.

If (Mi, di) = (M,d) for every i ∈ I, the space (
∏

i∈I Mi)D is called the
D-ultrapower of M and it is denoted (M)D. In this situation, the map
T : M → (M)D defined by T (x) = ((xi)i∈I)D, where xi = x for every
i ∈ I, is an isometric embedding. It is called the diagonal embedding of
M into (M)D.

A particular case of importance is the D-ultrapower of a compact
metric space (M,d). In that case the diagonal embedding of M into
(M)D is surjective. Indeed, if (xi)i∈I ∈ M I and x is the D-limit of the
family (xi)i∈I , which exists since (M,d) is compact, then it is easy to
show that ((xi)i∈I)D = T (x). In particular, any ultrapower of a closed
bounded interval may be canonically identified with the interval itself.

Since we require that structures are based on complete metric spaces,
it is useful to note that every ultraproduct of such spaces is itself com-
plete.

5.3 Proposition. Let ((Mi, di) | i ∈ I) be a family of complete, bounded
metric spaces, all having diameter ≤ K. Let D be an ultrafilter on I and
let (M,d) be the D-ultraproduct of ((Mi, di) | i ∈ I). The metric space
(M,d) is complete.

Proof Let (xk)k≥1 be a Cauchy sequence in (M,d). Without loss of
generality we may assume that d(xk, xk+1) < 2−k holds for all k ≥ 1;
that is, to prove (M,d) complete it suffices to show that all such Cauchy
sequences have a limit. For each k ≥ 1 let xk be represented by the
family (xk

i )i∈I . For each m ≥ 1 let Am be the set of all i ∈ I such that
di(xk

i , x
k+1
i ) < 2−k holds for all k = 1, . . . ,m. Then the sets (Am)m≥1

form a decreasing chain and all of them are in D.
We define a family (yi)i∈I that will represent the limit of the sequence



Model theory for metric structures 25

(xk)k≥1 in (M,d). If i 6∈ A1, then we take yi to be an arbitrary element
of Mi. If for some m ≥ 1 we have i ∈ Am\Am+1, then we set yi = xm+1

i .
If i ∈ Am holds for all m ≥ 1, then (xm

i )m≥1 is a Cauchy sequence in
the complete metric space (Mi, di) and we take yi to be its limit.

An easy calculation shows that for each m ≥ 1 and each i ∈ Am we
have di(xm

i , yi) ≤ 2−m+1. It follows that ((yi)i∈I)D is the limit in the
ultraproduct (M,d) of the sequence (xk)k≥1.

Ultraproducts of functions

Suppose ((Mi, di) | i ∈ I) and ((M ′
i , d

′
i) | i ∈ I) are families of metric

spaces, all of diameter ≤ K. Fix n ≥ 1 and suppose fi : Mn
i → M ′

i is
a uniformly continuous function for each i ∈ I. Moreover, suppose the
single function ∆: (0, 1] → (0, 1] is a modulus of uniform continuity for
all of the functions fi. Given an ultrafilter D on I, we define a function( ∏

i∈I

fi

)
D

:
( ∏

i∈I

Mi

)n

D
→

( ∏
i∈I

M ′
i

)
D

as follows. If for each k = 1, . . . , n we have (xk
i )i∈I ∈

∏
i∈I Mi, we define( ∏

i∈I

fi

)
D

((
(x1

i )i∈I

)
D
, . . . ,

(
(xn

i )i∈I

)
D

)
=

((
fi(x1

i , . . . , x
n
i )

)
i∈I

)
D
.

We claim that this defines a uniformly continuous function that also
has ∆ as its modulus of uniform continuity. For simplicity of notation,
suppose n = 1. Fix ε > 0. Suppose the distance between

(
(xi)i∈I

)
D

and
(
(yi)i∈I

)
D

in the ultraproduct
( ∏

i∈I Mi

)
D

is < ∆(ε). There must

exist A ∈ D such that for all i ∈ A we have di(xi, yi) < ∆(ε). Since ∆
is a modulus of uniform continuity for all of the functions fi, it follows
that d′i(fi(xi), fi(yi)) ≤ ε for all i ∈ A. Hence the distance in the ultra-
product

( ∏
i∈I M

′
i

)
D

between
(
(f(xi))i∈I

)
D

and
(
(f(yi))i∈I

)
D

must

be ≤ ε. This shows that
( ∏

i∈I fi

)
D

is well defined and that it has

∆ as a modulus of uniform continuity. (Note that the precise form of
our definition of “modulus of uniform continuity” played a role in this
argument.)

Ultraproducts of L-structures

Let (Mi | i ∈ I) be a family of L-structures and let D be an ultrafilter
on I. Suppose the underlying metric space of Mi is (Mi, di). Since
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there is a uniform bound on the diameters of these metric spaces, we
may form their D-ultraproduct. For each function symbol f of L, the
functions fMi all have the same modulus of uniform continuity ∆f .
Therefore the D-ultraproduct of this family of functions is well defined.
The same is true if we consider a predicate symbol P of L. Moreover,
the functions PMi all have their values in [0, 1], whose D-ultrapower can
be identified with [0, 1] itself; thus the D-ultraproduct of (PMi | i ∈ I)
can be regarded as a [0, 1]-valued function on M .

Therefore we may define the D-ultraproduct of the family (Mi | i ∈ I)
of L-structures to be the L-structure M that is specified as follows:

The underlying metric space of M is given by the ultraproduct of
metric spaces

M =
( ∏

i∈I

Mi

)
D
.

For each predicate symbol P of L, the interpretation of P in M is given
by the ultraproduct of functions

PM =
( ∏

i∈I

PMi

)
D

which maps Mn to [0, 1]. For each function symbol f of L, the interpre-
tation of f in M is given by the ultraproduct of functions

fM =
( ∏

i∈I

fMi

)
D

which maps Mn to M . For each constant symbol c of L, the interpreta-
tion of c in M is given by

cM =
(
(cMi)i∈I

)
D
.

The discussion above shows that this defines M to be a well-defined
L-structure. We call M the D-ultraproduct of the family (Mi | i ∈ I)
and denote it by

M =
( ∏

i∈I

Mi

)
D
.

If all of the L-structures Mi are equal to the same structure M0, then
M is called the D-ultrapower of M0 and is denoted by(

M0

)
D
.

This ultraproduct construction finds many applications in functional
analysis (see [24] and its references) and in metric space geometry (see
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[19]). Its usefulness is partly explained by the following theorem, which
is the analogue in this setting of the well known result in first-order logic
proved by J.  Los. This is sometimes known as the Fundamental Theorem
of Ultraproducts.

5.4 Theorem. Let (Mi | i ∈ I) be a family of L-structures. Let D be
any ultrafilter on I and let M be the D-ultraproduct of (Mi | i ∈ I). Let
ϕ(x1, . . . , xn) be an L-formula. If ak =

(
(ak

i )i∈I

)
D

are elements of M
for k = 1, . . . , n, then

ϕM(a1, . . . , an) = lim
i,D

ϕMi(a1
i , . . . , a

n
i ).

Proof The proof is by induction on the complexity of ϕ. Basic facts
about ultrafilter limits (discussed at beginning of this section) are used
in the proof.

5.5 Corollary. If M is an L-structure and T : M → (M)D is the diag-
onal embedding, then T is an elementary embedding of M into (M)D.

Proof From Theorem 5.4.

5.6 Corollary. If M and N are L-structures and they have isomorphic
ultrapowers, then M≡ N .

Proof Immediate from the preceding result.

The converse of the preceding corollary is also true, in a strong form:

5.7 Theorem. If M and N are L-structures and M ≡ N , then there
exists an ultrafilter D such that (M)D is isomorphic to (N )D.

The preceding result is an extension of the Keisler-Shelah Theorem
from ordinary model theory. (See [36] and Chapter 6 in [13].) A de-
tailed proof of the analogous result for normed space structures and the
approximate logic of positive bounded formulas is given in [24, Chapter
10], and that argument can be readily adapted to continuous logic for
metric structures.

There are characterizations of elementary equivalence that are slightly
more complex to state than Theorem 5.7 but are much easier to prove,
such as the following: M≡ N if and only if M and N have isomorphic
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elementary extensions that are each constructed as the union of an in-
finite sequence of successive ultrapowers. Theorem 5.7 has the positive
feature that it connects continuous logic in a direct way to application
areas in which the ultrapower construction is important, such as the the-
ory of Banach spaces and other areas of functional analysis. Indeed, the
result shows that the mathematical properties a metric structure and its
ultrapowers share in common are exactly those that can be expressed by
sentences of the continuous analogue of first-order logic. Theorem 5.7
also yields a characterization of axiomatizable classes of metric struc-
tures (5.14 below) whose statement is simpler than would otherwise be
the case.

Compactness theorem

5.8 Theorem. Let T be an L-theory and C a class of L-structures. As-
sume that T is finitely satisfiable in C. Then there exists an ultraproduct
of structures from C that is a model of T .

Proof Let Λ be the set of finite subsets of T . Let λ ∈ Λ, and write
λ = {E1, . . . , En}. By assumption there is an L-structure Mλ in C such
that Mλ |= Ej for all j = 1, . . . , n.

For each E ∈ T , let S(E) be the set of all λ ∈ Λ such that E ∈ λ.
Note that the collection of sets {S(E) | E ∈ T} has the finite intersec-
tion property. Hence there is an ultrafilter D on Λ that contains this
collection.

Let

M =
( ∏

λ∈Λ

Mλ

)
D
.

Note that if λ ∈ S(E), then Mλ |= E. It follows from Theorem 5.4
that M |= E for every E ∈ T . In other words, the ultraproduct M of
structures from C is a model of T .

In many applications it is useful to note that the Compactness Theo-
rem remains true even if the finite satisfiability hypothesis is weakened
to an approximate version. This is an immediate consequence of basic
properties of the semantics for continuous logic.

5.9 Definition. For any set Σ of L-conditions, Σ+ is the set of all
conditions ϕ ≤ 1/n such that ϕ = 0 is an element of Σ and n ≥ 1.
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5.10 Corollary. Let T be an L-theory and C a class of L-structures.
Assume that T+ is finitely satisfiable in C. Then there exists an ultra-
product of structures from C that is a model of T .

Proof This follows immediately from Theorem 5.8, because T and T+

obviously have the same models.

The next result is a version of the Compactness Theorem for formulas.
In it we allow an arbitrary family (xj | j ∈ J) of possible free variables.

5.11 Definition. Let T be an L-theory and Σ(xj | j ∈ J) a set of L-
conditions. We say that Σ is consistent with T if for every finite subset
F of Σ there exists a model M of T and elements a of M such that for
every condition E in F we have M |= E[a]. (Here a is a finite tuple
suitable for the free variables in members of F .)

5.12 Corollary. Let T be an L-theory and Σ(xj | j ∈ J) a set of L-
conditions, and assume that Σ+ is consistent with T . Then there is a
model M of T and elements (aj | j ∈ J) of M such that

M |= E[aj | j ∈ J ]

for every L-condition E in Σ.

Proof Let (cj | j ∈ J) be new constants and consider the signature
L({cj | j ∈ J}). This corollary is proved by applying the Compactness
Theorem to the set T ∪ Σ+(cj | j ∈ J) of closed L({cj | j ∈ J})-
conditions. As noted in the proof of the previous result, anything satis-
fying Σ+ will also satisfy Σ.

Axiomatizability of classes of structures

5.13 Definition. Suppose that C is a class of L-structures. We say that
C is axiomatizable if there exists a set T of closed L-conditions such that
C = ModL(T ). When this holds for T , we say that T is a set of axioms
for C in L.

In this section we characterize axiomatizability in continuous logic
using ultraproducts. The ideas are patterned after a well known char-
acterization of axiomatizability in first-order logic due to Keisler [31].
(See Corollary 6.1.16 in [13].)
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5.14 Proposition. Suppose that C is a class of L-structures. The fol-
lowing statements are equivalent:

(1) C is axiomatizable in L;
(2) C is closed under isomorphisms and ultraproducts, and its com-

plement, {M | M is an L-structure not in C}, is closed under
ultrapowers.

Proof (1)⇒(2) follows from the Fundamental Theorem of Ultraproducts.
To prove (2)⇒(1), we let T be the set of closed L-conditions that are

satisfied by every structure in C. We claim that T is a set of axioms for
C. To prove this, suppose M is an L-structure such that M |= T .

We claim that Th(M)+ is finitely satisfiable in C. If not, there exist
L-sentences σ1, . . . , σn and ε > 0 such that σMj = 0 for all j = 1, . . . , n,
but such that for any N ∈ C, we have σNj ≥ ε for some j = 1, . . . , n.
This means that the condition max(σ1, . . . , σn) ≥ ε is in T but is not
satisfied in M, which is a contradiction.

So Th(M)+ is finitely satisfiable in C. By the Compactness Theorem
this yields an ultraproduct M′ of structures from C such that M ′ is a
model of Th(M)+. One sees easily that this implies M′ ≡ M. Theo-
rem 5.7, the extension of the Keisler-Shelah theorem to this continuous
logic, yields an ultrafilter D such that (M′)D and (M)D are isomorphic.
Statement (2) implies that M is in C.

5.15 Remark. The proof of Proposition 5.14 contains the following
useful elementary result: let C be a class of L-structures and let T be
the set of all closed L-conditions E such that M |= E holds for all
M ∈ C. Then, every model of T is elementarily equivalent to some
ultraproduct of structures from C.

6 Connectives

Recall that in our definition of formulas for continuous logic, we took
a connective to be a continuous function from [0, 1]n to [0, 1], for some
n ≥ 1. This choice is somewhat arbitrary; from one point of view it is
too general, and from another it is too restrictive. We begin to discuss
these issues in this section.

Here we continue to limit ourselves to finitary connectives, and our
intention is to limit the connectives we use when building formulas. We
consider a restricted set of formulas to be adequate if every formula can
be “uniformly approximated” by formulas from the restricted set.



Model theory for metric structures 31

6.1 Definition. A system of connectives is a family F = (Fn | n ≥ 1)
where each Fn is a set of connectives f : [0, 1]n → [0, 1]. We say that F
is closed if it is closed under arbitrary substitutions; more precisely:

(1) For each n, Fn contains the projection πn
j : [0, 1]n → [0, 1] onto

the jth coordinate for each j = 1, . . . , n.
(2) For each n and m, if u ∈ Fn, and v1, . . . , vn ∈ Fm, then the

function w : [0, 1]m → [0, 1] defined by w(t) = u(v1(t), . . . , vn(t)),
where t denotes an element of [0, 1]m, is in Fm.

Note that each system F of connectives generates a smallest closed
system of connectives F . We say that F is full if F is uniformly dense in
the system of all connectives; that is, for any ε > 0 and any connective
f(t1, . . . , tn), there is a connective g ∈ Fn such that

|f(t1, . . . , tn)− g(t1, . . . , tn)| ≤ ε

for all (t1, . . . , tn) ∈ [0, 1]n.

6.2 Definition. Given a system F of connectives, we define the collec-
tion of F-restricted formulas by induction:

(1) Atomic formulas are F-restricted formulas.
(2) If u ∈ Fn and ϕ1, . . . , ϕn are F-restricted formulas,

then u(ϕ1, . . . , ϕn) is an F-restricted formula.
(3) If ϕ is an F-restricted formula, so are supx ϕ and infx ϕ.

The importance of full sets of connectives is that the restricted formu-
las made using them are dense in the set of all formulas, with respect to
the logical distance between L-formulas, as the next result states. (See
page 18.)

6.3 Theorem. Assume that F is a full system of connectives. Then
for any ε > 0 and any L-formula ϕ(x1, . . . , xn), there is an F-restricted
L-formula ψ(x1, . . . , xn) such that for all L-structures M one has

|ϕM(a1, . . . , an)− ψM(a1, . . . , an)| ≤ ε

for all a1, . . . , an ∈M .

Proof By induction on formulas.
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Next we show that there is a very simple system of connectives that is
full. In particular this system is countable, so there are at most card(L)
many restricted L-formulas for this system of connectives. It follows
from the previous result that the collection of all L formulas has density
at most card(L) with respect to the logical distance between L-formulas.

6.4 Definition. We define a binary function −· : R≥0×R≥0 → R≥0 by:

x−· y =
{

(x− y) if x ≥ y

0 otherwise.

Note that if x, y ∈ [0, 1], then x−· y ∈ [0, 1], so the restriction of −· is
a connective; we use −· to denote this connective as well as its extension
to all of R≥0.

There are many well known identities involving −· . For example, note
that x −· y = (x + z) −· (y + z) and ((x −· y) −· z) = x −· (y + z) for all
x, y, z ∈ R≥0.

6.5 Definition. Let F0 = (Fn | n ≥ 1) where F1 = {0, 1, x/2} (with
0, 1 treated as constant functions of one variable), F2 = {−· }, and all
other Fn are empty. We call the connectives in F0 restricted.

The following connectives belong to F 2:

min(t1, t2) = t1 −· (t1 −· t2)

max(t1, t2) = 1−· (min(1−· t1, 1−· t2))

|t1 − t2| = max(t1 −· t2, t2 −· t1)

min(t1 + t2, 1) = 1−· ((1−· t1)−· t2)

t1 −· (mt2) = ((. . . (t1 −· t2)−· . . . )−· t2)︸ ︷︷ ︸
m times

.

Every dyadic fraction m2−n in [0, 1] is an element of F 1.

6.6 Proposition. The system of connectives F0 is full.

Proof Let D be the set of dyadic fractions m2−n in [0, 1]. First we show
that for each distinct x, y in D, the set {(g(x), g(y)) | g ∈ F 1} includes
all pairs (a, b) in D2. Fix numbers x, y, a, b ∈ D with x < y and a ≥ b.
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Choose m ∈ N such that a < m(y − x). Now let g : [0, 1] → [0, 1] be
defined by

g(t) = max(a−· m(t−· x), b).

Then g ∈ F 1, and we also see that g(x) = a and g(y) = b. If a < b we
can achieve the same result by using 1 −· a and 1 −· b in place of a, b in
the construction of g, and then using the function 1−· g(t).

Now we prove density by arguing exactly as in the proof of the lattice
version of the Stone-Weierstrass Theorem on [0, 1]n. (See [17, pages
241–242].)

6.7 Notation. By a restricted formula we mean an F0-restricted for-
mula, where F0 is the system of connectives in Definition 6.5.

6.8 Definition. A formula is in prenex form if it is of the form

Q1
x1
Q2

x2
. . . Qn

xn
ψ

where ψ is a quantifier free formula and each Qi is either sup or inf.

6.9 Proposition. Every restricted formula is equivalent to a restricted
formula in prenex form.

Proof By induction on formulas. The proof proceeds like the usual proof
in first-order logic. The main point of the proof is that the connective
−· is monotone in its arguments, increasing in the first and decreasing in
the second.

Existential conditions

Since the family of restricted formulas is uniformly dense in the family
of all formulas, it follows from the previous result that every L-formula
can be uniformly approximated by formulas in prenex form. This gives
us a way of introducing analogues of the usual syntactic classes into
continuous logic. For example, an L-formula is defined to be an inf-
formula if it is approximated arbitrarily closely by prenex formulas of
the form infx1 . . . infxn ψ, where ψ is quantifier free. A condition ϕ = 0
is defined to be existential if ϕ is an inf-formula. Other syntactic forms
for L-conditions are defined similarly.
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7 Constructions of models

Unions of chains

If Λ is a linearly ordered set, a Λ-chain of L-structures is a family of
L-structures (Mλ | λ ∈ Λ) such that Mλ ⊆Mη for λ < η. If this holds,
we can define the union of (Mλ | λ ∈ Λ) as an L-prestructure in an
obvious way. (Note that for each function symbol or predicate symbol
S, all of the interpretations SMλ have the same modulus of uniform
continuity ∆S , guaranteeing that the union of (SMλ | λ ∈ Λ) will also
have ∆S as a modulus of uniform continuity.) This union is based on a
metric space, but it may not be complete. After taking the completion
we get an L-structure that we will refer to as the union of the chain and
that we will denote by

⋃
λ∈ΛMλ.

Caution: In general, if the ordered set Λ has countable cofinality,
the set-theoretic union

⋃
λ∈ΛMλ will be a dense proper subset of the

underlying set of the L-structure
⋃

λ∈ΛMλ.

7.1 Definition. A chain of structures (Mλ | λ ∈ Λ) is called an ele-
mentary chain if Mλ �Mη for all λ < η.

7.2 Proposition. If (Mλ | λ ∈ Λ) is an elementary chain and λ ∈ Λ,
then Mλ �

⋃
λ∈ΛMλ.

Proof Use the Tarski-Vaught test (Proposition 4.5).

Löwenheim-Skolem theorem

Recall that the density character of a topological space is the smallest
cardinality of a dense subset of the space. For example, a space is
separable if and only if its density character is ≤ ℵ0. If A is a topological
space, we denote its density character by density(A).

7.3 Proposition. (Downward Löwenheim-Skolem Theorem)
Let κ be an infinite cardinal number and assume card(L) ≤ κ. Let M
be an L-structure and suppose A ⊆ M has density(A) ≤ κ. Then there
exists a substructure N of M such that

(1) N �M;
(2) A ⊆ N ⊆M ;
(3) density(N) ≤ κ.
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Proof Let A0 be a dense subset of A of cardinality at most κ. By
suitably enlarging A0, we may obtain a prestructure N0 such that A0 ⊆
N0 ⊆M and card(N0) ≤ κ and such that the following closure property
also holds: for every restricted L-formula ϕ(x1, . . . , xn, xn+1) and every
rational ε > 0, if ϕM(a1, . . . , an, c) ≤ ε with ak ∈ N0 for k = 1, . . . , n
and c ∈M , then there exists b ∈ N0 such that ϕM(a1, . . . , an, b) ≤ ε. It
is possible to do this while maintaining the claimed cardinality bounds
because L has at most κ many restricted formulas.

Let N be the closure of N0 in M . By considering atomic formulas in
the closure property above, one shows that there is a substructure N
of M that is based on N . Continuity of formulas and uniform density
of restricted formulas show that N ⊆M satisfy the Tarski-Vaught test
(Proposition 4.5) and hence that N �M.

Saturated structures

7.4 Definition. Let Γ(x1, . . . , xn) be a set of L-conditions and let M
be an L-structure. We say that Γ(x1, . . . , xn) is satisfiable in M if there
exist elements a1, . . . , an of M such that M |= Γ[a1, . . . , an].

7.5 Definition. Let M be an L-structure and let κ be an infinite car-
dinal. We say that M is κ-saturated if the following statement holds:
whenever A ⊆M has cardinality < κ and Γ(x1, . . . , xn) is a set of L(A)-
conditions, if every finite subset of Γ is satisfiable in (M, a)a∈A, then
the entire set Γ is satisfiable in (M, a)a∈A.

It is straightforward using ultraproducts to prove the existence of
ω1-saturated L-structures when L is countable, and we will do that
next. This is the only degree of saturation that one needs for many
applications.

Recall that an ultrafilter D is said to be countably incomplete if D is
not closed under countable intersections. It is equivalent to require the
existence of elements Jn of D for each n ∈ N such that the intersection⋂

n∈N Jn is the empty set. Evidently any non-principal ultrafilter on a
countable set is countably incomplete.

7.6 Proposition. Let L be a signature with card(L) = ω and let D
be a countably incomplete ultrafilter on a set Λ. Then for every family
(Mλ | λ ∈ Λ) of L-structures, (

∏
λ∈ΛMλ)D is ω1-saturated.
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Proof In order to simplify the notation, we verify that (
∏

λ∈ΛMλ)D

satisfies the statement in Definition 7.5 for n = 1.
We have to prove the following statement: if A ⊆ (

∏
λ∈ΛMλ)D is

countable and Γ(x) is a set of L(A)-formulas such that every finite subset
of Γ(x) is satisfiable in

(
(
∏

λ∈ΛMλ)D, a
)
a∈A

, then the entire set Γ(x)
is satisfied in

(
(
∏

λ∈ΛMλ)D, a
)
a∈A

. For each a ∈ A, let

u(a) = (uλ(a) | λ ∈ Λ) ∈
∏
λ∈Λ

Mλ

be such that a =
(
(uλ(a))λ∈Λ

)
D

. Note that(
(
∏
λ∈Λ

Mλ)D, a
)

a∈A
=

( ∏
λ∈Λ

(Mλ, uλ(a))a∈A

)
D
.

Thus, since L is an arbitrary countable signature and A is also count-
able, it suffices to prove the following simpler statement:

If Γ(x) is a set of L-conditions and every finite subset of Γ(x) is sat-
isfiable in (

∏
λ∈ΛMλ)D, then Γ(x) is satisfiable in (

∏
λ∈ΛMλ)D.

So, suppose every finite subset of Γ(x) is satisfiable in (
∏

λ∈ΛMλ)D.
Since L is countable, we may write

Γ(x) = {ϕn(x) = 0 | n ∈ N }.

Since D is countably incomplete, we can fix a descending chain of
elements of D

Λ = Λ0 ⊇ Λ1 ⊇ . . .

such that
⋂

k∈N Λk = ∅.
Let X0 = Λ and for each positive integer k define

Xk = Λk ∩
{
λ ∈ Λ | Mλ |= inf

x
max(ϕ1, . . . , ϕk) ≤ 1

k + 1
}
.

Then Xk ∈ D by Theorem 5.4, since

(
∏
λ∈Λ

Mλ)D |= inf
x

max(ϕ1, . . . , ϕk) = 0.

We then have Xk ⊇ Xk+1 for every k ∈ N and
⋂

k∈N Xk = ∅, so
for each λ ∈ Λ there exists a largest positive integer k(λ) such that
λ ∈ Xk(λ).

We now define an element a = (a(λ))λ∈Λ ∈
∏

λ∈ΛMλ such that( ∏
λ∈Λ

Mλ

)
D
|= Γ[(a)D].
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For λ ∈ Λ, if k(λ) = 0, let a(λ) be any element in Mλ; otherwise, let
a(λ) be such that

Mλ |=
{

max(ϕ1, . . . , ϕk(λ)) ≤
1

k(λ)
}

[a(λ)].

If k ∈ N and λ ∈ Xk, we have k ≤ k(λ), so Mλ |=
(
ϕk ≤ 1

k(λ)

)
[a(λ)].

It follows from Theorem 5.4 that (
∏

λ∈ΛMλ)D |= Γ[(a)D].

In saturated structures the meaning of L-conditions can be analyzed
using the usual quantifiers ∀ and ∃, as the next result shows:

7.7 Proposition. Let M be an L-structure and suppose E(x1, . . . , xm)
is the L-condition(

Q1
y1
. . . Qn

yn
ϕ(x1, . . . , xm, y1, . . . , yn)

)
= 0

where each Qi is either inf or sup and ϕ is quantifier free.
Let E(x1, . . . , xm) be the mathematical statement

Q̃1y1 . . . Q̃
nyn

(
ϕ(x1, . . . , xm, y1, . . . , yn) = 0

)
where each Q̃iyi is ∃yi if Qi

yi
is infyi and is ∀yi if Qi

yi
is supyi

.
If M is ω-saturated, then for any elements a1, . . . , am of M , we have

M |= E[a1, . . . , am] if and only if E(a1, . . . , an) is true in M.

Proof By induction on n. For the induction step, suppose we are treating
the condition

(
infy ψ(x1, . . . , xn, y)

)
= 0. If M is ω-saturated, then(

infy ψ(a1, . . . , an, y)
)

= 0 holds in M if and only if there exists some
b ∈ M such that ψ(a1, . . . , an, b) = 0 holds in M. For the left to right
direction, take b ∈M to satisfy the conditions ψ(a1, . . . , an, b) ≤ 1/n for
n ≥ 1.

7.8 Definition. Let M be an L-structure and let N be an elemen-
tary extension of M. We call N an enlargement of M if it has the
following property: whenever A ⊆M and Γ(x1, . . . , xn) is a set of L(A)-
conditions, if every finite subset of Γ is satisfiable in (M, a)a∈A, then
the entire set Γ is satisfiable in (N , a)a∈A.

7.9 Lemma. Every L-structure has an enlargement.

Proof Let M be an L-structure and let J be a set of cardinality ≥
card(L(M)). Let I be the collection of finite subsets of J and let D be
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an ultrafilter on I that contains each of the sets Sj = {i ∈ I | j ∈ i}, for
j ∈ J . Such an ultrafilter exists since this collection of sets has the finite
intersection property. Let N be the D-ultrapower of M, considered as
an elementary extension of M via the diagonal map. We will show that
N is an enlargement of M.

Let A ⊆ M and suppose Γ(x1, . . . , xn) is a set of L(A)-conditions
such that every finite subset of Γ is satisfiable in (M, a)a∈A. Let α be a
function from J onto Γ. Given i = {j1, . . . , jm} ∈ I, let (a1

i , . . . , a
n
i ) be

any n-tuple from M that satisfies the finite subset {α(j1), . . . , α(jm)} of
Γ in (M, a)a∈A. For each k = 1, . . . , n set ak =

(
(ak

i )i∈I

)
D

. Theorem
5.4 easily yields that (a1, . . . , an) satisfies Γ in (N , a)a∈A.

7.10 Proposition. Let M be an L-structure. For every infinite cardi-
nal κ, M has a κ-saturated elementary extension.

Proof By increasing κ if necessary (for example, replacing κ by κ+)
we may assume κ is regular. By induction we construct an elementary
chain (Mα | α < κ) such that M0 = M and for each α < κ, Mα+1 is
an enlargement of Mα. (At limit ordinals we take unions.) Let N be
the union of the chain (Mα | α < κ). By Proposition 7.2, Mα � N for
all α < κ; in particular, M � N . We claim that N is κ-saturated. Let
A be a subset of N of cardinality < κ. Since κ is regular, there exists
α < κ such that A is a subset of Mα. The elements of N needed to
verify Definition 7.5 for (N , a)a∈A can be found in Mα+1.

Strongly homogeneous structures

7.11 Definition. Let M be an L-structure and let κ be an infinite
cardinal. We say that M is strongly κ-homogeneous if the following
statement holds: whenever L(C) is an extension of L by constants with
card(C) < κ and f, g are functions from C into M such that

(M, f(c))c∈C ≡ (M, g(c))c∈C

one has

(M, f(c))c∈C
∼= (M, g(c))c∈C .

Note that an isomorphism from (M, f(c))c∈C onto (M, g(c))c∈C is an
automorphism of M that takes f(c) to g(c) for each c ∈ C.
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7.12 Proposition. Let M be an L-structure. For every infinite car-
dinal κ, M has a κ-saturated elementary extension N such that each
reduct of N to a sublanguage of L is strongly κ-homogeneous.

Proof We may assume κ is regular, by increasing κ if necessary. Given
any L-structure M, we construct an elementary chain (Mα | α < κ)
whose union has the desired properties. Let M0 = M; for each α < κ,
let Mα+1 be an elementary extension of Mα that is τα-saturated, where
τα is a cardinal bigger than card(L) and bigger than the cardinality of
Mα; take unions at limit ordinals. Let N be the union of (Mα | α < κ).
By Proposition 7.2, M � N . An argument such as in the proof of
Proposition 7.10 shows that N is κ-saturated.

The fact that N is strongly κ-homogeneous follows from an inductive
argument whose successor steps are based on the following easily proved
fact:

Suppose M � N and N is τ -saturated, where τ is a cardinal satis-
fying τ > card(L) and τ > card(M). Let C be a set of new constants
with card(C) < τ . Suppose f, g are functions from C into M such
that (M, f(c))c∈C ≡ (M, g(c))c∈C . Then there exists an elementary
embedding T : M→N such that for every c ∈ C, T (f(c)) = g(c).

Finally, suppose L′ is a sublanguage of L. For each α < κ, the reduct
of Mα+1 to L′ is also τα-saturated. Hence an argument similar to the
one given above for N shows that the reduct of N to L′ is also strongly
κ-homogeneous.

Universal domains

7.13 Definition. Let T be a complete theory in L and let κ be an
infinite cardinal number. A κ-universal domain for T is a κ-saturated,
strongly κ-homogeneous model of T . If U is a κ-universal domain for T
and A ⊆ U , we will say A is small if card(A) < κ.

By Proposition 7.12, every complete theory has a κ-universal domain
for every infinite cardinal κ. Indeed, T has a model U such that not
only U itself but also every reduct of U to a sublanguage of L is κ-
saturated and strongly κ-homogeneous. Such models are needed for
some arguments.
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Implications

One of the subtleties of continuous first-order logic is that it is essen-
tially a positive logic. In particular, there is no direct way to express
an implication between conditions. This is inconvenient in applications,
since many natural mathematical properties are stated using implica-
tions. However, when working in a saturated model or in all models of
a theory, this obstacle can be clarified and often overcome in a natural
way, which we explain here.

Let L be any signature for metric structures. For the rest of this
section we fix two L-formulas ϕ(x1, . . . , xn) and ψ(x1, . . . , xn) and an
L-theory T . For convenience we write x for x1, . . . , xn.

7.14 Proposition. Let M be an ω-saturated model of T . The following
statements are equivalent:
(1) For all a ∈Mn, if ϕM(a) = 0 then ψM(a) = 0.
(2) ∀ε > 0 ∃δ > 0 ∀a ∈Mn (ϕM(a) < δ ⇒ ψM(a) ≤ ε).
(3) There is an increasing, continuous function α : [0, 1] → [0, 1] with
α(0) = 0 such that ψM(a) ≤ α(ϕM(a)) for all a ∈Mn.

Proof (1) ⇒ (2): Suppose (1) holds. If (2) fails, then for some ε > 0 the
set of conditions ψ(x) ≥ ε and ϕ(x) ≤ 1/n for n ≥ 1 is finitely satisfiable
in M. Since M realizes every finitely satisfiable set of L-conditions,
there exists a ∈ Mn such that ψM(a) ≥ ε while ϕM(a) ≤ 1/n for all
n ≥ 1. This contradicts (1).
(2) ⇒ (3): This follows from Proposition 2.10.
(3) ⇒ (1): This is trivial.

The next results are variants of the previous one, with essentially the
same proof. In stating them we translate (2) and (3) using conditions
of continuous logic, as follows.

The statement in (2) holds for a given L-structure M and a given ε, δ
if and only if the L-condition

sup
x

min
(
δ −· ϕ(x), ψ(x)−· ε

)
= 0

is true in M.
The statement in (3) holds for a given M and a given α if and only if

the L-condition

sup
x

(
ψ(x)−· α(ϕ(x))

)
= 0

is true in M.
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7.15 Proposition. The following statements are equivalent.
(1) For all M |= T and all a ∈Mn, if ϕM(a) = 0 then ψM(a) = 0.
(2) For all ε > 0 there exists δ > 0 such that

T |= sup
x

min
(
δ −· ϕ(x), ψ(x)−· ε

)
= 0.

(3) There is an increasing, continuous function α : [0, 1] → [0, 1] with
α(0) = 0 such that

T |= sup
x

(
ψ(x)−· α(ϕ(x))

)
= 0.

Proof It is obvious that (2) and (3) imply (1). If (2) fails, then for some
ε > 0 the set of conditions ψ(x) ≥ ε and ϕ(x) ≤ 1/n for n ≥ 1 is finitely
satisfiable in models of T . The Compactness Theorem yields M |= T

and a ∈ Mn such that ψM(a) ≥ ε while ϕM(a) ≤ 1/n for all n ≥ 1.
This contradicts (1).

Now assume that (1) and (equivalently) (2) hold. Define a function
∆ on (0, 1] by setting each ∆(ε) to be half the supremum of all δ ∈ (0, 1]
for which T |= supx min

(
δ −· ϕ(x), ψ(x) −· ε

)
= 0. Evidently ∆ is an

increasing function and (since (2) holds) it takes its values in (0, 1]. For
each M |= T and each ε ∈ (0, 1] we have

∀a ∈Mn
(
ϕM(a) ≤ ∆(ε) ⇒ ψM(a) ≤ ε

)
.

Now we use the argument in Remark 2.12 to obtain an increasing, con-
tinuous function α : [0, 1] → [0, 1] with α(0) = 0 such that for each
M |= T we have

∀a ∈Mn
(
ψM(a) ≤ α(ϕM(a))

)
.

This proves that statement (3) holds for this α.

7.16 Corollary. Let C be the set of all models M of T that satisfy the
requirement

∀a ∈Mn
[
ϕM(a) = 0 ⇒ ψM(a) = 0

]
.

Then the following statements are equivalent:
(1) C is axiomatizable.
(2) For each ε > 0 there exists δ > 0 such that the L-condition

sup
x

min
(
δ −· ϕ(x), ψ(x)−· ε

)
= 0

is true in all members of C.
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(3) There exists an increasing, continuous function α : [0, 1] → [0, 1] with
α(0) = 0 such that the L-condition

sup
x

(
ψ(x)−· α(ϕ(x))

)
= 0

is true in all members of C.

Proof If (1) holds, apply the previous result to a theory T ′ that axiom-
atizes C. If (2) or (3) holds, C can be axiomatized by adding conditions
of the form displayed to T .

8 Spaces of types

In this section we consider a fixed signature L for metric structures and
a fixed L-theory T . Until further notice in this section we assume that
T is a complete theory.

Suppose that M is a model of T and A ⊆ M . Denote the L(A)-
structure (M, a)a∈A by MA, and set TA to be the L(A)-theory of MA.
Note that any model of TA is isomorphic to a structure of the form
(N , a)a∈A, where N is a model of T .

8.1 Definition. Let TA be as above and let x1, . . . , xn be distinct vari-
ables.

A set p of L(A)-conditions with all free variables among x1, . . . , xn

is called an n-type over A if there exists a model (M, a)a∈A of TA and
elements e1, . . . , en of M such that p is the set of all L(A)-conditions
E(x1, . . . , xn) for which MA |= E[e1, . . . , en].

When this relationship holds, we denote p by tpM(e1, . . . , en/A) and
we say that (e1, . . . , en) realizes p in M. (The subscript M will be
omitted if doing so causes no confusion; A will be omitted if it is empty.)

The collection of all such n-types over A is denoted by Sn(TA), or
simply by Sn(A) if the context makes the theory TA clear.

8.2 Remark. Let M, A be as above, and let e, e′ be n-tuples from M .
(1) tpM(e/A) = tpM(e′/A) if and only if (MA, e) ≡ (MA, e

′).
(2) If M� N , then tpM(e/A) = tpN (e/A).

8.3 Remark. Suppose M is a κ-saturated L-structure. It is easy to
show that for any subset A ⊆ M with card(A) < κ, every type in
Sn(TA) is realized in M. Indeed, this property (even just with n = 1)
is equivalent to κ-saturation of M.



Model theory for metric structures 43

The logic topology on types

Fix TA as above. If ϕ(x1, . . . , xn) is an L(A)-formula and ε > 0, we let
[ϕ < ε] denote the set

{q ∈ Sn(TA) | for some 0 ≤ δ < ε the condition (ϕ ≤ δ) is in q }.

8.4 Definition. The logic topology on Sn(TA) is defined as follows. If p
is in Sn(TA), the basic open neighborhoods of p are the sets of the form
[ϕ < ε] for which the condition ϕ = 0 is in p and ε > 0.

Note that the logic topology is Hausdorff. Indeed, if p, q are distinct
elements of Sn(TA), then there exists an L(A)-formula ϕ(x1, . . . , xn)
such that the condition ϕ = 0 is in one of the types but not the other.
Therefore, for some positive r the condition ϕ = r is in that other type.
Taking ε = r/2 > 0 we see that [ϕ < ε] and [(r −· ϕ) < ε] are disjoint
basic open sets for the logic topology, one containing p and the other
containing q.

It is also useful to introduce notation such as the following (where
ϕ(x1, . . . , xn) is an L(A)-formula and ε ≥ 0):

[ϕ ≤ ε] = {q ∈ Sn(TA) | the condition (ϕ ≤ ε) is in q }.

Each set [ϕ ≤ ε] is closed in the logic topology; indeed, its complement
is ∅ if ε ≥ 1 and it is [1−· ϕ < δ] if ε < 1 and δ = 1− ε.

8.5 Lemma. The closed subsets of Sn(TA) for the logic topology are
exactly the sets of the form CΓ = {p ∈ Sn(TA) | Γ(x1, . . . , xn) ⊆ p}
where Γ(x1, . . . , xn) is a set of L(A)-conditions.

Proof Given such a set Γ(x1, . . . , xn), note that CΓ is the intersection of
all sets [ϕ ≤ 0] where ϕ = 0 is any condition in Γ. Hence CΓ is closed.
Conversely, suppose C is a subset of Sn(TA) that is closed in the logic
topology and let p be any element of Sn(TA) \ C. By the definition of
the logic topology there exists an L(A)-condition ϕ = 0 in p and ε > 0
such that [ϕ < ε] is disjoint from C. Without loss of generality we may
assume ε ≤ 1. Then the closed set [(ε−· ϕ) ≤ 0] contains C and does not
have p as an element. To represent C in the desired form it suffices to
take Γ to be the set of all conditions of the form (ε−· ϕ) = 0 that arise
in this way.

8.6 Proposition. For any n ≥ 1, Sn(TA) is compact with respect to
the logic topology.
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Proof In light of the preceding discussion, one sees that this is just a
restatement of the Compactness Theorem (Corollary 5.12).

The d-metric on types

Let TA be as above. For each n ≥ 1 we define a natural metric on
Sn(TA); it is induced as a quotient of the given metric d on Mn, where
(M, a)a∈A is a suitable model of TA, so we also denote this metric on
types by d.

To define this metric, let MA = (M, a)a∈A be any model of TA in
which each type in Sn(TA) is realized, for each n ≥ 1. (Such a model
exists by Proposition 7.10.) Let (M,d) be the underlying metric space
of M. For p, q ∈ Sn(TA) we define d(p, q) to be

inf
{

max
1≤j≤n

d(bj , cj)
∣∣ MA |= p[b1, . . . , bn], MA |= q[c1, . . . , cn]

}
.

Note that this expression for d(p, q) does not depend on MA, since
MA realizes every type of a 2n-tuple (b1, . . . , bn, c1, . . . , cn) over A. It
follows easily that d is a pseudometric on Sn(TA). Note that if p, q ∈
Sn(A), then by the Compactness Theorem and our assumptions about
MA, there exist realizations (b1, . . . , bn) of p and (c1, . . . , cn) of q in
MA, such that maxj d(bj , cj) = d(p, q). In particular, if d(p, q) = 0,
then p = q; so d is indeed a metric on Sn(TA).

8.7 Proposition. The d-topology is finer than the logic topology on
Sn(TA).

Proof This follows from the uniform continuity of formulas.

8.8 Proposition. The metric space (Sn(TA), d) is complete.

Proof Let (pk)k≥1 be a Cauchy sequence in (Sn(TA), d). Without loss
of generality we may assume d(pk, pk+1) ≤ 2−k for all k; that is, for
completeness it suffices to show that every such Cauchy sequence has a
limit. Let N be an ω-saturated and strongly ω-homogeneous model of
TA. Without loss of generality we may assume that N = MA for some
model M of T . Using our saturation and homogeneity assumptions,
we see that for any a ∈ Mn realizing pk there exists b ∈ Mn realizing
pk+1 such that d(a, b) = d(pk, pk+1). Therefore, proceeding inductively
we may generate a sequence (bk) in Mn such that bk realizes pk and
d(bk, bk+1) = d(pk, pk+1) ≤ 2−k for all k. This implies that (bk) is
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a Cauchy sequence in Mn so it converges in Mn to some b ∈ Mn.
It follows that the type realized by b in (M, a)a∈A is the limit of the
sequence (pk) in the metric space (Sn(TA), d).

Functions on type spaces defined by formulas

Let TA be as above. Let MA = (M, a)a∈A be any model of TA in which
each type in Sn(TA) is realized, for each n ≥ 1.

Let ϕ(x1, . . . , xn) be any L(A)-formula. For each type p ∈ Sn(TA) we
let ϕ̃(p) denote the unique real number r ∈ [0, 1] for which the condition
ϕ = r is in p. Equivalently, ϕ̃(p) = ϕM(b) when b is any realization of p
in MA.

8.9 Lemma. Let ϕ(x1, . . . , xn) be any L(A)-formula. The function
ϕ̃ : Sn(TA) → [0, 1] is continuous for the logic topology and uniformly
continuous for the d-metric distance on Sn(TA).

Proof For any r ∈ [0, 1] and ε > 0, note that

ϕ̃−1(r − ε, r + ε) = [|ϕ−· r| < ε].

This shows that ϕ̃ is continuous for the logic topology. For the uniform
continuity, use Theorem 3.5 to obtain a modulus of uniform continuity
∆ϕ for ϕM on Mn. It is easy to show that ∆ϕ is a modulus of uniform
continuity for ϕ̃. Indeed, suppose ε ∈ (0, 1] and let δ = ∆ϕ(ε). Suppose
p, q ∈ Sn(TA) have d(p, q) < δ. Suppose r = ϕ̃(p) and s = ϕ̃(q). We
need to show |r − s| ≤ ε. Choose a, b ∈ Mn to realize p, q respectively
in MA with d(a, b) = d(p, q). Our choice of ∆ϕ ensures that |r − s| =
|ϕM(a)− ϕM(b)| ≤ ε, as desired.

8.10 Proposition. For any function Φ: Sn(TA) → [0, 1] the following
statements are equivalent:
(1) Φ is continuous for the logic topology on Sn(TA);
(2) There is a sequence (ϕk(x1, . . . , xn))k≥1 of L(A)-formulas such that
(ϕ̃k)k≥1 converges to Φ uniformly on Sn(TA);
(3) Φ is continuous for the logic topology and uniformly continuous for
the d-metric on Sn(TA).

Proof (1) ⇒ (2): Note that the set of functions of the form ϕ̃, where
ϕ(x1, . . . , xn) is an L(A)-formula, separates points of Sn(TA) and is
closed under the pointwise lattice operations max and min. Applying
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the lattice version of the Stone-Weierstrass Theorem to the compact,
Hausdorff space Sn(TA) with the logic topology yields (2).

(2) ⇒ (3): Each ϕ̃ is continuous for the logic topology and uniformly
continuous for the d-metric on Sn(TA). These properties are preserved
under uniform convergence.

(3) ⇒ (1): trivial.

There are many connections between the type spaces Sn(TA) as n and
A vary. We conclude this subsection with a result that summarizes some
of them.

8.11 Proposition. Let M |= T and A ⊆ B ⊆M . Let π be the restric-
tion map from Sn(TB) to Sn(TA)(defined by letting π(p) be the set of
L(A)-conditions in p). Then:
(1) π is surjective;
(2) π is continuous (hence closed) for the logic topologies;
(3) π is contractive (hence uniformly continuous) for the d-metrics;
(4) if A is d-dense in B, then π is a homeomorphism for the logic topolo-
gies and a surjective isometry for the d-metrics.

Proof (1) Let p ∈ Sn(TA). The set p+ of L(A)-formulas is finitely sat-
isfied in (M, b)b∈B , so p itself is satisfied in some elementary extension
of (M, b)b∈B , by the Compactness Theorem. If (e1, . . . , en) realizes p in
such an elementary extension, then p = π(tp(e1, . . . , en/B).
(2) If ϕ(x1, . . . , xn) is any L(A)-formula and ε > 0, then π obviously
maps [ϕ < ε] as a basic neighborhood in Sn(TB) into [ϕ < ε] as a basic
neighborhood in Sn(TA). Therefore π is continuous for the logic topolo-
gies; hence π is also a closed map, since those topologies are compact
and Hausdorff.
(3) Any realization of p ∈ Sn(TB) is also a realization of π(p).
(4) This follows from the fact that formulas define uniformly continuous
functions. Hence any L(B)-formula can be uniformly approximated by
a sequence of L(A)-formulas, when A is dense in B. In particular, if
p ∈ Sn(TB), then any realization of π(p) is a realization of p itself.

Types over an arbitrary theory

For the rest of this section we consider a theory T that is satisfiable but
not necessarily complete. For some purposes one needs to consider the
spaces of types over ∅ that are consistent with T .
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Fix n ≥ 0 and let x1, . . . , xn be distinct variables. We let Sn(T )
denote the set of all n-types over ∅ of the form tpM(e1, . . . , en) where
M is any model of T and e1, . . . , en are in M . We equip Sn(T ) with the
logic topology, whose basic open sets are of the form

[ϕ < ε] = {q ∈ Sn(T ) | condition (ϕ ≤ δ) is in q for some 0 ≤ δ < ε}

where ε > 0 and ϕ(x1, . . . , xn) is an L-formula. (Note that S0(T ) is
simply the space of all complete L-theories that extend T .)

For each L-formula ϕ(x1, . . . , xn) we define ϕ̃ : Sn(T ) → [0, 1] by set-
ting ϕ̃(p) to be the unique real number r ∈ [0, 1] for which the condition
ϕ = r is in p, for each p ∈ Sn(T ). Equivalently, ϕ̃(p) = ϕM(a) where a
is any realization of p in any M |= T . The proof of Lemma 8.9 shows
that each ϕ̃ is continuous as a function into [0, 1] from Sn(T ) with the
logic topology.

8.12 Theorem. Let T be any satisfiable L-theory; Sn(T ) equipped with
the logic topology has the following properties:

(1) The closed subsets of Sn(T ) are exactly the sets of the form

CΓ = {p ∈ Sn(T ) | Γ(x1, . . . , xn) ⊆ p}

where Γ(x1, . . . , xn) is a set of L-conditions.
(2) Sn(T ) is a compact, Hausdorff space.
(3) Φ: Sn(T ) → [0, 1] is continuous if and only if there is a sequence

(ϕk(x1, . . . , xn))k≥1 of L-formulas such that (ϕ̃k)k≥1 converges
to Φ uniformly on Sn(T ).

Proof The proofs of Lemma 8.5 and Propositions 8.6 and 8.10 apply
without change to the current situation.

9 Definability in metric structures

In this section we discuss some issues around definability, which is ar-
guably the central topic in model theory and its applications.

Let M be a metric structure, and L a signature for M. First we con-
sider definability of predicates P : Mn → [0, 1]. Then we use definable
predicates to discuss definability of subsets of Mn and functions from
Mn into M .

Let A be any subset of M , which we think of as a set of possible
parameters to use in definitions.
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Definable predicates

9.1 Definition. A predicate P : Mn → [0, 1] is definable in M over A
if and only if there is a sequence (ϕk(x) | k ≥ 1) of L(A)-formulas such
that the predicates ϕMk (x) converge to P (x) uniformly on Mn; i.e.,

∀ε > 0 ∃N ∀k ≥ N ∀x ∈Mn
(
|ϕMk (x)− P (x)| ≤ ε

)
.

In other words, a predicate is definable over A if it is in the uniform
closure of the set of functions from Mn to [0, 1] that are obtained by
interpreting L(A)-formulas in M. We will give various results to show
why we think this is the “right” notion of definability for predicates in
metric structures.

9.2 Remark. Suppose P : Mn → [0, 1] is definable in M over A. By
taking A0 ⊆ A to be the set of elements of A whose names appear in
the sequence of L(A)-formulas (ϕk(x) | k ≥ 1) witnessing that P is
definable, we get a countable set A0 such that P is definable in M over
A0. In contrast to what happens in ordinary first-order logic, it need
not be possible to do this with a finite set of parameters.

It can be useful to have a specific representation of definable predi-
cates. To do this we broaden our perspective of “connectives”. Consider
the product space [0, 1]N of infinite sequences; this is a compact metriz-
able space; for example, its topology is given by the metric ρ defined
by

ρ ((ak), (bk)) =
∞∑

k=0

2−k|ak − bk|

for any pair of sequences (ak | k ∈ N) and (bk | k ∈ N) in [0, 1]N. In
representing definable predicates we will regard any continuous function
u : [0, 1]N → [0, 1] as a kind of connective.

9.3 Proposition. Let M be an L-structure with A ⊆ M , and suppose
P : Mn → [0, 1] is a predicate. Then P is definable in M over A if
and only if there is a continuous function u : [0, 1]N → [0, 1] and L(A)-
formulas (ϕk | k ∈ N) such that for all x ∈Mn

P (x) = u
(
ϕMk (x) | k ∈ N

)
.

Proof Suppose P has the specified form. Fix ε > 0; we need to show
that P can be approximated uniformly to within ε by the interpretation
of some L(A)-formula.
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Since ([0, 1]N, ρ) is compact, the function u is uniformly continuous
with respect to ρ. Hence there exists m ∈ N such that

|u((ak))− u((bk))| ≤ ε

holds whenever (ak | k ∈ N) and (bk | k ∈ N) are sequences such that
ak = bk for all k = 0, . . . ,m. Let um : [0, 1]m+1 → [0, 1] be the continuous
function obtained from u by setting

um(a0, . . . , am) = u(a0, . . . , am, 0, 0, 0, . . . )

for all a0, . . . , am ∈ N. Let ϕ(x) be the L(A)-formula given by

ϕ(x) = um(ϕ0(x), . . . , ϕm(x)).

Then we have immediately that

|P (x)− ϕM(x)| = |u
(
ϕMk (x) | k ∈ N

)
− um

(
ϕM0 (x), . . . , ϕMm (x)

)
| ≤ ε

for all x ∈Mn. Hence P is definable over A in M.
For the converse direction, assume that P : Mn → [0, 1] is definable

over A in M. For each k ∈ N let ϕk(x) be an L(A)-formula such that

|ϕMk (x)− P (x)| ≤ 2−k

holds for all x ∈Mn.
Now consider the set C of all sequences (ak | k ∈ N) in [0, 1]N such

that |ak − al| ≤ 2−N holds whenever N ∈ N and k, l ≥ N + 1. Each
sequence (ak) in C is a Cauchy sequence in [0, 1], so it converges to a
limit that we denote by lim(ak). It is easy to check that C is a closed
subset of [0, 1]N and that the sequence (ϕMk (x) | k ∈ N) is in C for every
x ∈Mn. Moreover, it is easy to check that the function lim: C → [0, 1]
is continuous with respect to the restriction of the product topology on
[0, 1]N to C. By the Tietze Extension Theorem, there is a continuous
function u : [0, 1]N → [0, 1] that agrees with lim on C. From this we
conclude immediately that

P (x) = u
(
ϕMk (x) | k ∈ N

)
for all x ∈Mn, as desired.

9.4 Remark. Note that in our proof of Proposition 9.3, the continuous
function u : [0, 1]N → [0, 1], in terms of which the definable predicate P
was represented, is completely independent of P . It is not too difficult to
give a constructive proof of this result, in which u is described concretely,
and doing so can be useful. See, for example, the forced limit function
discussed in [6, section 3].
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9.5 Remark. Proposition 9.3 shows one way to represent definable
predicates so that they become meaningful in every L-structure. This
suggests how the notion of L-formula could be expanded by allowing
continuous infinite connectives, without expanding the notion of defin-
ability for predicates, in order to have an exact correspondence between
formulas and definable predicates. There is the complication that, as
noted above, a definable predicate may depend on infinitely many of
the parameters that are used in its definition. We will not explore this
direction here.

9.6 Lemma. Suppose P : Mn → [0, 1] is definable in M over A and
consider N � M with A ⊆ N . Then infx P (x) and supx P (x) have the
same value in N as in M.

Proof Let (ϕk | k ≥ 1) be L(A)-formulas such that for all x ∈ Mn and
all k ≥ 1 we have

|P (x)− ϕMk (x)| ≤ 1
k

.

Since N �M, we also have for all x ∈ Nn and all k ≥ 1

|P (x)− ϕNk (x)| ≤ 1
k

.

We conclude that

inf
x
P (x) = lim

k→∞
inf
x
ϕMk (x) (inf over x ∈Mn)

= lim
k→∞

inf
x
ϕNk (x) (inf over x ∈ Nn)

= inf
x
P (x) (inf over x ∈ Nn)

as claimed.

This Lemma is a special case of a more general result:

9.7 Proposition. Let Pi : Mn → [0, 1] be definable in M over A for
i = 1, . . . ,m and consider N �M with A ⊆ N . Let Qi be the restriction
of Pi to Nn for each i. Then (N , Q1, . . . , Qm) � (M, P1, . . . , Pm).

Proof This is proved using an elaboration of the ideas above. The
proof is by induction on formulas, using the tools concerning uniform
convergence that were developed in the appendix to section 2.
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9.8 Proposition. Let P : Mn → [0, 1] be definable in M over A and
consider an elementary extension N of M. There is a unique predicate
Q : Nn → [0, 1] such that Q is definable in N over A and P is the
restriction of Q to Mn. This predicate satisfies (M, P ) � (N , Q).

Proof Let (ϕk(x) | k ≥ 1) be a sequence of L(A)-formulas such that the
functions (ϕMk | k ≥ 1) converge uniformly to P on Mn. Note that for
any k, l ≥ 1 we have

sup{|ϕNk (b)− ϕNl (b)| | b ∈ Nn} = sup{|ϕMk (a)− ϕMl (a)| | a ∈Mn}.

Therefore the functions (ϕNk | k ≥ 1) converge uniformly on Nn to some
function Q : Nn → [0, 1]. Evidently Q extends P and the construction
of Q ensures that it is definable in N over A. The last statement follows
from Proposition 9.7.

It remains to prove Q is unique. Suppose Q1, Q2 are predicates
definable in M over A whose restriction to Mn equals P . Apply-
ing Proposition 9.7 we conclude that (N , Q1, Q2) is an elementary ex-
tension of (M, P, P ) and hence sup{|Q1(x) − Q2(x)| | x ∈ Nn} =
sup{|P (x)− P (x)| | x ∈Mn} = 0. Therefore Q1 = Q2.

The following result gives a useful and conceptually appealing char-
acterization of definable predicates. As above we have an L-structure
M with A ⊆ M and we set MA = (M, a)a∈M ; let T = Th(M) be the
complete L-theory of which M is a model and let TA = Th(MA).

9.9 Theorem. Let P : Mn → [0, 1] be a function. Then P is a predicate
definable in M over A if and only if there exists Φ: Sn(TA) → [0, 1]
that is continuous with respect to the logic topology on Sn(TA) such that
P (a) = Φ(tpM(a/A)) for all a ∈Mn.

Proof First suppose that there is a continuous Φ: Sn(TA) → [0, 1] such
that P (a) = Φ(tpM(a/A)) for all a ∈ Mn. By Proposition 8.10 there
is a sequence (ϕk(x) | k ≥ 1) of L(A)-formulas such that the functions
(ϕ̃k | k ≥ 1) converge uniformly to Φ on Sn(TA). For any a ∈ Mn let
p = tpM(a/A) and note that |ϕMk (a)−P (a)| = |ϕ̃k(p)−Φ(p)|. Therefore
the functions (ϕMk | k ≥ 1) converge uniformly to P on Mn, from which
it follows that P is a predicate (i.e., that it is uniformly continuous) and
that it is definable in M over A.

For the converse, suppose (ϕk(x) | k ≥ 1) is a sequence of L(A)-
formulas such that the functions (ϕMk | k ≥ 1) converge uniformly to



52 I. Ben Yaacov, A. Berenstein, C. W. Henson, and A. Usvyatsov

P on Mn. Let N be a κ-saturated elementary extension of M, where
κ > card(A). Arguing as in the proof of Proposition 9.8 we see that
the functions (ϕNk | k ≥ 1) converge uniformly on Nn to some function
Q : Nn → [0, 1]. Evidently Q extends P and the construction of Q
ensures that it is definable in N over A. Let p be any type in Sn(TA).
Define Φ(p) = Q(b) where b ∈ Nn realizes p; since Q(b) is the limit of
(ϕNk (b) | k ≥ 1) and (ϕk | k ≥ 1) are L(A)-formulas, the value of Q(b)
depends only on the type of b over A. Moreover, our construction of
Q ensures that Φ is the uniform limit of the functions (ϕ̃k | k ≥ 1) on
Sn(TA). Therefore Φ is continuous with respect to the logic topology by
Proposition 8.10. For any a ∈Mn we have P (a) = Q(a) = Φ(tpM(a/A))
as desired.

The next result provides a characterization of definability for predi-
cates in saturated models that proves to be technically helpful in many
situations. If M is an L-structure and A ⊆ M , a subset S ⊆ Mn

is called type-definable in M over A if there is a set Σ(x1, . . . , xn) of
L(A)-formulas such that for any a ∈ Mn we have a ∈ S if and only if
ϕM(a) = 0 for every ϕ ∈ Σ. In this case we will say S is type-defined by
Σ.

9.10 Corollary. Let M be a κ-saturated L-structure and A ⊆ M with
card(A) < κ; let P : Mn → [0, 1] be a function. Then P is a predicate
definable in M over A if and only if the sets {a ∈ Mn | P (a) ≤ r} and
{a ∈Mn | P (a) ≥ r} are type-definable in M over A for every r ∈ [0, 1].

Proof Suppose P is a predicate definable in M over A. Using Theorem
9.9 we get a continuous function Φ: Sn(TA) → [0, 1] such that P (a) =
Φ(tpM(a/A)) for all a ∈ Mn. For r ∈ [0, 1], Φ−1([0, r]) is a closed
subset of Sn(A) for the logic topology. By Lemma 8.5, it is of the form
{p ∈ Sn(TA) | Γ(x1, . . . , xn) ⊆ p} where Γ(x1, . . . , xn) is some set of
L(A)-conditions. It follows that {a ∈Mn | P (a) ≤ r} is type-defined by
Γ. A similar argument applies to {a ∈Mn | P (a) ≥ r}.

Conversely, suppose P is a function such that {a ∈ Mn | P (a) ≤ r}
and {a ∈ Mn | P (a) ≥ r} are type-definable in M over A for every
r ∈ [0, 1]. This allows us to define Φ: Sn(TA) → [0, 1] by setting
Φ(p) = P (a) whenever p ∈ Sn(TA) and a ∈ Mn realizes p in MA.
Note that such an a exists for every p because of our saturation assump-
tion. Further, our type-definability assumption ensures that Φ is well
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defined and, moreover, that it is continuous for the logic topology. It
follows by Theorem 9.9 that P is in M over A.

As another corollary to Theorem 9.9 we get a characterization of defin-
ability for predicates that is a generalization of the Theorem of Svenonius
from ordinary model theory. Note that we here assume that the given
function P is a predicate, i.e., that it is uniformly continuous; this allows
us to consider the expansion (M, P ) as a metric structure.

9.11 Corollary. Let M be an L-structure with A ⊆ M , and suppose
P : Mn → [0, 1] is a predicate. Then P is definable in M over A if and
only if whenever (N , Q) � (M, P ), the predicate Q is invariant under
all automorphisms of N that leave A fixed pointwise.

Proof For the left to right direction, assume that P is definable in M
over A. So there is a sequence of L(A)-formulas (ϕk | κ ≥ 1) such that
P is the uniform limit of (ϕMk | k ≥ 1) on Mn. Suppose (N , Q) is any
elementary extension of (M, P ). As discussed in the previous proof, we
have that Q is the uniform limit of (ϕNk | k ≥ 1) Nn. Since each function
ϕNk is the interpretation of an L(A)-formula, it must be invariant under
all automorphisms of N that leave A pointwise fixed. Hence the same
is true of its uniform limit Q.

For the right to left direction, let (N , Q) � (M, P ) be such that N is
strongly κ-homogeneous and (N , Q) is κ-saturated, where κ > card(A),
obtained using Proposition 7.12. Then define Φ: Sn(TA) → [0, 1] by
Φ(p) = Q(b) for b ∈ Nn realizing p. We first need to show Φ is well-
defined. On the one hand, NA realizes every type p ∈ Sn(TA) (so b

exists). On the other hand, Q is assumed to be AutA(N )-invariant
and this group acts transitively on the set of realizations of any given
p ∈ Sn(TA).

Next we show that Φ is continuous with respect to the logic topology
on Sn(TA). Fix p ∈ Sn(TA) and let r = Φ(p). For any b ∈ Nn we have
the implication

b realizes p in NA ⇒ Q(b) = r.

Since (N , Q) is κ-saturated, it follows that for each ε > 0 there exists
a condition ϕ = 0 in p and δ > 0 so that for any b ∈ Nn we have the
implication

ϕN (b) < δ ⇒ |Q(b)− r| ≤ ε/2.
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Therefore Φ maps [ϕ < δ], which is a logic neighborhood of p, into the
open interval (r − ε, r + ε). Hence Φ is continuous.

By Theorem 9.9 we conclude that P is definable in M over A.

Distance predicates

Let M be an L-structure and D ⊆ Mn. The predicate giving the dis-
tance in Mn to D is given by

dist(x,D) = inf{d(x, y) | y ∈ D}.

Here x = (x1, . . . , xn) and y = (y1, . . . , yn) range over Mn and we
consider the metric d on Mn defined by

d(x, y) = max
(
d(x1, y1), . . . , d(xn, yn)

)
.

Predicates of the form dist(x,D) are important in the model theory
of metric structures. We show next that they can be characterized by
axioms in continuous logic.

Consider a predicate P : Mn → [0, 1] and the following conditions.

(E1) sup
x

inf
y

max (P (y), |P (x)− d(x, y)|) = 0;

(E2) sup
x
|P (x)− inf

y
min (P (y) + d(x, y), 1) | = 0.

Observe that for any D ⊆Mn, P (x) = dist(x,D) satisfies E1 and E2.

9.12 Theorem. Let (M, F ) be an L-structure satisfying conditions E1

and E2. Let D = {x ∈ Mn | F (x) = 0} be the zeroset of F . Then
F (x) = dist(x,D) for all x ∈Mn.

Proof By E2, F (x) ≤ F (y) + d(x, y) for all y. So for y ∈ D, F (x) ≤
d(x, y). So F (x) ≤ dist(x,D).

Fix ε > 0. We will show that dist(x,D) ≤ F (x) + ε for all x ∈ Mn.
Letting ε go to 0 will complete the proof. We generate a sequence (yk) in
M using E1. Set y1 = x, any fixed element of Mn. Choose y2 such that
F (y2) ≤ ε

8 and |F (x)− d(x, y2)| ≤ ε
8 . Continue by induction, satisfying

F (yk+1) ≤ ε

2k+2
|F (yk)− d(yk, yk+1)| ≤ ε

2k+2
.

Therefore, d(yk, yk+1) ≤ F (yk) + |F (yk) − d(yk, yk+1)| ≤ ε2−k. So (yk)
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is a Cauchy sequence, and hence it converges to some y ∈ Mn. By the
continuity of F , F (y) = 0. Moreover,

d(x, y) = lim
k→∞

d(y1, yk+1) ≤ d(y1, y2) +
∞∑

k=2

d(yk, yk+1) ≤ F (x) + ε.

Since y ∈ D, this shows dist(x,D) ≤ F (x) + ε, as desired.

Zerosets

Next we turn to definability for sets (i.e., subsets of Mn). An obvious
way to carry over definability for sets from first-order logic would be to
regard a condition ϕ(x) = 0 as defining the set of x that satisfy it. This
is indeed an important kind of definability for sets, but it turns out to
be somewhat weak, due to fact that the rules for constructing formulas
in continuous logic are rather generous. This is especially true if one
puts zerosets of definable predicates on the same footing as zerosets of
formulas (as one should).

In this subsection we briefly explore this notion of definability, and
in the next subsection we introduce a stronger, less obvious, but very
important kind of definability for sets in metric structures.

9.13 Definition. Let D ⊆Mn. We say that D is a zeroset in M over
A if there is a predicate P : Mn → [0, 1] definable in M over A such
that D = {x ∈Mn | P (x) = 0}.

The next result shows that zerosets are the same as type-definable
sets, with the restriction that the partial type is countable.

9.14 Proposition. For D ⊆Mn, the following are equivalent.

(1) D is a zeroset in M.
(2) there is a sequence (ϕm | m ≥ 1) of L-formulas such that

D =
{
x ∈Mn | ϕMm (x) = 0 for all m ∈ N

}
=

∞⋂
m=1

Zeroset of ϕMm .

Proof (1 ⇒ 2): Suppose D = {x ∈ Mn | P (x) = 0} and (ϕMm | m ≥ 1)
are L-formulas such that for all x ∈Mn and all m ≥ 1

|P (x)− ϕMm (x)| ≤ 1
m

.
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Then D =
⋂

mDm, where Dm is the zero set of the interpretation of the
L-formula

(
ϕm(x)−· 1

m

)
in M.

(2 ⇒ 1): If D = {x ∈ Mn | ϕMm (x) = 0 for all m ∈ N}, then the
definable predicate

P (x) =
∞∑

m=1

2−mϕMm (x).

has D as its zeroset.

9.15 Corollary. The collection of zerosets in M over A is closed under
countable intersections.

Definability of sets

The next definition gives what we believe is the correct concept of first-
order definability for sets in metric structures.

9.16 Definition. A closed set D ⊆Mn is definable in M over A if and
only if the distance predicate dist(x,D) is definable in M over A.

The importance of this concept of definability for sets is shown by the
following result. It says essentially that in continuous first-order logic
we will retain definability of predicates if we quantify (using sup or inf)
over sets that are definable in this sense, but not if we quantify over
other sets.

9.17 Theorem. For a closed set D ⊆Mn the following are equivalent:
(1) D is definable in M over A.
(2) For any predicate P : Mm×Mn → [0, 1] that is definable in M over
A, the predicate Q : Mm → [0, 1] defined by

Q(x) = inf{P (x, y) | y ∈ D}

is definable in M over A.

Proof To prove (1) we only need to assume (2) for the case in which
P (x, y) = d(x, y) (so P is the interpretation of a quantifier-free formula);
here m = n.

So assume D is definable in M over A. Let P : Mm ×Mn → [0, 1]
be any predicate that is definable in M over A. This ensures that P is
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uniformly continuous, so (see Proposition 2.10) there is an increasing,
continuous function α : [0, 1] → [0, 1] with α(0) = 0 such that

|P (x, y)− P (x, z)| ≤ α(d(y, z))

for any x ∈ Mm and y, z ∈ Mn. Let Q be defined on Mm by Q(x) =
inf{P (x, y) | y ∈ D}.

We will show that Q(x) = inf{P (x, z) + α(dist(z,D)) | z ∈ Mn} for
all x ∈Mm. This shows that Q is definable in M over A, given that P
and dist(z,D) are definable in M over A. (Notice that we replaced the
inf over D by the inf over Mn and it is expressible by one of the basic
constructs of continuous logic.)

By our choice of α we have P (x, y) ≤ P (x, z) + α(d(y, z)) for all
x ∈ Mm and y, z ∈ Mn. Taking the inf over y ∈ D and using the fact
that α is continuous and increasing, we conclude that

Q(x) ≤ P (x, z) + α(dist(z,D))

for all x ∈Mm and z ∈Mn. Taking the inf of the right side over z ∈ D
yields Q(x), and the inf over z ∈ Mn is even smaller, but is bounded
below by Q(x). This shows

Q(x) = inf{P (x, z) + α(dist(z,D)) | z ∈Mn}

for all x ∈Mm and completes the proof of (1) ⇒ (2).

The following result shows another useful property of definable sets
that need not be true of zerosets.

9.18 Proposition. Let N � M be L-structures, and let D ⊆ Mn be
definable in M over A, where A ⊆ N . Then:
(1) For any x ∈ Nn, dist(x,D) = dist(x,D ∩ Nn). Thus D ∩ Nn is
definable in N over A.
(2) (N ,dist(·, D ∩Nn)) � (M,dist(·, D)).
(3) If D 6= ∅, then D ∩Nn 6= ∅.

Proof Statement (1) is an immediate consequence of Theorem 9.12 and
(2) follows from (1) by Proposition 9.7. For (3), note that if D 6= ∅,
then infx dist(x,D) = 0 in M. Therefore infx dist(x,D ∩Nn) = 0 in N
by (2). Hence there exists a ∈ N such that dist(a,D ∩ Nn) < 1. This
implies D ∩Nn 6= ∅, since otherwise dist(a,D ∩Nn) = 1.

If D ⊆ Mn is definable in M, then it is certainly a zeroset (it is the
set of zeros of the definable predicate dist(x,D)). However, the converse
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is not generally true. The next result explores the distinction between
these two concepts.

9.19 Proposition. For a closed set D ⊆ Mn, the following are equiv-
alent:

(1) D is definable in M over A.
(2) There is a predicate P : Mn → [0, 1], definable in M over A, such

that P (x) = 0 for all x ∈ D and

∀ε > 0 ∃δ > 0 ∀x ∈Mn (P (x) ≤ δ ⇒ dist(x,D) ≤ ε) .

(3) There is a sequence (ϕm | m ≥ 1) of L(A)-formulas and a se-
quence (δm | m ≥ 1) of positive real numbers such that for all
m ≥ 1 and x ∈Mn,(

x ∈ D ⇒ ϕMm (x) = 0
)

and(
ϕMm (x) ≤ δm ⇒ dist(x,D) ≤ 1

m

)
.

Proof (1 ⇒ 3): Let F (x) = dist(x,D) and assume it is definable in M
over A. So there exists a sequence (ψm(x) | m ≥ 1) of L(A)-formulas
such that for all x ∈Mn and m ≥ 1 we have

|F (x)− ψMm (x)| ≤ 1
3m

.

If x ∈ D, then F (x) = 0 and so ψMm (x) ≤ 1
3m . Also, if ψMm (x) ≤ 2

3m we
have

F (x) ≤ ψMm (x) + |F (x)− ψMm (x)| ≤ 2
3m

+
1

3m
=

1
m

.

Hence the L(A)-formulas ϕm(x) =
(
ψMm (x)−· 1

3m

)
have the desired

property (with δm = 2
3m .)

(3 ⇒ 2): Set P (x) =
∑∞

m=1 2−mϕMm (x).
(2 ⇒ 1): We use Proposition 2.10. This gives us a continuous, increas-

ing function α : [0, 1] → [0, 1] such that α(0) = 0 and for all x ∈ Mn,
dist(x,D) ≤ α (P (x)).

Consider the function

F (x) = inf
y

min (α (P (y)) + d(x, y), 1) .

First of all, this predicate is definable in M over A, since P is definable
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in M over A. Indeed, if (ϕn | n ≥ 1) are L(A)-formulas such that ϕMn
converges to P on Mn, then

ψn = inf
y

min (α(ϕn(y)) + d(x, y), 1)

gives a sequence of L(A)-formulas such that ψMn converges uniformly to
F .

Second, we observe that F (x) = dist(x,D) for all x ∈Mn. If y is any
element of D (so P (y) = 0), we see that

F (x) ≤ min (α(0) + d(x, y), 1) = d(x, y)

and hence F (x) ≤ dist(x,D).
On the other hand, we have α (P (y)) ≥ dist(y,D) for all y, and hence

F (x) ≥ inf
y

min (dist(y,D) + d(x, y), 1)

≥ min (dist(x,D), 1) .

Since the metric d is bounded by 1, this shows F (x) ≥ dist(x,D), as
desired.

9.20 Remark. Suppose M is an ω1-saturated L-structure and A is a
countable subset of M .

If P,Q : Mn → [0, 1] are definable in M over A and P,Q have the
same zeroset, then an easy saturation argument shows that

∀ε > 0 ∃δ > 0 ∀x ∈Mn (P (x) ≤ δ ⇒ Q(x) ≤ ε)

and

∀ε > 0 ∃δ > 0 ∀x ∈Mn (Q(x) ≤ δ ⇒ P (x) ≤ ε) .

Now suppose P : Mn → [0, 1] is definable in M over A. The proof of
(2 ⇒ 1) in Proposition 9.19 together with the observation in the previous
paragraph yields the following:

The zeroset D of P is definable in M over A if and only if P satisfies
the statement in Proposition 9.19(2):

∀ε > 0 ∃δ > 0 ∀x ∈Mn (P (x) ≤ δ ⇒ dist(x,D) ≤ ε) .

As an example, we use this to give a geometric criterion for definability
of closed balls B(a, r) = {x ∈ Mn | d(a, x) ≤ r}; namely, B(a, r) is
definable in M over {a} if and only if the family (B(a, r+ δ) | δ > 0) of
closed balls converges to B(a, r), in the sense of the Hausdorff metric, as
δ → 0. (To prove this, apply the preceding statement to the predicate
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P (x) = (d(a, x)−· r), which is definable in M over {a} and has B(a, r)
as its zeroset. Note that P (x) ≤ δ iff d(a, x) ≤ r + δ.)

9.21 Remark. Let M be a discrete structure from ordinary first-order
logic. We explore the meaning of these notions of definability for sets
in M, regarding it as a metric structure in which we take the distance
between distinct elements always to be 1.

Note that in the metric setting there are more formulas than the usual
first-order ones. For example, ψ =

∑N
k=1 2−kϕk is a formula whenever

(ϕk | 1 ≤ k ≤ N) are first-order formulas; for x ∈ Mn, the possible
values of ψM are k

2N , where k = 0, . . . , 2N − 1.
What one can easily prove here, by induction on formulas, is the

following: for any L-formula ϕ, {ϕM(x) | x ∈ Mn} is a finite set.
Moreover, for any r ∈ [0, 1], {x ∈ Mn | ϕM(x) = r} is definable in M
by an ordinary first-order formula.

For any D ⊆Mn one has the following characterizations:

(1) D is definable in M over A if and only if D is definable in M over
A by a first-order formula, in the usual sense of model theory.

(2) D is a zeroset in M over A if and only if D is the intersection of
countably many sets definable in M over A by first-order formu-
las.

To prove (1) above, suppose dist(x,D) is definable in M over A. In
this setting, dist(x,D) is simply 1 − χD, where χD denotes the char-
acteristic function of D. Let ϕ be an L(A)-formula such that for all
x ∈Mn

|dist(x,D)− ϕM(x)| ≤ 1
3

.

Then D =
{
x ∈Mn | ϕM(x) ≤ 1

2

}
and this is first-order definable in M

over A.

Definability of functions

We give a brief introduction to definability of functions (from Mn into
M) in a metric structure M.

9.22 Definition. Let M be an L-structure and A ⊆M and consider a
function f : Mn →M . We say f is definable in M over A if and only if
the function d(f(x), y) on Mn+1 is a predicate definable in M over A.



Model theory for metric structures 61

9.23 Proposition. If the function f : Mn →M is definable in M over
A, then f is uniformly continuous; indeed, any modulus of uniform con-
tinuity for the predicate d(f(x), y) is a modulus of uniform continuity
for f .

Proof Suppose ∆: (0, 1] → (0, 1] is a modulus of uniform continuity
for d(f(x), y). That is, for any x, x′ ∈ Mn and y, y′ ∈ M and for
any ε ∈ (0, 1] we know that if d(x, x′) < ∆(ε) and d(y, y′) < ∆(ε),
then |d(f(x), y) − d(f(x′), y′)| ≤ ε. Taking y′ = y = f(x′) we get that
d(x, x′) < ∆(ε) implies d(f(x), f(x′)) ≤ ε.

For any function f : Mn → M we denote the graph of f by Gf . We
regard Gf as a subset of Mn+1.

Note that if f is definable in M over A then its graph Gf is definable
in M over A as a subset of Mn+1. This follows from the identity

dist
(
(x, y),Gf

)
= inf

z
max

(
d(x, z), d(f(z), y)

)
(in which x, z range over Mn and y ranges over M).

The converse of this observation is true in a strong form, if we work
in a sufficiently saturated model.

9.24 Proposition. Let M be κ-saturated, where κ is uncountable, and
let A ⊆M have cardinality < κ. Let f : Mn →M be any function. The
following are equivalent:
(1) f is definable in M over A.
(2) Gf is type-definable in M over A.

Proof It remains to prove (2) ⇒ (1). Write P (x, y) = d(f(x), y) for
x ∈ Mn and y ∈ M . Let Γ(x, y) be a set of L(A)-conditions that
type-defines Gf in M. Fix r ∈ [0, 1] and note that

P (x, y) ≤ r ⇔ ∃z
(
(x, z) ∈ Gf ∧ d(z, y) ≤ r

)
.

This shows that the set {(x, y) ∈Mn+1 | P (x, y) ≤ r} is type-defined in
M by the set of L(A)-conditions of the form

inf
z

max
(
ϕ(x, z), d(z, y)−· r

)
= 0

where ϕ = 0 is any condition in Γ. A similar argument shows that the
set {(x, y) ∈Mn+1 | P (x, y) ≥ r} is type-definable in M over A for each
r ∈ [0, 1]. By Corollary 9.10 this shows that P is definable and hence
that f is definable in M over A.
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9.25 Proposition. Let M be an L-structure and A ⊆M . Suppose the
function f : Mn →M is definable in M over A. Then:
(1) If N �M and A ⊆ N , then f maps Nn into N and the restriction
of f to Nn is definable in N over A.
(2) If N �M then there is a function g : Nn → N such that g extends
f and g is definable in N over A.

Proof (1) Fix any (a1, . . . , an) ∈ Nn and let b = f(a1, . . . , an) ∈ M .
Let P : M → [0, 1] be the predicate defined by P (y) = d(b, y) for all
y ∈ M ; note that P is definable in M over A ∪ {a1, . . . , an} ⊆ N . Let
Q : N → [0, 1] be the restriction of P to N ; evidently Q is definable in N
over A ∪ {a1, . . . , an} and, by Proposition 9.7, (N , Q) � (M, P ). Note
that P satisfies infy P (y) = 0 and d(x, y) ≤ P (x) + P (y), where x, y
range over M . Transferring these conditions from (M, P ) to (N , Q) we
may find a sequence (ck | k ≥ 1) in N satisfying Q(ck) ≤ 1/k for all
k ≥ 1 and hence also d(ck, cl) ≤ 1/k + 1/l for all k, l ≥ 1. It follows
that (ck | k ≥ 1) converges to an element of N which is a zero of Q and
hence a zero of P . This limit must be b, since b is the only zero of P .
(2) By making N larger we may assume that it is ω1-saturated. Us-
ing (1) it suffices to prove (2) for the larger elementary extension. Let
P : Mn+1 → [0, 1] be the predicate P (x, y) = d(f(x), y). Using Propo-
sition 9.8 let Q : Nn+1 → [0, 1] be the predicate that extends P and
is definable in N over A, so we have (N , Q) � (M, P ). Note that P
satisfies supx infy P (x, y) = 0. Hence the same is true of Q. Using this
and the fact that N is ω1-saturated it follows that for all x ∈ Nn there
exists at least one y ∈ N such that Q(x, y) = 0. Note also that from the
definition of P and the triangle inequality for d it follows that P satisfies

sup
x

sup
y

sup
y′

(
|d(y′, y)− P (x, y′)| −· P (x, y)

)
= 0.

Hence the same is true of Q. From this it follows that for each x ∈ Nn

there is at most one y ∈ N such that Q(x, y) = 0. Therefore the zero
set of Q is the graph of some function g : Nn → N . Moreover, it also
follows that if Q(x, y) = 0 then Q(x, y′) = d(y, y′) for all y′ ∈ N . That
is, for all x ∈ Nn and y′ ∈ N we have Q(x, y′) = d(g(x), y′). This shows
that the function g is definable in N over A as desired.

The preceding results permit one to show easily that the collection
of functions definable in a given structure is closed under composition
and that the result of substituting definable functions into a definable
predicate is a definable predicate.
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Extension by definition

Here we broaden our perspective to consider our definability concepts in
a uniform way, relative to the class of all models of a satisfiable L-theory
T . The earlier parts of this section can be interpreted as dealing with
the case where T is complete; now we consider more general theories.

Let L be any signature for metric structures and let T be any satisfi-
able L-theory; let L0 be a signature contained in L.

If T0 is an L0-theory, we say that T0 is the restriction of T to L0 (or,
equivalently, that T is a conservative extension of T0) if for every closed
L0-condition E we have

T |= E iff T0 |= E.

Note that for T to be a conservative extension of T0 it suffices (but need
not be necessary) to require that T is an extension of T0 and that every
model of T0 has an expansion that is a model of T .

9.26 Definition. An L-formula ϕ(x1, . . . , xn) is defined in T over L0

if for each ε > 0 there exists an L0-formula ψ(x1, . . . , xn) such that

T |=
(

sup
x1

. . . sup
xn

|ϕ− ψ|
)
≤ ε.

If P is an n-ary predicate symbol in L, we say P is defined in T over
L0 if the formula P (x1, . . . , xn) is defined in T over L0. If f is an n-ary
function symbol in L, we say f is defined in T over L0 if the formula
d(f(x1, . . . , xn), y) is defined in T over L0. In particular, if c is a constant
symbol in L, we say c is defined in T over L0 if the formula d(c, y) is
defined in T over L0.

9.27 Definition. Let T,L, L0 be as above and let T0 be an L0-theory.
We say T is an extension by definitions of T0 if T is a conservative
extension of T0 and every nonlogical symbol in L is defined in T over
L0.

Let T,L, L0 be as above and let T0 be the restriction of T to L0. For
each n ≥ 0 define πn : Sn(T ) → Sn(T0) to be the restriction map: πn(p)
is the set of all L0-conditions in p, for any p ∈ Sn(T ). Evidently each
πn is continuous with respect to the logic topologies. Using Theorem
8.12(1,2) we see that πn is surjective for each n. (Since πn(Sn(T )) is
a closed subset of Sn(T0), there is a set Γ(x1, . . . , xn) of L0-conditions
such that πn(Sn(T )) is the set of all q ∈ Sn(T0) such that Γ ⊆ q. If
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ϕ(x1, . . . , xn) = 0 is any condition in Γ we have

T |= (sup
x1

. . . sup
xn

ϕ(x1, . . . , xn)) = 0

and therefore

T0 |= (sup
x1

. . . sup
xn

ϕ(x1, . . . , xn)) = 0.

It follows that every q ∈ Sn(T0) contains Γ.)

9.28 Proposition. Let T,L, L0 be as above and suppose T is an exten-
sion by definitions of the L0-theory T0. Then every L-formula is defined
in T over L0.

Proof Note that every model M of T is completely determined by its
reduct M|L0 to L0. We will use this to show that the restriction map πn

is injective for each n. Therefore π−1
n is a homeomorphism from Sn(T0)

onto Sn(T ) for each n. Using Theorem 8.12(3) we conclude that every
L-formula is defined in T over L0.

To complete the proof, suppose p1, p2 ∈ Sn(T ) have πn(p1) = πn(p2).
For each j = 1, 2 let Mj be a model of T and aj an n-tuple in Mj

that realizes pj in Mj . It follows that (M1|L0, a1) and (M2|L0, a2) are
elementarily equivalent. By Theorem 5.7 there is an ultrafilter D such
that the ultrapowers (M1|L0, a1)D and (M2|L0, a2)D are isomorphic,
say by the function f from (M1|L0)D onto (M2|L0)D. Let N be the
unique L-structure for which f is an isomorphism from (M1)D onto
N . This ensures that N is a model of T and N|L0 = (M2|L0)D =
(M2)D|L0. Therefore N and (M2)D are identical, and hence f is an
isomorphism from (M1)D onto (M2)D. Since f maps a1 onto a2, this
shows p1 = p2, as desired.

9.29 Corollary. The property of being an extension by definitions is
transitive. That is, if T1 is an extension by definitions of T0 and T2 is
an extension by definitions of T1, then T2 is an extension by definitions
of T0.

Proof Immediate from the previous result.

9.30 Remark. The following observation is useful when constructing
extensions by definition in the metric setting. Suppose γ is an ordinal
and (Tα | α < γ) are theories in continuous logic such that (a) Tα+1
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is an extension by definitions of Tα whenever α + 1 < γ and (b) Tλ =
∪(Tα | α < λ) whenever λ is a limit ordinal < γ. Let T = ∪(Tα | α < γ).
Then T is an extension by definitions of T0. (The proof is by induction
on γ; Corollary 9.29 takes care of the case when γ is a successor ordinal
and the limit ordinal case is trivial.)

9.31 Corollary. Let T,L, L0 be as above and let T0 be an L0-theory.
If T is an extension by definitions of T0, then every model of T0 has a
(unique) expansion to a model of T .

Proof We have already noted the uniqueness of the expansion, so only
its existence needs to be proved. Let M0 be any model of T0. As shown
in the proof of Proposition 9.28, there is a unique complete L-theory T1

that contains T and Th(M0). (T1 is the unique element of S0(T ) that
satisfies π0(T1) = Th(M0).) Let M be a card(M0)+-saturated model of
T1. Since M|L0 ≡ M0, we may assume without loss of generality that
M0 �M|L0. A simple modification of the proof of Proposition 9.25(1)
shows that the universe of M0 is closed under fM for every function
symbol f of L and contains cM for every constant symbol c of L. Hence
there exists a substructure M∗

0 of M whose reduct to L0 equals M0. It
follows from Proposition 9.28 and the fact that M0 � M|L0 that M∗

0

is an elementary substructure of M. In particular, M∗
0 is a model of T

and an expansion of M0, as desired.

Now we describe certain standard ways of obtaining extensions by de-
finition of a given L0-theory T0. Typically this is done via a sequence of
steps, in each of which we add a definable predicate, or a definable con-
stant, or a definable function. As the basis of each step we have in hand
a previously constructed theory T that is an extension by definitions of
T0, with L being the signature of T .

First, consider the case where we want to add a definable n-ary pred-
icate. Here we have a sequence (ϕk(x1, . . . , xn) | k ≥ 1) of L-formulas
that is uniformly Cauchy in all models of T , in the sense that the fol-
lowing statement holds:

∀ε > 0 ∃N ∀k, l > N T |=
(

sup
x1

. . . sup
xn

|ϕk − ϕl|
)
≤ ε.

Choose an increasing sequence of positive integers (Nm | m ≥ 1) such
that

∀m ≥ 1 ∀k, l > Nm T |=
(

sup
x1

. . . sup
xn

|ϕk − ϕl|
)
≤ 2−m.
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We then let P be a new n-ary predicate symbol and take T ′ to be the
L(P )-theory obtained by adding to T the conditions(

sup
x1

. . . sup
xn

|ϕk(m)(x1, . . . , xn)− P (x1, . . . , xn)|
)
≤ 2−m

for every m ≥ 1 and k(m) = Nm + 1. Then every model of T has
an expansion that is a model of T ′, and P is defined in T ′ over L, by
construction. Therefore T ′ is an extension by definitions of T . Hence T ′

is an extension by definitions of T0 by Corollary 9.29. Given any model
M of T ′, this implies that the predicate PM is definable (over ∅) in the
reduct M|L0. More precisely, PM is the uniform limit of the predicates
ϕ
M|L
m as m→∞, and each of these predicates is definable in M|L0.
Note that in defining the signature L(P ) we need to specify a modulus

of uniform continuity for the predicate symbol P . Such a modulus can
be defined from the sequence (Nm | m ≥ 1) together with moduli for
the formulas (ϕk | k ≥ 1) as indicated in the proof of Proposition 2.5.

Next consider the case where we want to add a definable constant.
Without loss of generality we may assume that we have an L-formula
ϕ(y) such that

T |=
(

inf
z

sup
y
|d(z, y)− ϕ(y)|

)
= 0.

This implies that in every model M of T the zeroset of ϕM has a single
element, by Proposition 9.25(1).

We then let c be a new constant symbol and take T ′ to be the L(c)-
theory obtained by adding to T the condition (supy |d(c, y)−ϕ(y)|) = 0.
Again we have that every model of T has an expansion that is a model of
T ′ and c is definable in T ′ over L. Hence T ′ is an extension by definitions
of T0.

Finally, generalizing the case of adding a definable constant, consider
the case where we want to add a definable function. Without loss of
generality we may assume that we have an L-formula ϕ(x1, . . . , xn, y)
such that

T |=
(

sup
x1

. . . sup
xn

inf
z

sup
y
|d(z, y)− ϕ(x1, . . . , xn, y)|

)
= 0.

This implies that in every model M of T the zeroset of ϕM is the graph
of a total function from Mn to M , by Proposition 9.25(1).

We then let f be a new n-ary function symbol and take T ′ to be the
L(f)-theory obtained by adding to T the condition(

sup
x1

. . . sup
xn

sup
y
|d(f(x1, . . . , xn), y)− ϕ(x1, . . . , xn, y)|

)
= 0.
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Again we have that every model of T has an expansion that is a model
of T ′ and f is definable in T ′ over L. Hence T ′ is an extension by
definitions of T0. Note that when introducing the signature L(f) we
must specify a modulus of uniform continuity for f . This can be taken
to be the modulus of uniform continuity of the L-formula ϕ. (See the
proof of Proposition 9.23.)

In order to simplify matters, we have described the addition of a
constant c or function f only in the apparently restricted situation where
the definitions of d(c, y) or d(f(x1, . . . , xn), y) are given by formulas of
L rather than by definable predicates. We want to emphasize that this
is not a real limitation; it would be overcome by first adding the needed
definable predicate and then using it to add the desired constant or
function.

We conclude this section with a result that generalizes Beth’s Defin-
ability Theorem to continuous logic.

9.32 Theorem. Let T be an L-theory and let L0 be a signature con-
tained in L. Let S be any nonlogical symbol in L. Assume that S is
implicitly defined in T over L0; that is, assume that if M,N are models
of T for which M|L0 = N|L0, then one always has SM = SN . Then S

is defined in T over L0.

Proof Let ϕ be the L0(S)-formula S(x1, . . . , xn) if S is an n-ary predicate
symbol, d(S(x1, . . . , xn), xn+1) if S is an n-ary function symbol, and
d(S, x1) if S is a constant symbol. Denote the list of variables in ϕ

simply as x. To show that S is defined in T over L0 we need to show
that the formula ϕ(x) is defined in T over L0.

Let T1 be the restriction of T to the signature L0(S). Our first step
is to prove that T1 implicitly defines S over L0. To prove this we
will show that for each ε > 0 there exist finitely many L0-formulas,
ψ1(x), . . . , ψk(x) such that

T |=
(

min
1≤j≤k

(sup
x
|ϕ(x)− ψj(x)|)

)
≤ ε.

Suppose this fails for some specific ε > 0. Then there exists a model M
of T such that for every L0-formula ψ(x) we have

M |= (sup
x
|ϕ(x)− ψj(x)|) ≥ ε.

This implies that the predicate Q = ϕM is not definable (over ∅) in
M|L0. By Proposition 7.12 we may assume that M is ω-saturated
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and that M|L0 is strongly ω-homogeneous. As shown in the proof of
Corollary 9.11, there is an automorphism τ of M|L0 such that Q 6= Q◦τ .
Let N be the unique L-structure for which τ is an isomorphism from M
onto N . Evidently N |= T . Since τ is an automorphism of M|L0, we
have N|L0 = M|L0. However, ϕN = Q◦τ 6= Q = ϕM. This contradicts
the assumption that S is implicitly defined in T over L0.

So, we now have that S is implicitly defined in T1 over L0. Let T0 be
the restriction of T1 to L0 (which is the same as the restriction of T to
L0). For each n ≥ 0, let πn : Sn(T1) → Sn(T0) be the restriction map:
πn(p) is equal to the set of all L0-conditions in p. Arguing as in the proof
of Proposition 9.28 we see that each πn is a surjective homeomorphism
and we conclude that the formula ϕ(x) is defined in T1 over L0. Hence
ϕ(x) is defined in T over L0, as desired.

9.33 Corollary. Let T be an L-theory and T0 an L0-theory, both satis-
fiable, where L0 is contained in L. Then T is an extension by definitions
of T0 if and only if every model of T0 has a unique expansion that is a
model of T .

Proof This is immediate from Corollary 9.31 (for the left to right direc-
tion) and Theorem 9.32 (for the other direction).

10 Algebraic and definable closures

In this section we introduce the concepts of definable and algebraic clo-
sure of a set in a metric structure. There are several reasonable choices
for the definitions, but they turn out to be equivalent.

10.1 Definition. Let M be an L-structure and A a subset of M , and
let a ∈ Mn. We say that a is definable in M over A if the set {a} is
definable in M over A (that is, if the predicate d(·, a) is definable in
M over A). We say that a is algebraic in M over A if there exists a
compact set C ⊆Mn such that a ∈ C and C is definable in M over A.

As in the usual first-order setting, these properties of tuples reduce to
the corresponding properties of their coordinates:

10.2 Proposition. Let M be an L-structure and A a subset of M . Let
a = (a1, . . . , an) ∈Mn. Then a is definable (resp., algebraic) in M over
A if and only if aj is definable (resp., algebraic) in M over A for each
j = 1, . . . , n.
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Proof We treat the algebraic case. To prove the left to right direction
it suffices to prove that if C ⊆Mn is compact and definable in M over
A, then its projection Ci onto the ith coordinates is definable for each
i = 1, . . . , n. (It is obviously compact.) For this we first note that for
each i the predicate Pi on Mn defined by

Pi(x1, . . . , xn) = inf{d(xi, yi) | (y1, . . . , yn) ∈ C}

is definable in M over A, by Theorem 9.17. Then we have dist(xi, Ci) =
Pi(xi, . . . , xi), showing that Ci is definable in M over A for each i.

For the right to left direction, suppose Ci ⊆ M is a compact set
witnessing that ai is algebraic in M over A. Then the product C =
C1× · · ·×Cn witnesses the same property for a. Note that the distance
function for such a product is given by

dist
(
(x1, . . . , xn), C

)
= inf

y1∈C1
. . . inf

yn∈Cn

max
(
d(x1, y1), . . . , d(yn, xn)

)
and the right side is definable by n uses of Theorem 9.17.

Notation 10.3 We let dclM(A) denote the set of all elements of M
that are definable in M over A and we call it the definable closure of
A in M. Similarly, we let aclM(A) denote the set of all elements of M
that are algebraic in M over A and call it the algebraic closure of A in
M.

We first want to show that the definable and algebraic closures depend
only on A and not on the structure in which they are defined. For that
we apply some definability results from the previous section.

10.4 Proposition. Let M � N and A ⊆ M . Suppose C ⊆ Nn is
definable in N over A and that C∩Mn is compact. Then C is contained
in Mn.

Proof Let Q : Nn → [0, 1] be the predicate given by Q(x) = dist(x,C),
and assume that Q is definable in N over A. Let P be the restriction
of Q to Mn. By Proposition 9.18 we have that (M, P ) � (N , Q) and
that P (x) = dist(x,C ∩Mn) for all x ∈ Mn. Fix ε > 0 and suppose
c1, . . . , cm is an ε-net in C ∩Mn. It follows that whenever P (x) < ε we
have d(x, cj) ≤ 2ε for some j = 1, . . . ,m. In other words, the condition

sup
x

min
(
ε−· P (x),min(d(x, c1), . . . , d(x, cm))−· 2ε

)
= 0
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holds in (M, P ). Hence the condition

sup
x

min
(
ε−· Q(x),min(d(x, c1), . . . , d(x, cm))−· 2ε

)
= 0

holds in (N , Q). It follows that c1, . . . , cm is a 2ε-net in C. Therefore
every element of C is the limit of a sequence from Mn and hence C is
contained in Mn.

10.5 Corollary. Let M � N be L-structures and let A be a subset of
M . Then

dclM(A) = dclN (A) ⊆ aclN (A) = aclM(A).

Proof Proposition 10.4 shows that if C ⊆ Nn is compact and is definable
in N over A, then C ⊆ Mn. Obviously C is then definable in M over
A. It follows that dclN (A) ⊆ dclM(A) and aclN (A) ⊆ aclM(A).

For the opposite containment, suppose C ⊆ Mn is compact and de-
finable in M over A. We want to show that C is definable in N over A.
Let P (x) = dist(x,C) for all x ∈Mn. Since P is definable in M over A,
by Proposition 9.8 there is a predicate Q : Nn → [0, 1] that is definable
in N over A and that extends P . Moreover we have (M, P ) � (N , Q).
Let D ⊆ Nn be the zero set of Q. By Theorem 9.12 we have that
Q(x) = dist(x,D) for all x ∈ Nn. It follows from Proposition 10.4
that D = C. Therefore C is definable in N over A. It follows that
dclM(A) ⊆ dclN (A) and aclM(A) ⊆ aclN (A).

An alternative way to approach definable closure and algebraic closure
in metric structures would be to consider compact zerosets rather than
definable sets. The next result shows that the concepts would be the
same, as long as one takes care to work in saturated models.

10.6 Proposition. Let M be an ω1-saturated L-structure and A a sub-
set of M . For compact subsets C of Mn the following are equivalent:
(1) C is a zeroset in M over A.
(2) C is definable in M over A.

Proof Obviously (2) implies (1). For the converse, let P : Mn → [0, 1]
be a predicate definable in M over A whose zero set is C.

Given ε > 0, let F ⊆ C be a finite ε/2-net in C. We claim there
exists δ > 0 such that any a satisfying P (a) ≤ δ must lie within ε of
some element of F . Otherwise we may use the ω1-saturation of M to
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obtain an element a of Mn such that P (a) ≤ 1/k for every k ≥ 1 while
d(a, c) ≥ ε for all c ∈ F , which is impossible.

The existence of such a δ > 0 for each ε > 0 shows that P verifies (2)
in Proposition 9.19. Hence C is definable in M over A.

The following result gives alternative characterizations of definability.

10.7 Exercise. Let M be an L-structure, A ⊆M , and a ∈Mn. State-
ments (1),(2) and (3) are equivalent:
(1) a is definable in M over A.
(2) For any N �M the only realization of tpM(a/A) in N is a.
(3) For any ε > 0 there is an L(A)-formula ϕ(x) and δ > 0 such that
ϕM(a) = 0 and the diameter of {b ∈Mn | ϕM(b) < δ} is ≤ ε.
If N is any fixed ω1-saturated elementary extension of M, then (1) is
equivalent to:
(4) The only realization of tpM(a/A) in N is a.

The next result gives alternative characterizations of algebraicity:

10.8 Exercise. Let M be an L-structure, A ⊆M , and a ∈Mn. State-
ments (1),(2) and (3) are equivalent:
(1) a is algebraic in M over A.
(2) For any N �M, every realization of tpM(a/A) in N is in Mn.
(3) For any ε > 0 there is an L(A)-formula ϕ(x) and δ > 0 such that
ϕM(a) = 0 and the set {b ∈Mn | ϕM(b) < δ} has a finite ε-net.
(4) For any N � M, the set of realizations of tpM(a/A) in N is com-
pact.
If N is any fixed ω1-saturated elementary extension of M, then (1) is
equivalent to:
(5) The set of realizations of tpM(a/A) in N is compact.
If N is any fixed κ-saturated elementary extension of M, with κ un-
countable, then (1) is equivalent to:
(6) The set of realizations of tpM(a/A) in N has density character < κ.

10.9 Remark. The previous result shows that aclM(A) is the same as
the bounded closure of A in M. (Equivalence of (1) and (6) in highly
saturated models.)

The usual basic properties of algebraic and definable closure in first-
order logic hold in this more general setting. There is one (unsurpris-
ing) modification needed: if a is algebraic (resp., definable) over A in
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M, there is a countable subset A0 of A such that a is algebraic (resp.,
definable) over A0 in M. However, it may be impossible to satisfy this
property with A0 finite. (For example, let A consist of the elements of
a Cauchy sequence whose limit is a. Then a is definable over A but it
is not necessarily even algebraic over a finite subset of A.) There is also
one new feature: the algebraic (resp., definable) closure of a set is the
same as the algebraic closure of any dense subset.

In what follows we fix an L-structure M and A,B are subsets of M .
We write acl instead of aclM.

10.10 Exercise. (Properties of dcl)
(1) A ⊆ dcl(A);
(2) if A ⊆ dcl(B) then dcl(A) ⊆ dcl(B);
(3) if a ∈ dcl(A) then there exists a countable set A0 ⊆ A such that
a ∈ dcl(A0);
(4) if A is a dense subset of B, then dcl(A) = dcl(B).

10.11 Proposition. (Properties of acl)
(1) A ⊆ acl(A);
(2) if A ⊆ acl(B) then acl(A) ⊆ acl(B);
(3) if a ∈ acl(A) then there exists a countable set A0 ⊆ A such that
a ∈ acl(A0);
(4) if A is a dense subset of B, then acl(A) = acl(B).

10.12 Proposition. If α : A → B is an elementary map, then it ex-
tends to an elementary map α′ : acl(A) → acl(B). Moreover, if α is
surjective, then so is α′.

Proofs of the last two results are given in [26].

11 Imaginaries

In this section we explain how to add finitary imaginaries to a metric
structure. This construction is the first stage of a natural generalization
of the Meq construction in ordinary first-order model theory.

There are several different ways to look at this construction. We
first take a “geometric” point of view, based on forming the quotient
of a pseudometric space. This is a generalization to the metric setting
of taking the quotient of a set X by an equivalence relation E and
connecting X to X/E by the quotient map πE which takes each element
of X to its E-class.
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Let L be any signature for metric structures and let ρ(x, y) be an
L-formula in which x and y are n-tuples of variables. If M is any L-
structure, we think of ρM as being a function of two variables on Mn,
and we are interested in the case where this function is a pseudometric
on Mn. (Note: to consider a pseudometric that is definable in M over ∅,
but is not itself the interpretation of a formula, one should first pass to an
extension by definitions in which it is the interpretation of a predicate.)

We define a signature Lρ that extends L by adding a new sort, which
we denote by M ′ with metric ρ′, and a new n-ary function symbol πρ,
which is to be interpreted by functions from Mn into M ′. The modulus
of uniform continuity specified by Lρ for πρ is ∆ρ. (Recall that ∆ρ is
a modulus of uniform continuity for ρM in every L-structure M. See
Theorem 3.5.)

Now suppose M is any L-structure in which ρM is a pseudometric
on Mn. We expand M to an Lρ-structure by interpreting (M ′, ρ′) to
be the completion of the quotient metric space of (Mn, ρM) and by
interpreting πρ to be the canonical quotient mapping from Mn into M ′.
This expansion of M will be denoted by Mρ. Saying that Mρ is an Lρ-
structure requires checking that ∆ρ is a modulus of uniform continuity
for the interpretation of πρ. We indicate why this is true: suppose ε > 0
and x, x′ ∈Mn satisfy d(x, x′) < ∆ρ(ε). Then

ρ′(πρ(x), πρ(x′)) = ρ(x, x′) = |ρ(x, x′)− ρ(x′, x′)| ≤ ε

as desired.
Let Tρ be the Lρ-theory consisting of the following conditions:

(1) supx ρ(x, x) = 0;
(2) supx supy |ρ(x, y)− ρ(y, x)| = 0;
(3) supx supy supy′

(
ρ(x, y)−· min(ρ(x, y′) + ρ(y′, y), 1)

)
= 0;

(4) supx supy |ρ′(πρ(x), πρ(y))− ρ(x, y)| = 0;
(5) supz infx ρ

′(z, πρ(x)) = 0.

11.1 Theorem. (1) For every L-structure M in which ρM is a pseudo-
metric, the expansion Mρ is a model of Tρ.
(2) If N is any model of Tρ, with M its reduct to L, then ρM is a
pseudometric and N is isomorphic to Mρ by an isomorphism that is
the identity on M.

Proof (1) is obvious. If N is any model of Tρ, with M its reduct to
L, the first three conditions in Tρ ensure that ρM is a pseudometric.
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Statement (4) ensures that the interpretation of πρ together with the
metric ρ′ on its range is isomorphic to the canonical quotient of the
pseudometric space (Mn, ρM) by an isomorphism that is the identity on
Mn. Statement (5) ensures that the range of the interpretation of πρ is
dense in (M ′, ρ′).

To keep notation simple we have limited our discussion to the situation
where L is a 1-sorted signature. If it is many-sorted, we may replace
Mn by any finite cartesian product of sorts and carry out exactly the
same construction. In particular, the process of adding imaginary sorts
can be iterated.

Canonical parameters for formulas

Now we use the quotient construction above to add canonical parameters
for any L-formula ϕ(u, x), where u is an m-tuple of variables and x is an
n-tuple of variables (thought of as the parameters). We take ρ(x, y) to
be the L-formula supu |ϕ(u, x)−ϕ(u, y)|. Note that for any L-structure
M we have that ρM is a pseudometric on Mn. Thus we may carry out
the construction above, obtaining the signature Lρ and the expansion
Mρ of any L-structure M to a uniquely determined model of Tρ. Let
ϕ̂(u, z) be the Lρ-formula

inf
y

(
ϕ(u, y) + ρ′(z, πρ(y)

)
.

11.2 Proposition. If N is any model of Tρ, then

N |= sup
u

sup
x
|ϕ̂(u, πρ(x))− ϕ(u, x)| = 0 and

N |= sup
w

sup
z

∣∣ρ′(w, z)− sup
u
|ϕ̂(u,w)− ϕ̂(u, z)|

∣∣ = 0.

Proof Let N be any model of Tρ and let M be its reduct to L. Let
(M ′, ρ′) be the sort of N that is added when expanding M to an Lρ-
structure.

To prove the first statement, take any x, y ∈ Mn. Then for any
u ∈Mm we have

ϕM(u, y) + ρ′(πNρ (x), πNρ (y)) = ϕM(u, y) + ρM(x, y)

≥ ϕM(u, y) + |ϕM(u, x)− ϕM(u, y)|
≥ ϕM(u, x).
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Taking the inf over y ∈ Mn shows that ϕ̂N (u, πNρ (x)) ≥ ϕM(u, x).
On the other hand, taking y = x in the definition of ϕ̂N shows that
ϕ̂N (u, πNρ (x)) ≤ ϕM(u, x).

For the second statement, note that it suffices to consider w, z in the
range of πNρ , since it is dense in M ′. When w = πNρ (x) and z = πNρ (y),
the equality to be proved follows easily from the first statement in the
Proposition and the definition of ρ(x, y).

11.3 Remark. Let M be any L-structure and N = Mρ its canonical
expansion to a model of Tρ. As before, denote the extra sort of this
expansion by (M ′, ρ′). The results above show that M ′ is a space of
canonical parameters for the predicate ϕM(u, x) and that ϕ̂N is the
predicate resulting from ϕM by the identification of each x ∈ Mn with
its associated canonical parameter z = πNρ (x).

11.4 Remark. Note that in any model N of Tρ the function πNρ is
definable from ϕ̂N and ϕN in the sense of Definition 9.22. Indeed, when
N |= Tρ we have

N |= sup
x

sup
z

∣∣ρ′(πρ(x), z)− sup
u
|ϕ(u, x)− ϕ̂(u, z)|

∣∣ = 0.

(Proof: Specialize w to πρ(x) in the second statement in Proposition
11.2 and then use the first statement to replace ϕ̂(u, πρ(x)) by ϕ(u, x).)

In the metric setting, the construction of Meq should allow expansions
corresponding to extensions by definitions as well as those corresponding
to quotients by definable (over ∅) pseudometrics.

In fact, the full construction ofMeq requires the addition of more sorts
than are described here. In particular, for some uses in stability theory
one needs to add imaginaries that provide canonical parameters for de-
finable predicates that depend on countably many parameters. (What
we describe here only covers the case where the predicate depends on
finitely many parameters.) See [6, end of Section 5] for a sketch of how
this is done.

12 Omitting types and ω-categoricity

In this section we assume that the signature L has only a countable
number of nonlogical symbols.

Let T be a complete L-theory. We emphasize here our point of view
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that models of T are always complete for their underlying metric(s).
That is especially significant for the meaning of properties such as cat-
egoricity and omitting types.

12.1 Definition. Let κ be a cardinal ≥ ω. We say T is κ-categorical if
whenever M and N are models of T having density character equal to
κ, one has that M is isomorphic to N .

One of the main goals of this section is to state a characterization of
ω-categoricity for complete theories in continuous logic, extending the
Ryll-Nardzewski Theorem from first-order model theory. We note that
Ben Yaacov has proved the analogue for this setting of Morley’s Theorem
concerning uncountable categoricity. (See [4].)

Let p be an n-type over ∅ for T ; that is, p ∈ Sn(T ). If M is a model
of T , we let p(M) denote the set of realizations of p in M.

12.2 Definition. Let p ∈ Sn(T ). We say that p is principal if for every
model M of T , the set p(M) is definable in M over ∅.

The following Lemma shows that for p ∈ Sn(T ) to be principal, it
suffices for there to exist some model of T in which the set of realizations
of p is a nonempty definable set. It also shows that a principal type is
realized in every model of T .

12.3 Lemma. Let p ∈ Sn(T ). Suppose there exists a model M of T
such that p(M) is nonempty and definable in M over ∅. Then for any
model N of T , the set p(N ) is nonempty and definable in N over ∅.

Proof Since T is complete, any two models of T have isomorphic ele-
mentary extensions. Therefore it suffices to consider the case in which
one of the structures is an elementary extension of the other.

First suppose M� N and that p(N ) is nonempty and definable in N
over ∅. Since p(M) = p(N ) ∩Mn, Theorem 9.12 and Proposition 9.18
yield that p(M) is nonempty and definable in M over ∅.

Now suppose M � N and that p(M) is nonempty and definable in
M over ∅. Let P (x) = dist(x, p(M)), so P is a definable predicate
in M (over ∅). Use Proposition 9.8 to obtain a predicate Q on Nn

so that (M, P ) � (N , Q). By Theorem 9.12 the predicate Q satisfies
Q(x) = dist(x,D) for all x ∈ Nn, where D is the zeroset of Q. Therefore,
it suffices to show that p(N ) is the zeroset of Q.

First we prove that the zeroset of Q is contained in p(N ). Suppose
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ϕ(x) is any L-formula for which the condition ϕ = 0 is in p. Fix ε > 0;
by Theorem 3.5 there exists δ > 0 such that whenever x, y ∈Mn satisfy
d(x, y) < δ, then |ϕM(x) − ϕM(y)| ≤ ε. We may assume δ < 1. If
x ∈Mn satisfies dist(x, p(M)) < δ, there must exist y ∈Mn realizing p
with d(x, y) < δ and hence

ϕM(x) = |ϕM(x)− ϕM(y)| ≤ ε.

That is,

(M, P ) |= sup
x

(min(δ −· P (x), ϕ(x)−· ε)) = 0.

It follows that

(N , Q) |= sup
x

(min(δ −· Q(x), ϕ(x)−· ε)) = 0.

Since ε was arbitrary and ϕ = 0 was an arbitrary condition in p, this
shows that the zeroset of Q is contained in p(N ).

Finally, we need to show that Q is identically zero on p(N ). By
construction, there is a sequence (ϕn(x)) of L-formulas such that

|Q(x)− ϕNn (x)| ≤ 1/n

for all x ∈ Nn and all n ≥ 1. Since p(M) is nonempty, we may take
x ∈Mn realizing p; since Q(x) = P (x) = dist(x, p(M)) = 0, we see that
the condition ϕn(x) ≤ 1/n is in p(x) for all n ≥ 1. For any x ∈ p(N ) we
therefore have

Q(x) ≤ |Q(x)− ϕNn (x)|+ ϕNn (x) ≤ 2/n

for all n ≥ 1. Therefore Q(x) = 0 for any x in p(M).

12.4 Proposition. Let p ∈ Sn(T ). Then p is principal if and only if
the logic topology and the d-metric topology agree at p.

Proof Let M be an ω-saturated model of T . Since p is realized in M,
Lemma 12.3 implies that p is principal if and only if p(M) is definable
in M over ∅. We apply Proposition 9.19, taking D = p(M) and A = ∅.
This yields that p is principal if and only if for each m ≥ 1 there is an L-
formula ϕm(x) and δm > 0 such that ϕm = 0 is in p and any q ∈ Sn(T )
that contains the condition ϕm ≤ δm must satisfy d(q, p) ≤ 1/m.

So, when p is principal and m ≥ 1, we have a logic open neighborhood
of p, namely [ϕm < δm], that is contained in the 1/m-ball around p.

On the other hand, suppose [ψ < δ] is a basic logic neighborhood of
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p that is contained in the 1/m-ball around p. There exists 0 < η < δ

such that the condition ψ ≤ η is in p. Taking ϕm to be the formula
ψ −· η and δm to satisfy 0 < δm < δ − η, we have that ϕm = 0 is in
p and that any q ∈ Sn(T ) that contains the condition ϕm ≤ δm must
satisfy d(q, p) ≤ 1/m. If this is possible for every m ≥ 1, then p must
be principal.

The fact that the metric is included as a predicate in L allows us to
characterize principal types by a formally weaker topological property
than the one in the previous Proposition:

12.5 Proposition. Let p ∈ Sn(T ). Then p is principal if and only if
the ball {q ∈ Sn(T ) | d(q, p) ≤ ε} has nonempty interior in the logic
topology, for each ε > 0.

Proof (⇒) This follows from Proposition 12.4.
(⇐) Suppose [ψ < δ] is a nonempty basic open set contained in the ε-

ball around p ∈ Sn(T ). We may assume δ ≤ ε, since [ 1
kψ <

1
k δ] = [ψ < δ]

for all k. Choose η such that 0 < η < δ and [ψ ≤ η] is nonempty.
Consider the formula

ϕ(x) = inf
y

max(ψ(y)−· η, d(x, y)−· ε).

The condition ϕ = 0 is in p. This is because [ψ ≤ η] is nonempty
and is contained in the ε-ball around p. Furthermore, the basic open set
[ϕ < δ−η] is contained in the (2ε+δ)-ball around p. Taking ε arbitrarily
small gives the desired result, by Proposition 12.4.

12.6 Theorem. (Omitting Types Theorem, local version) Let T be a
complete theory in a countable signature, and let p ∈ Sn(T ). The fol-
lowing statements are equivalent:

(1) p is principal.
(2) p is realized in every model of T .

Proof (1) ⇒ (2). Since p must be realized in some model of T , Lemma
12.3 shows that a principal type is realized in all models of T .

(2) ⇒ (1). We sketch a proof of the contrapositive. Suppose p is not
principal. By Proposition 12.5, there exists ε > 0 such that the ε-ball
{q ∈ Sn(T ) | d(q, p) ≤ ε} has empty interior in the logic topology. That
is, for any L-formula ϕ(x) and any δ > 0, the logic neighborhood [ϕ < δ]
is either empty or contains a type q such that d(q, p) > ε. An argument
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as in the usual proof of the omitting types theorem in classical first-
order model theory yields a countable L-prestructure M0 satisfying the
theory T+, such that any n-type q realized in M0 satisfies d(q, p) > ε.
Let M be the completion of M0. It follows that any type q realized in
M satisfies d(q, p) ≥ ε, and hence M is a model of T in which p is not
realized.

12.7 Definition. A model M of T is atomic if every n-type realized in
M is principal.

12.8 Proposition. Let M be a model of T and let p(x1, . . . , xm) =
tpM(a1, . . . , am) for a sequence a1, . . . , am in M . Let n > m and suppose
q(x1, . . . , xn) ∈ Sn(T ) extends p. If q is principal, then for each ε > 0
there exist (b1, . . . , bn) realizing q in M and satisfying d(aj , bj) ≤ ε for
all j = 1, . . . ,m.

Proof Let D ⊆Mm and E ⊆Mn be the sets of realizations of p and q

respectively in M. Because q is principal, both D and E are definable
in M over ∅. Hence the function F defined for x ∈Mm by

F (x) = inf
y
|dist(x,D)− dist((x, y), E)|

is a predicate definable in M over ∅. Here y ranges over Mn−m. If N is
an ω1-saturated elementary extension of M, the sequence (a1, . . . , am)
can be extended in N to a realization of q. If we extend F to Nm using
the same definition, this shows that F (a1, . . . , am) = 0 in N . By Lemma
9.6 we have that F (a1, . . . , am) = 0 in M. So there exist c ∈ Mn−m

such that the n-tuple (a1, . . . , am, c) has distance ≤ ε to E in Mn. This
completes the proof.

12.9 Corollary. Let M be a separable atomic model of T and let N
be any other model of T . Let (a1, . . . , am) realize the same type in M
that (b1, . . . , bm) realizes in N . Then, for each ε > 0 there exists an
elementary embedding F from M into N such that d(bj , F (aj)) ≤ ε for
all j = 1, . . . ,m. Furthermore, if N is also separable and atomic, then
F can be taken to be an isomorphism from M onto N .

Proof Extend a1, . . . , am to an infinite sequence (ak) that is dense in
M . Let (δk) be a sequence of positive real numbers whose sum is less
than ε. By induction on n ≥ 0 we use the previous Proposition to
generate sequences cn in Nm+n with the following properties: (1) c0 =



80 I. Ben Yaacov, A. Berenstein, C. W. Henson, and A. Usvyatsov

(b1, . . . , bm); (2) cn realizes the same type in N that (a1, . . . , am+n)
realizes in M; (3) the first m+ n coordinates of cn+1 are at a distance
less than δn away from the corresponding coordinates of cn.

It follows that for each j, the sequence of jth coordinates of cn is
a Cauchy sequence in N . Let its limit be dj . Continuity of formulas
ensures that the map taking aj to dj for each j is an elementary map.
Therefore it extends to the desired elementary embedding of M into N .

A “back-and-forth” version of the same argument proves the final
statement in the Corollary.

The following result is the analogue of the Ryll-Nardzewski Theorem
in this setting:

12.10 Theorem. Let T be a complete theory in a countable signature.
The following statements are equivalent:

(1) T is ω-categorical;
(2) For each n ≥ 1, every type in Sn(T ) is principal;
(3) For each n ≥ 1, the metric space (Sn(T ), d) is compact.

Proof (1) ⇒ (2) This is immediate from the Omitting Types Theorem.
(2) ⇒ (1) Condition (2) implies that every model of T is atomic.

Therefore, Corollary 12.9 (especially, the last sentence) yields that any
two separable models of T are isomorphic.

(2) ⇔ (3) By Proposition 12.4, statement (2) is equivalent to say-
ing that the logic topology and the d-metric topology are identical on
Sn(T ) for every n. Since the logic topology is compact, this shows that
(2) implies (3). On the other hand, if the metric space (Sn(T ), d) is
compact, then its topology must agree with the logic topology, since
both topologies are compact and Hausdorff, and one is coarser than the
other.

12.11 Corollary. Suppose T is ω-categorical and M is the separable
model of T . Then M is strongly ω-near-homogeneous in the following
sense: if a, b ∈Mn, then for every ε > 0 there is an automorphism F of
M such that

d(F (a), b) ≤ d(tp(a), tp(b)) + ε.

Proof By Theorem 12.10 we see that M is atomic. Let

r = d(tp(a), tp(b)).
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First consider the case where r = 0. Corollary 12.9 yields the existence
of an automorphism F of M with the desired properties. Now suppose
r > 0. Since M is the unique separable model of T , there exist a′, b′ ∈
Mn such that tp(a′) = tp(a), tp(b′) = tp(b), and d(a′, b′) = r. Applying
the r = 0 case to a, a′ and to b, b′, for each ε > 0 we get automorphisms
Fa, Fb of M such that d(Fa(a), a′) < ε/2 and d(Fb(b), b′) < ε/2. Taking
F = F−1

b ◦ Fa gives an automorphism with

d(F (a), b) = d(Fa(a), Fb(b))

≤ d(Fa(a), a′) + d(a′, b′) + d(Fb(b), b′)

< r + ε

as desired.

12.12 Remark. In the previous result, note that for any automorphism
F of M, d(F (a), b) ≥ d(tp(a), tp(b)) since F (a) and a realize the same
type. Moreover, Example 17.7 shows that in the setting of the previ-
ous result, we need not be able to find an automorphism F of M that
satisfies d(F (a), b) = d(tp(a), tp(b)); so this result gives the strongest
possible kind of homogeneity for ω-categorical metric structures, in gen-
eral. (Example 17.7 notes that the theory of the Banach lattice Lp is
ω-categorical, but that there exist elements f, g realizing the same type
but are such that there is no automorphism of Lp taking f to g.)

12.13 Corollary. Suppose L ⊆ L′ are countable signatures, T ′ is a
complete theory in L′ and T is its restriction to L. If T ′ is ω-categorical,
then so is T .

Proof The restriction map (discarding formulas not in L) defines a map
from Sn(T ′) onto Sn(T ) that is contractive with respect to the d-metrics.
Hence it preserves compactness.

12.14 Remark. Example 17.7 shows that ω-categoricity is not neces-
sarily preserved under the addition of designated elements to the lan-
guage, in contrast to what happens in classical first-order model theory.
There can exist pairs (a, b) realizing a principal type in some model, but
such that tp(b/a) is not principal. This indicates a complication in the
model theory of metric structures that is not completely understood,
and that affects a number of important aspects of the theory (including,
for example, superstability).
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13 Quantifier elimination

Fix a signature L and an L-theory T . We give basic definitions and
state (but do not prove) some results around quantifier elimination in
continuous logic. The proofs are similar to those in [24, pages 84–91].

13.1 Definition. An L-formula ϕ(x1, . . . , xn) is approximable in T by
quantifier-free formulas if for every ε > 0 there is a quantifier-free L-
formula ψ(x1, . . . , xn) such that for all M |= T and all a1, . . . , an ∈ M ,
one has

|ϕM(a1, . . . , an)− ψM(a1, . . . , an)| ≤ ε.

13.2 Proposition. Let ϕ(x1, . . . , xn) be an L-formula. The following
statements are equivalent.

(1) ϕ is approximable in T by quantifier-free formulas;
(2) Whenever we are given

• models M and N of T ;
• substructures M0 ⊆M and N0 ⊆ N ;
• an isomorphism Φ from M0 onto N0; and
• elements a1, . . . , an of M0;

we have

ϕM(a1, . . . , an) = ϕN (Φ(a1), . . . ,Φ(an)).

Moreover, for the implication (2)⇒(1) it suffices to assume (2) only
for the cases in which M0 and N0 are finitely generated.

13.3 Definition. An L-theory T admits quantifier elimination if every
L-formula is approximable in T by quantifier-free formulas.

13.4 Remark. (1) Let T be an L-theory, and let L(C) be an extension
of L by constants. If T admits quantifier elimination in L, then T admits
quantifier elimination in L(C).
(2) Let T ⊆ T ′ be theories in a signature L. If T admits quantifier
elimination in L, then T ′ admits quantifier elimination in L.

13.5 Lemma. Suppose that T is an L-theory and that every restricted
L-formula of the form infx ϕ, with ϕ quantifier-free, is approximable in
T by quantifier-free formulas. Then T admits quantifier elimination.
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13.6 Proposition. Let T be an L-theory. Then the following state-
ments are equivalent:

(1) T admits quantifier elimination;
(2) If M and N are models of T , then every embedding of a sub-

structure of M into N can be extended to an embedding of M
into an elementary extension of N .

Moreover, if card(L) ≤ κ, then in statement (2) it suffices to consider
models M of density character ≤ κ.

14 Stability and independence

In this section we sketch three general approaches to stability in metric
structures. The first one is based on measuring the size of the type
spaces S1(TA) in various ways. The second one comes from properties
of the notion of independence obtained from non-dividing. The third
one comes from definability of types. In all three cases we give clear
statements of the definitions and the basic results (which we need in
later sections), but we only give some of the proofs. In spite of having
these different approaches to stability, there is, in the end, only one
notion of stability, as we discuss.

Throughout this section T is a complete L-theory, κ is a cardinal
> card(L), and λ is an infinite cardinal. As is usual, we often denote
card(L) also by |T |; recall that this is the least infinite cardinal ≥ the
number of nonlogical symbols in L. When M is a model of T and
A ⊆ M , recall that TA is the theory of (M, a)a∈A. We take x and y to
be finite sequences of distinct variables; usually x = x1, . . . , xn.

We begin with an approach to stability based simply on the cardinality
of the type spaces S1(TA).

14.1 Definition. We say that T is λ-stable with respect to the discrete
metric if for any M |= T and any A ⊆ M of cardinality ≤ λ, the set
S1(TA) has cardinality ≤ λ. We say that T is stable with respect to the
discrete metric if T is λ-stable with respect to the discrete metric for
some λ.

14.2 Definition. Let U be a κ-universal domain for T . Let ϕ(x, y),
ψ(x, y) be formulas such that the conditions ϕ(x, y) = 0 and ψ(x, y) = 0
are contradictory in U . Since U is κ-saturated, there exists some ε > 0
such that {ϕ(x, y) = 0, ψ(x′, y) = 0, d(x, x′) ≤ ε} is not satisfiable in U .
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If p(x) is any satisfiable partial type over a small subset of U , we define
the rank R(p, ϕ, ψ, 2) inductively, in the usual manner. First we define
a relation R(p, ϕ, ψ, 2) ≥ α by induction on the ordinal α, as follows:

• R(p, ϕ, ψ, 2) ≥ 0 for any satisfiable p;
• for λ a limit ordinal, R(p, ϕ, ψ, 2) ≥ λ if R(p, ϕ, ψ, 2) ≥ α for all α < λ;
• R(p, ϕ, ψ, 2) ≥ α + 1 if there are satisfiable extensions p1, p2 of p

and b ∈ U such that ϕ(x, b) = 0 is in p1, ψ(x, b) = 0 is in p2,
R(p1, ϕ, ψ, 2) ≥ α, and R(p2, ϕ, ψ, 2) ≥ α.

We write R(p, ϕ, ψ, 2) = ∞ if R(p, ϕ, ψ, 2) ≥ α for all ordinals α. Other-
wise there is an ordinal γ such that R(p, ϕ, ψ, 2) ≥ α holds iff α ≤ γ; in
that case we set R(p, ϕ, ψ, 2) = γ. By compactness, if R(p, ϕ, ψ, 2) ≥ ω,
then R(p, ϕ, ψ, 2) = ∞, so the values of R lie in N ∪ {∞}.

14.3 Proposition. Let U be a κ-universal domain for T . Then T is
stable with respect to the discrete metric if and only if for all pairs of
conditions ϕ(x, y) = 0, ψ(x, y) = 0 that are contradictory in U , we have
R({d(x, x) = 0}, ϕ, ψ, 2) < ω.

Proof The argument is similar to the proof of the corresponding result
in classical first-order model theory. See Proposition 2.2 in [3] for this
proof in the cat framework.

Next we introduce a notion of stability based on measuring the size
of S1(TA) by its density character with respect to the d-metric.

14.4 Definition. We say that T is λ-stable if for any M |= T and
A ⊆M of cardinality ≤ λ, there is a subset of S1(TA) of cardinality ≤ λ

that is dense in S1(TA) with respect to the d-metric. We say that T is
stable if T is λ-stable for some infinite λ.

14.5 Remark. There are two reasons why we have chosen to asso-
ciate stability most closely with topological properties of the type spaces
S1(TA) expressed in terms of the d-metric. First, as will be seen in later
sections, many theories of interest turn out to be ω-stable in this sense
(but not necessarily ω-stable with respect to other natural topologies on
S1(TA) including the discrete topology). The second (and main) reason
for this choice is that theories in continuous first-order logic that are
λ-stable in this sense (i.e., with respect to the d-metric) have properties
analogous to those of λ-stable theories in classical first-order logic. (See
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[3], [6].) For example ω-stable theories have prime models and ω-stable
theories are λ-stable for all infinite λ. (See Remark 14.8 below.)

If we drop the quantitative aspect (i.e., we drop λ) then the distinction
between these two notions of stability disappears:

14.6 Theorem. A theory T is stable if and only if T is stable with
respect to the discrete metric.

Proof Clearly if T is λ-stable with respect to the discrete metric then
T is λ-stable.

Assume now that T is not stable with respect to the discrete metric.
Let U be a κ-universal domain for T . By Proposition 14.3 there are
formulas ϕ0(x, y), ϕ1(x, y) and ε > 0 such that

{ϕ0(x, y) = 0, ϕ1(x′, y) = 0, d(x, x′) ≤ ε}

is not satisfiable in U , and

R({d(x, x) = 0}, ϕ0(x, y), ϕ1(x, y), 2) = ∞.

Given an infinite cardinal λ, let µ be a cardinal such that 2<µ ≤ λ <

2µ. We may assume that κ > λ. By the definition of the rank and the
saturation of U we can find a sequence {bσ | σ ∈ 2<µ} of elements in
U such that {ϕσ(α)(x, bσ�α) = 0 | α < µ} is realized by some cσ in U ,
for every σ ∈ 2µ. Let B = {bσ | σ ∈ 2<µ}. Then card(B) is ≤ λ, yet
d(tp(cσ/B), tp(cτ/B)) ≥ ε for all distinct σ, τ ∈ 2µ. Therefore T is not
λ-stable.

For many theories there are several natural topologies on type spaces
that can be used as the basis of alternative notions of “λ-stability”. This
approach was considered by Iovino in [28, 29] for metric structures based
on Banach spaces; he proved a generalization of Theorem 14.6 for such
notions, in the setting of positive bounded formulas.

We continue the discussion of these type-counting notions of stability
by quoting the Stability Spectrum Theorem. The proof is very much
like the one in classical first-order logic. See Theorem 4.12 in [4] for this
proof in the cat framework.

14.7 Theorem. Let T be a stable theory and let µ(T ) be the first car-
dinal in which T is stable. Then there exists a cardinal κ = κ(T ) such
that T is λ-stable if and only if λ = µ(T ) + λ<κ(T ).
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14.8 Remark. The previous result yields that any ω-stable theory is
λ-stable for all infinite λ, because κ(T ) must be ℵ0 for such theories.
Most of the examples we treat in later sections are ω-stable.

14.9 Definition. A theory T is superstable if κ(T ) = ℵ0.

By the remark above, any ω-stable theory is superstable, but the
converse implication is not true. For example, the theory of infinite
dimensional Hilbert spaces with a generic automorphism is superstable
but not ω-stable. (See [7].) There is a characterization of superstability
in terms of the stability spectrum:

14.10 Proposition. T is superstable if and only if it is λ-stable for all
λ ≥ 2|T |.

Proof See [6].

Now we begin discussing our second approach to stability, which is
based on non-dividing:

14.11 Definition. Let U be a κ-universal domain for T and let B,C
be small subsets of U . Let p(X,B) be a partial type over B in a pos-
sibly infinite tuple of variables X (so p(X,Y ) is a partial type without
parameters). We say that p(X,B) divides over C if there exists a C-
indiscernible sequence (Bi | i < ω) in tp(B/C) such that

⋃
i<ω p(X,Bi)

is inconsistent with T .
Furthermore, if A,B,C are small sets in U such that tp(A/BC) does
not divide over C, then we say that A is independent from B over C
and we write A |̂

C
B.

This notion of independence has good properties in every stable the-
ory, just as it does in classical first-order model theory:

14.12 Theorem. Let U be a κ-universal domain for T . If T is stable,
then the independence relation |̂ defined using non-dividing satisfies
the following properties (here A, B, etc., are any small subsets of U and
M is a small elementary submodel of U):

(1) Invariance under automorphisms of U .
(2) Symmetry: A |̂

C
B ⇐⇒ B |̂

C
A.

(3) Transitivity: A |̂
C
BD if and only if A |̂

C
B and A |̂

B∪C
D.
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(4) Finite Character: A |̂
C
B if and only if a |̂

C
B for all finite

tuples a from A.
(5) Extension: For all A,B,C there exists A′ such that A′ |̂

C
B and

tp(A/C) = tp(A′/C).
(6) Local Character: If a is any finite tuple, then there is B0 ⊆ B of

cardinality ≤ |T | such that a |̂
B0
B.

(7) Stationarity of types: If tp(A/M) = tp(A′/M), A |̂
M
B, and

A′ |̂
M
B, then tp(A/B ∪M) = tp(A′/B ∪M).

Proof The proof follows the ideas of the corresponding result in classical
first-order model theory. See, for example, [39].

A similar result has been proved in the more general framework of
cats. Most of the proof can be found in [3, Theorems 1.51,2.8]), except
that the extension property may fail in the setting considered there.
In [4, Theorem 1.15] it is shown that in a cat that is thick and stable
(more generally, if it is thick and simple), every type has a non-dividing
extension. This applies to the setting considered in this paper, since any
complete theory of metric structures gives rise to a Hausdorff cat, and
every Hausdorff cat is thick.

Stability can be characterized by the existence of an independence re-
lation with suitable properties, just as in the classical first-order setting.

14.13 Definition. Let U be a κ-universal domain for T . A relation
satisfying properties (1)–(7) in Theorem 14.12 is called a stable indepen-
dence relation on U .

14.14 Theorem. Let U be a κ-universal domain for T . If T is stable,
there is precisely one stable independence relation on U . Moreover, if
there exists a stable independence relation A |∗^C

B on triples of small
subsets of U , then T is stable.

Proof If T is a stable theory, the existence of a stable independence
relation on U is given by Theorem 14.12. The rest of this Theorem is
proved as in the classical first-order case. See, for example, [39].

Theorem 14.14 will play an important role in our treatment of applica-
tion areas in sections 15–18. As is often true, the theories treated in those
sections are already equipped with natural independence relations; for
example, one has orthogonality in Hilbert spaces and probabilistic inde-
pendence in probability spaces. (See sections 15 and 16 below.) Showing
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that such a relation is a stable independence relation is often not hard.
Once this has been done, Theorem 14.14 implies that the theory in ques-
tion is stable and that the natural candidate is indeed the relation of
model-theoretic independence on U (yielding a complete understanding
of non-dividing).

A third (equivalent) approach to stability is given by the notion of
definability of types, which plays a central role in stability theory:

14.15 Definition. We say that a complete type p ∈ Sn(B) is definable
over a set A if for each formula ϕ(x, y) with x = x1, . . . , xn, there exists
a predicate Ψ(y) definable over A such that for all suitable tuples b in
B we have that Ψ(b) is the unique r ∈ [0, 1] such that the condition
ϕ(x, b) = r is in p.

The following theorem characterizes stability in terms of definability
of types:

14.16 Theorem. The theory T is stable if and only if every type over
a model M of T is definable over M .

Proof Similar to the classical proof for first-order theories, but requiring
a slightly more delicate analysis. See Theorem 8.5 in [6].

We conclude this section with the following result, which gives an
alternative proof for Theorem 14.6 and which provides additional infor-
mation about the stability spectrum.

14.17 Corollary. Suppose T is stable. Then T is λ-stable with respect
to the discrete metric for all λ that satisfy λ = λ|T |.

Proof Assume T is stable and that λ = λ|T |. Let M be a model of T of
density character λ; then M has cardinality at most λℵ0 , which equals λ
because of our special assumptions. Note that the number of definitions
of types over M is at most λ|T | = λ. Therefore, Theorem 14.16 yields
that S1(TM ) has cardinality at most λ, as desired.

The study of stability theory and its applications in analysis started
with the work of Krivine and Maurey [32] around quantifier free for-
mulas in Banach spaces. A study of stability and ω-stability for metric
structures based on normed spaces is carried out in [28, 29, 30]. Theo-
rem 14.6 was first proved (in a more general form) in Corollary 7.2 and
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Corollary 7.3 in [28, page 88]. The proof provided here comes from [4,
Remark 4.11]. A more general approach to stability in the setting of
cats can be found in [3].

Stability of a general function (in particular, of a formula in contin-
uous logic, i.e., local stability) was introduced in [34] in the setting of
functional analysis. Local stability of a formula in continuous logic is
developed in [6].

There are several known examples of stable theories in the setting
of metric structures, such as the theories of Hilbert spaces, probability
spaces and Lp spaces. (See the next three sections.) Expansions of
Hilbert spaces and probability spaces by generic automorphisms also
turn out to be stable. (See [7, 8, 10] and the last section of this article.)

15 Hilbert spaces

A pre-Hilbert space H over R is a vector space over R with an inner
product 〈 〉 that satisfies the following properties:

(1) 〈rx+ sy, z〉 = r〈x, z〉+ s〈y, z〉 for all x, y, z ∈ H and all r, s ∈ R;
(2) 〈x, y〉 = 〈y, x〉 for all x, y ∈ H;
(3) 〈x, x〉 ∈ (0,∞) for all nonzero x ∈ H; 〈0, 0〉 = 0.

On each pre-Hilbert space we define a norm by ‖x‖ =
√
〈x, x〉. A

pre-Hilbert space that is complete with respect to this norm is called a
Hilbert space.

Let H be a pre-Hilbert space over R. We treat H in continuous logic
by identifying it with the many-sorted metric prestructure

M(H) =
(
(Bn(H) | n ≥ 1), 0, {Imn}m<n, {λr}r∈R,+,−, 〈 〉

)
where Bn(H) = {x ∈ H | ‖x‖ ≤ n} for n ≥ 1; 0 is the zero vector
in B1(H); for m < n, Imn : Bm → Bn is the inclusion map; for r ∈ R
and n ≥ 1, λr : Bn(H) → Bnk(H) is scalar multiplication by r, with k

the unique integer satisfying k ≥ 1 and k − 1 ≤ |r| < k; furthermore,
+,− : Bn(H) × Bn(H) → B2n(H) are vector addition and subtraction
and 〈 〉 : Bn(H) → [−n2, n2] is the inner product, for each n ≥ 1. The
metric on each sort is given by d(x, y) = ‖x− y‖.

There is an obvious continuous signature L such that for each pre-
Hilbert space H, the many-sorted prestructure described above is an L-
prestructure; the necessary bounds and moduli of uniform convergence
are easy to specify. We see easily that if H is a pre-Hilbert space, then
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the completion of the L-prestructure M(H) is equal to M(H), where
H is the Hilbert space obtained by completing H.

It is not difficult to show that there is an L-theory, which we will de-
note by HS, such that M |= HS if and only if there is a Hilbert space
H such that M ∼= M(H). (One way to verify this is using Proposition
5.14; it is well known and easy to check that the class of L-structures
isomorphic to some M(H), with H a Hilbert space, is closed under ul-
traproducts and under elementary substructures. It is also not difficult
to extract a set of axioms for this class by directly translating the re-
quirements that M comes from a vector space over R and that the inner
product satisfies (1),(2),(3) above.)

For any Hilbert space H, we see that H is infinite dimensional if and
only if M(H) satisfies the conditions(

inf
x1
. . . inf

xn

max
1≤i,j≤n

(|〈xi, xj〉 − δij |)
)

= 0

for n ≥ 1; here δij = 1 if i = j and δij = 0 if i 6= j, and the variables
x1, . . . , xn range over the sort B1(H). Let IHS be the L-theory obtained
by adding this infinite set of conditions to HS. An L-structure M is a
model of IHS if and only if M is isomorphic to M(H) for some infinite
dimensional Hilbert space H. In what follows we will identify H with
M(H) when applying model theoretic techniques and concepts, such as
types.

Note that IHS is κ-categorical for every infinite cardinal κ. Therefore
IHS is a complete theory. In the rest of this section we will show that
IHS admits quantifier elimination and is ω-stable.

Let x, y ∈ H and let A ⊂ H. By A we mean the norm closure of the
linear span of A. Let PĀ(x) be the projection of x on the subspace A.
We denote by A⊥ the set {z ∈ H : 〈a, z〉 = 0 for all a ∈ A}; it is a closed
subspace of H known as the orthogonal complement of A, since H is the
Hilbert space direct sum of A and A⊥.

15.1 Lemma. Let H be an infinite dimensional Hilbert space, with
c1, . . . , cn, d1, . . . , dn ∈ H. Then (c1, . . . , cn) and (d1, . . . , dn) realize the
same type over A ⊂ H if and only if PĀ(ci) = PĀ(di) and 〈ci, cj〉 =
〈di, dj〉 for all 1 ≤ i, j ≤ n.

Proof If tp(c1, . . . , cn/A) = tp(d1, . . . , dn/A) then 〈ci, cj〉 = 〈di, dj〉 for
i, j ≤ n and for every a, b ∈ A, 〈ci − b, a〉 = 〈di − b, a〉; thus PĀ(ci) =
PĀ(di).
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Conversely, assume that PĀ(ci) = PĀ(di) and 〈ci, cj〉 = 〈di, dj〉 for
i, j ≤ n. Then ci − PĀ(ci), di − PĀ(di) ∈ A⊥ and

〈ci − PĀ(ci), cj − PĀ(cj)〉 = 〈di − PĀ(di), dj − PĀ(dj)〉.

Using the Gram-Schmidt process we can build an automorphism of H
that fixes Ā pointwise and takes ci − PĀ(ci) to di − PĀ(di) for all 1 ≤
i ≤ n.

15.2 Corollary. The theory IHS admits quantifier elimination.

Proof We apply Proposition 13.6. Suppose M1, M2 |= IHS; let N be
a substructure of M1 and f : N → M2 an embedding. Let M′

2 � M2

be such that the orthogonal complement of M2 in M ′
2 has dimension ≥

dim(M1). We can extend f so it maps an orthonormal basis of M1∩N⊥

into an orthonormal subset of M ′
2 ∩M⊥

2 and then extend f linearly to
all of M1. By Lemma 15.1, such a map is an embedding.

15.3 Lemma. Let H be an infinite dimensional Hilbert space and let
A ⊂ H. Then the definable closure of A equals Ā.

Proof By passing to an elementary extension of H, which does not
change dcl(A), we may assume that Ā is a proper subspace of H.

We first show that if c ∈ Ā, then c ∈ dcl(A). Given c ∈ Ā, there is
a Cauchy sequence {cn : n ≥ 1} of elements in the space spanned by A
such that limn→∞ cn = c. We may assume that ‖cn − c‖ ≤ 1/(2n) for
n ≥ 1. Let ϕn(x) = ‖x − cn‖ −· 1/(2n). Then the family of formulas
{ϕn(x) | n ≥ 1} and numbers {δn = 1/(2n) | n ≥ 1} shows that {c} is
A-definable.

Assume now that c 6∈ Ā, so c − PĀ(c) 6= 0. Take any y ∈ A⊥ such
that ‖y‖ = ‖c− PĀ(c)‖. Then tp(c/A) = tp(PĀ(c) + y/A). Since A⊥ is
not the 0 subspace, this shows that tp(c/A) has realizations in H that
are different from c, and thus c 6∈ dcl(A).

15.4 Proposition. Let H be an infinite dimensional Hilbert space. For
each x, y ∈ H and A ⊂ H we have

d(tp(x/A), tp(y/A))2 = ‖PĀ(x)−PĀ(y)‖2+
∣∣‖x−PĀ(x)‖−‖y−PĀ(y)‖

∣∣2
Proof Let x, y ∈ H and let A ⊂ H. If tp(x′/A) = tp(x/A) and
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tp(y′/A) = tp(y/A), then

‖x′ − y′‖2 = ‖PĀ(x′)− PĀ(y′)‖2 + ‖(x′ − PĀ(x′))− (y′ − PĀ(y′))‖2

≥ ‖PĀ(x)− PĀ(y)‖2 +
∣∣‖x− PĀ(x)‖ − ‖y − PĀ(y)‖

∣∣2.

For the reverse inequality, let x⊥ = x − PĀ(x) and y⊥ = y − PĀ(y).
If x⊥ = 0 the result is clear, so we may assume that x⊥ 6= 0. Let α =
‖y⊥‖/‖x⊥‖ and let z = αx⊥. Then we have tp(y/A) = tp(PĀ(y) + z/A)
by Lemma 15.1 and

‖x− (PA(y) + z)‖2 = ‖PĀ(x)− PĀ(y)‖2 +
∣∣‖x⊥ − αx⊥‖

∣∣2
= ‖PĀ(x)− PĀ(y)‖2 +

∣∣‖x⊥‖ − ‖y⊥‖∣∣2
by the Pythagorean theorem.

15.5 Proposition. The theory IHS is ω-stable.

Proof Let H be an infinite dimensional Hilbert space and let A ⊂ H

be countable. Let TA = Th(M(H), a)a∈A. We may assume that the
dimension of A⊥ (in H) is ω, so H is separable. Using Lemma 15.1 it is
easy to show that every 1-type over A is realized in H. Therefore S1(A)
is separable with respect to the d-metric.

We close this section by giving a concrete description in terms of famil-
iar Hilbert space concepts of the independence relation that is associated
to the theory IHS. As usual, this gives an alternate proof that IHS is
stable, although it does not identify the values of λ for which IHS is
λ-stable.

In what follows, we fix a cardinal number κ > 2ℵ0 and we fix a κ-
universal domain H for the theory IHS.

15.6 Definition. Whenever A,B,C are small subsets of H, we write
A |∗^C

B to mean that PC̄(a) = PC∪B(a) for all a ∈ A.

15.7 Lemma. Let A,B,C ⊂ H be small. Then A |∗^C
B if and only if

a− PC̄(a) ⊥ b− PC̄(b) for all a ∈ A and b ∈ B.

Proof Assume first that A |∗^C
B, so for all a ∈ A, PC̄(a) = PC∪B(a).

Then a − PC̄(a) ∈ (C ∪ B)⊥, so a − PC̄(a) ⊥ b − PC̄(b) for any b ∈ B.
Now assume that a− PC̄(a) ⊥ b− PC̄(b) for all a ∈ A and b ∈ B. Then
a − PC̄(a) ⊥ b for all a ∈ A and b ∈ B and thus PC̄(a) = PC∪B(a) for
all a ∈ A.
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15.8 Theorem. The relation |∗^ is a stable independence relation on
H. Therefore, |∗^ is identical to the independence relation |̂ based on
non-dividing for the stable theory IHS.

Proof We prove directly that |∗^ has all seven properties of a stable
independence relation:

(1) Invariance: Let f ∈ Aut(H). Then for every u, v ∈ H, 〈u|v〉 =
〈f(u)|f(v)〉. Therefore, if E is any subspace of H, it is easy to see
that f carries PE to Pf(E) and carries E⊥ to f(E)⊥. This makes
it clear (from the definition) that f(A) |̂ ∗

f(C)
f(B) is equivalent

to A |̂ ∗
C
B for any small subsets A,B,C of H.

(2) Symmetry: This follows from Lemma 15.7.
(3) Transitivity: This follows from the definition.
(4) Finite character: This is immediate from the definition.
(5) Extension: By finite character and compactness, it suffices to

prove the property for finite tuples. Let a1, . . . , an ∈ H and let
B,C ⊆ H be small. Since B ∪C is small, (B ∪C)⊥ is an infinite
dimensional subspace of H. Hence there are c1, . . . , cn ∈ (C∪B)⊥

such that tp(c1, . . . , cn) = tp(a1−PC̄(a1), . . . , an −PC̄(an)). Let
a′i = PC̄(ai) + ci, for i = 1, . . . , n. Then

tp(a′1, . . . , a
′
n/C) = tp(a1, . . . , an/C)

and {a′1, . . . , a′n} |∗^C
B.

(6) Local Character: Given a1, . . . , an and B there exists a countable
subset B0 of B such that each of PB̄(ai) is an element of B0. Then
we have a1, . . . , an |̂ ∗

B0
B.

(7) Stationarity of types: We will show that the property holds for
general sets, that is, we do not need to assume that the underlying
set C is an elementary substructure of H. By finite character,
it suffices to prove the property when A is a finite tuple. So
let a = (a1, . . . , an), a′ = (a′1, . . . , a

′
n) ∈ Hn and let C,B ⊆ H

be small. Assume that tp(a/C) = tp(a′/C) and that a |∗^C
B,

a′ |∗^C
B. Then for every i = 1, . . . , n,

PB∪C(ai) = PC̄(ai) = PC̄(a′i) = PB∪C(a′i).

Thus tp(a/B ∪ C) = tp(a′/B ∪ C).

The second statement follows from the first by Theorem 14.14.

Note that the proof of Theorem 15.8 shows that all types of tuples in
IHS are stationary.
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Model theoretic studies of infinite dimensional Hilbert spaces are car-
ried out in [9] and in [1]. A direct proof to characterize non-dividing in
terms of orthogonality can be found in Corollary 2 and Lemma 8 in [9].
Proposition 15.5 appears in [28].

16 Probability spaces

In this section we give an introduction to the model theory of probability
spaces using their measure algebras as metric structures.

A probability space is a triple (X,B, µ), where X is a set, B is a σ-
algebra of subsets of X and µ is a σ-additive measure on B such that
µ(X) = 1.

We say that B ∈ B is an atom if µ(B) > 0 and there does not exist
any B′ ∈ B satisfying B′ ⊆ B and 0 < µ(B′) < µ(B). Further, B ∈ B
is atomless if there is no atom that is a subset of B. The probability
space (X,B, µ) is atomless if X itself is atomless. It is well known that
if B is an atomless element of B and 0 ≤ r ≤ 1 then there exists B′ ∈ B
satisfying B′ ⊆ B and µ(B′) = r · µ(B). (See [20, Section 41] for a
discussion.) This uniformity in the property of being atomless plays a
role in axiomatizing the property in continuous logic. (See below.)

We write A1 ∼µ A2, and say that A1, A2 ∈ B determine the same
event, if the symmetric difference of the sets, denoted by A14A2, has
measure zero. Clearly ∼µ is an equivalence relation. We denote the class
of A ∈ B under the equivalence relation ∼µ by [A]µ. The collection of
equivalence classes of B modulo ∼µ is called the set of events and it is
denoted by B̂. The operations of complement, union and intersection are
well defined for events and make B̂ a σ-algebra; in addition, µ induces a
well-defined, strictly positive, countably additive probability measure on
B̂. We refer to B̂ as the measure algebra and to (B̂, µ) as the measured
algebra associated to (X,B, µ).

Given (X,B, µ), we build a 1-sorted metric structure (called a proba-
bility structure)

M = (B̂, 0, 1, ·c,∩,∪, µ)

whose metric is given by d([A]µ, [B]µ) = µ(A4B). Here 0 is the event
of measure zero, 1 the event of measure one, and ·c,∩,∪ are the Boolean
operations induced on B̂. The modulus of uniform continuity for ·c is
the identity ∆(ε) = ε and the moduli of uniform continuity for ∪ and ∩
are given by ∆′(ε) = ε/2. We sometimes write a−1 for ac and a+1 for a,
when a is an element of B̂.
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Let L be the signature associated to these probability structures. The
following L-conditions are true in all probability structures. Indeed,
Theorem 16.1 shows they axiomatize that class of structures.

(1) Boolean algebra axioms:
Each of the usual axioms for Boolean algebras is the closure under
universal quantifiers of an equation between terms (see [27, page
38]) and thus it can be expressed in continuous logic as a condi-
tion. For example, the axiom ∀x∀y(x ∪ y = y ∪ x) is equivalent
to supx supy

(
d(x ∪ y, y ∪ x)

)
= 0.

(2) Measure axioms:
µ(0) = 0 and µ(1) = 1;
supx supy

(
µ(x ∩ y)−· µ(x)

)
= 0;

supx supy

(
µ(x)−· µ(x ∪ y)

)
= 0;

supx supy |(µ(x)−· µ(x ∩ y))− (µ(x ∪ y)−· µ(y))| = 0.
The last three axioms express that µ(x∪y)+µ(x∩y) = µ(y)+µ(x)
for all x, y.

(3) Connection between d and µ:
supx supy |d(x, y)−µ(x∆y)| = 0 where x∆y denotes the Boolean
term giving the symmetric difference: (x ∩ yc) ∪ (xc ∩ y).

We denote the set of L-conditions above by PrA.

16.1 Theorem. Let M be an L-structure with underlying metric space
(M,d). Then M is a model of PrA if and only if M is the probability
structure associated to a probability space (X,B, µ) as above.

Proof It is clear that probability structures satisfy the conditions in
PrA. A proof that such structures are metrically complete is given in
[38, Chapter 7]. For the converse, let M |= PrA; recall this implies
that underlying metric space of M is complete. In [38, Chapter 7] it is
discussed how to realize M as a probability structure.

To say that a model is atomless we need the following axiom; it states
that every set of positive measure can be cut nearly “in half” measurably.
As noted above, this is well known to hold in a probability space if and
only if the space is atomless.

(4) supx infy |µ(x ∩ y)− µ(x ∩ yc)| = 0.

We denote by APA the set of axioms PrA together with (4). Its
models are exactly the probability structures obtained from atomless
probability spaces.
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16.2 Proposition. The theory APA is separably categorical (and there-
fore APA is complete).

Proof Let M |= APA be separable. As is shown in [38, Chapter 7], M is
the probability structure associated to a countably generated probability
space that is necessarily atomless. A familiar back and forth argument
shows that any two such probability spaces are isomorphic in a measure
preserving manner.

Next we characterize the d-metric on spaces of types for APA. To do
this, we need the following special case of the Radon-Nikodym theorem:

16.3 Theorem. (Radon-Nikodym; see [16, Theorem 3.8]) Let (X,B, µ)
be a probability space, let C ⊆ B be a σ-subalgebra and let A ∈ B. Let a
be the event corresponding to A. Then there is a unique ga ∈ L1(X, C, µ)
such that for any B ∈ C,

∫
B
gadµ =

∫
B
χAdµ. Such an element ga is

called the conditional probability of a with respect to C and it is denoted
by P(a|C).

The next lemma provides an explicit form for the d-metric on prob-
ability structures (this formula was known to analysts [37, Lemma 6.3]
in the case C = ∅).

16.4 Lemma. Let M |= APA be a κ-universal domain, with κ ≥ ω1.
Assume that M is the probability structure associated to the probability
space (Y,D,m). Let a = (a1, . . . , an) ∈ Mn, b = (b1, . . . , bn) ∈ Mn be
partitions of the probability structure. Let C ⊆M be small, and let C be
the σ-subalgebra of D generated by the measurable sets A such that the
event of A is in C. Then

d(tp(a/C), tp(b/C)) = max
1≤i≤n

‖P(ai|C)− P(bi|C)‖1

where ‖ ‖1 is the L1-norm.

Proof This is Lemma 3.14 in [10].

16.5 Corollary. (Ben Yaacov [2]) Let M |= APA be a κ-universal
domain, with κ ≥ ω1, and let C ⊆M be small. Let C be obtained from C

as in the previous result. Let a = (a1, . . . , an) ∈ Mn, b = (b1, . . . , bn) ∈
Mn be arbitrary. Then tp(a/C) = tp(b/C) iff

P(ai1
1 ∩ · · · ∩ ain

n |C) = P(bi11 ∩ · · · ∩ bin
n |C)
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for all n-tuples (i1, . . . , in) from {+1,−1}.

Proof Apply the previous result to the tuples of atoms in the finite
subalgebras generated by a1, . . . , an and b1, . . . , bn respectively.

16.6 Proposition. The theory APA admits quantifier elimination.

Proof If M |= APA and a1, . . . , an ∈M , then the previous result shows
that tp(a1, . . . , an) is determined by the measures of the atoms of the
finite Boolean subalgebra generated by a1, . . . , an. This together with
Proposition 13.2 implies that APA admits quantifier elimination.

16.7 Proposition. Let M be a model of APA and C ⊆ M . The de-
finable closure of C is the smallest σ-algebra of events containing C.

Proof This follows from quantifier elimination plus an analysis of re-
stricted quantifier free formulas.

Non-dividing in probability structures has a natural characterization:

16.8 Proposition. (Ben Yaacov [2, Theorem 2.10]) Let M |= APA be
a κ-universal domain, with κ ≥ ω1, and let C ⊆ M be small. Assume
that M is the probability structure associated to the probability space
(X,B, µ). Let a1, . . . , an; b1, . . . , bm ∈ M . Let C be the σ-subalgebra
of B generated by a collection of measurable sets whose events make
up C and let Cb be the σ-subalgebra of B generated by a larger collec-
tion of measurable sets whose events make up C ∪ {b1, . . . , bm}. Then
tp(a1, . . . , an/C ∪ {b1, . . . , bm}) does not divide over C if and only if

P(ai1
1 ∧ · · · ∧ ain

n |Cb) = P(ai1
1 ∧ · · · ∧ ain

n |C)

for all n-tuples (i1, . . . , in) from {−1, 1}.

16.9 Proposition. (1) The theory APA is ω-stable.
(2) Let N |= APA and consider a ∈ Nn and C ⊆ N . Then tp(a/C) is
stationary.

Proof Let M |= APA be a κ-universal domain, with κ ≥ ω1. Let
(X,B, µ) be a probability space whose events correspond to the elements
of M . For part (1), let C ⊆M be countable. We may assume that C is
closed under finite intersections, unions and complements. Let C be a set
of measurable sets whose set of events is C. We may choose C so that it
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is a countable Boolean algebra. Let 〈C〉 be the σ-algebra generated by C,
let Step(C) be the set of step functions in L1(X, C,m) with coefficients in
Q and let F = {tp(a/C) | P(a|〈C〉) ∈ Step(C)}. Then F is a countable
set of types. It follows from Lemma 16.4 that F is a dense subset of the
space of 1-types over C with respect to the d-metric. Therefore APA is
ω-stable. The proof of (2) follows from 16.8.

A model theoretic study of (atomless) probability spaces is carried
out in [2]. The author shows that they give rise to a compact abstract
theory (see [1] for the definition) and that, in this cat, the notion of
independence obtained from non-dividing (Proposition 16.8) agrees with
probabilistic independence. A characterization of the d-metric (Lemma
16.4) is derived in [10], which also contains the proof of ω-stability given
above. In general, the presentation of the material in this section follows
[10] closely.

17 Lp Banach lattices

LetX be a set, U a σ-algebra onX and µ a σ-additive measure on U , and
let p ∈ [1,∞). We denote by Lp(X,U, µ) the space of (equivalence classes
of) U -measurable functions f : X → R such that ‖f‖ = (

∫
|f |pdµ)1/p <

∞. We consider this space as a Banach lattice (complete normed vector
lattice) over R in the usual way; in particular, the lattice operations ∧,∨
are given by pointwise maximum and minimum.

We will work on models of the form

((Bn | n ≥ 1), 0, {Imn}m<n, {λr}r∈R,+,−,∧,∨, ‖ ‖)

where Bn = Bn(Lp(X,U, µ)) = {f ∈ Lp(X,U, µ) | ‖f‖ ≤ n} and
Imn : Bm → Bn is the inclusion map for m < n. The metric on each Bn

is given by d(f, g) = ‖f − g‖. The diameter of Bn is 2n and the values
of the predicate ‖ ‖ on Bn are in [0, n]. The operations +,−,∧,∨ map
Bn into B2n. For r ∈ R with k − 1 < |r| ≤ k, where k ≥ 1 is an integer,
the operation λr (of scalar multiplication by r) maps Bn into Bkn.

The moduli of uniform continuity for the norm and for the inclusion
maps Imn are all given by ∆(ε) = ε. The moduli of uniform continuity
for +,−,∧,∨ are all given by ∆′(ε) = ε/2. For r ∈ R with k−1 < |r| ≤ k,
where k is an integer ≥ 1, the modulus of uniform continuity of λr is
given by ∆λr

(ε) = ε/k.
Let L denote the signature just described.
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Basic analysis and probability

We start with a review of some results from analysis that we use to
approach Lp spaces model theoretically.

A measure space (X,U, µ) is called decomposable (also called strictly
localizable) if there exists a partition {Xi | i ∈ I} ⊆ U of X into mea-
surable sets such that µ(Xi) < ∞ for all i ∈ I and such that for any
subset A of X, A ∈ U iff A ∩ Xi ∈ U for all i ∈ I and, in that case,
µ(A) =

∑
i∈I µ(A ∩Xi).

17.1 Convention. Throughout this section we require that all measure
spaces are decomposable.

There is no loss of generality in adopting this convention: the repre-
sentation theorem for abstract Lp spaces shows that every such space
(and, in particular therefore, every concrete Lp(X,U, µ) space) can be
represented in this way with (X,U, µ) being decomposable. (See the
proof of Theorem 3 in [11], for example.)

Let E be any Banach lattice and f ∈ E. The positive part of f is f∨0,
and it is denoted f+. The negative part of f is f− = (−f)+, and one
has f = f+ − f− and the absolute value of f is given by |f | = f+ + f−.
Further, f is positive if f = f+ and f is negative if −f is positive. For
f, g ∈ E, one has f ≥ g iff f − g is positive.

Let (X,U, µ) be a measure space. A measurable set S ∈ U is an atom
if µ(S) > 0 and there does not exist any S′ ∈ U satisfying S′ ⊆ S and
0 < µ(S′) < µ(S). One calls (X,U, µ) atomless if it has no atoms.

If E is a Banach lattice and x ∈ E, a component of x is y ∈ E such
that |y|∧|x−y| = 0. If (X,U, µ) is a measure space and E = Lp(X,U, µ),
then the components of x ∈ E are the results of restricting x to some
measurable subset of the support of x.

17.2 Notation. Let (X,U, µ) and (Y, V, µ) be a measure spaces. We
write (Y, V, µ) ⊆ (X,U, µ) to mean that Y ∈ U and V ⊆ U .

Model theory of Lp Banach lattices

In this section, unless stated otherwise, we work on the unit ball. So all
elements under consideration and all quantifiers range over B1.

It is routine to write down L-conditions expressing the following ax-
ioms, which are true in Lp(X,U, µ), where (X,U, µ) is a measure space.

(1) The Banach lattice axioms, described in [35, pages 47–49, 81].
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(2) Axioms for abstract Lp spaces, which state that

‖x ∧ y‖p ≤ ‖x‖p + ‖y‖p ≤ ‖x+ y‖p

whenever x and y are positive.

We write LpL for the theory axiomatized above.

17.3 Proposition. (Axiomatizability) Let M be an L-structure with
underlying metric space (M,d). Then M is a model of LpL if and
only if there is a measure space (X,U, µ) such that M is isomorphic to
Lp(X,U, µ).

Proof See the proof of Theorem 3 in [11], for example.

To ensure that the measure space representing the structure under
consideration is atomless we need an additional axiom:

(3) supx infy

(
max(

∣∣‖y‖ − ‖x+ − y‖
∣∣, ‖y ∧ (x+ − y)‖

)
= 0.

It is obvious that this condition is satisfied in any Lp(X,U, µ) for which
(X,U, µ) is atomless. For the converse, note that (3) states that for
every positive function u = x+ and every ε > 0 there is some y such
that ‖y‖ and ‖u− y‖ differ by at most ε and ‖y ∧ (u− y)‖ ≤ ε. Assume
u 6= 0. By taking ε small enough and subtracting y ∧ (u − y) from y,
we get a nontrivial component of u. Hence, in models of LpL that also
satisfy condition (3), there are no atoms.

We denote by ALpL the set of conditions LpL+ (3). We just proved:

17.4 Proposition. If M is an L-structure, then M is a model of the
theory ALpL if and only if there is an atomless measure space (X,U, µ)
such that M is isomorphic to Lp(X,U, µ).

17.5 Fact. (Quantifier elimination) Let M be the Lp space of an atom-
less measure space and let a, b ∈Mn. If a and b have the same quantifier
free type in M, then a and b have the same type in M. That is, if
‖t(a)‖ = ‖t(b)‖ in M for every term t(x1, . . . , xn), then a and b have the
same type in M. From this observation and Proposition 13.6 it follows
that ALpL admits quantifier elimination.

For a proof of Fact 17.5, see Example 13.18 in [24].
Note that Fact 17.5 is not true without the assumption that U is

atomless; atoms and non-atoms can have the same quantifier free type
but never have the same type.
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17.6 Fact. (Separable categoricity) If M |= ALpL be separable, then
M is isomorphic to Lp([0, 1],B,m), where B is the σ-algebra of Lebesgue
measurable sets and m is Lebesgue measure.

Note that ω-categoricity need not be preserved when we add constants
to the language:

17.7 Example. Let f and g be any two norm 1, positive elements of
Lp([0, 1],B,m). By Fact 17.5, we get

(Lp([0, 1],B,m), f) ≡ (Lp([0, 1],B,m), g).

However, there are two possible isomorphism types of such structures,
depending on whether or not the support of the adjoined function has
measure 1 or not.

17.8 Fact. Let M be a model of ALpL and A ⊆ M . The definable
closure of A in M is the closed linear sublattice of M generated by A.

Proof This follows from quantifier elimination plus an analysis of re-
stricted quantifier free formulas.

17.9 Remark. Let M be the Lp space of a measure space and let C
be a closed linear sublattice of M. One can use the representation
theorem for abstract Lp spaces (see [33, pages 15–16], part(2) of the
axiomatization) to show that there exist measure spaces (X,U, µ) and
(Y, V, µ) satisfying (Y, V, µ) ⊆ (X,U, µ), as well as an isomorphism Φ
from Lp(X,U, µ) onto M such that Φ maps Lp(Y, V, µ) exactly onto C.

The previous remark has interesting consequences. LetM and C be as
in Remark 17.9 and let f ∈Mn. In [5] it is proved that the type over C
realized by f in M is characterized by the joint conditional distribution
of f over the σ-algebra associated to C (V in the notation above). The
proof of this result is beyond the scope of this paper. However the ideas
behind it are illustrated by the special case of a single characteristic
function:

17.10 Proposition. Let M and C be as in Remark 17.9. Suppose
(Y, V, µ) ⊂ (X,U, µ) are measure spaces such that C = Lp(Y, V, µ) and
M = Lp(X,U, µ). Let A,B ⊂ Y be such that χA, χB ∈ M . Then
P(A|V ) = P(B|V ) implies tp(χA/C) = tp(χB/C).
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Proof Assume that P(A|V ) = P(B|V ). By quantifier elimination, to
show that tp(χA/C) = tp(χB/C) it suffices to prove that for any g ∈ Cl

and any lattice term t(x, y), we have ‖t(χA, g)‖p = ‖t(χB , g)‖p.
Let ν be the measure on Borel subsets D of R1+l defined by ν(D) =

µ{x ∈ X : (χA, g)(x) ∈ D}. Since P(A|V ) = P(B|V ), we have that
ν(D) = µ{x ∈ X : (χB , g)(x) ∈ D} for any Borel D ⊂ R1+l. Then, by
the change of variable formula,∫

X

|t(χA(x), g(x))|pdµ(x) =
∫

R1+l

|t(r, s)|pdν(r, s)

=
∫

X

|t(χB(x), g(x))|pdµ(x)

and hence ‖t(χA, g)‖p = ‖t(χB , g)‖p as desired.

Finally we show stability.

17.11 Theorem. (Henson [22]) The theory ALpL is ω-stable.

Proof Let U be a κ-universal domain for ALpL, with κ ≥ ω1, and let
A ⊆ U be countably infinite. Then dcl(A) is a closed linear sublattice of
U and thus we can find measure spaces (Y, V, µ) ⊆ (X,U, µ) such that
dcl(A) = Lp(Y, V, µ) and U = Lp(X,U, µ). Let TA = Th((U , a)a∈A).

Any function h ∈ U can be written as f + g, where the support of
f is contained in Y and the support of g is disjoint from Y . Moreover,
tp((f + g)/A) is determined by tp(f/A) and tp(g/A).

Therefore, to find the density character of S1(TA) it suffices to consider
the following two cases:

Let f ∈ U be an element supported on Y . It suffices to consider
the case where f is a simple function, since every function is a limit
of simple functions. We identify Lp(Y, V, µ) with its canonical image in
the space Lp((Y, V, µ)⊗([0, 1],B,m)), where ([0, 1],B,m) is the standard
Lebesgue space. Since U is sufficiently saturated, we may assume that
Lp((Y, V, µ) ⊗ ([0, 1],B,m)) is a closed linear sublattice of U . Using
quantifier elimination (see Fact 17.5), the fact that f is a simple function,
and Proposition 17.10, we can find f ′ ∈ Lp((Y, V, µ)⊗([0, 1],B,m)) such
that tp(f/A) = tp(f ′/A). Since Lp((Y, V, µ)⊗([0, 1],B,m)) is separable,
the density character of the space of types of functions supported on Y

is ω.
Let g ∈ U be an element whose support is disjoint from Y . The type

tp(g/A) is determined by ‖g+‖ and ‖g−‖. Let B,C ∈ U be disjoint
from Y , each of measure one. The set {tp(c1χB − c2χC) | c1, c2 ∈ Q+}
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is a countable dense subset of the space of types of functions disjoint to
dcl(A).

The basic model-theoretic properties of Lp spaces, such as axioma-
tizability and quantifier elimination (see Fact 17.5) are proved in [24].
Further results about the model theory of these structures are given in
[5], including a characterization of the d-metric and an analysis of non-
dividing in terms of conditional expectation, as well as stability theoretic
properties such as stationarity of types over sets.

18 Probability spaces with generic automorphism

In this section we will study the existentially closed structures of the form
(M, τ), where M is a probability structure and τ is an automorphism of
M. We show this class is axiomatizable and its theory is stable. We also
discuss the model-theoretic meaning of some results in ergodic theory.

Lebesgue spaces and their automorphisms

There are two approaches to isomorphisms on probability spaces. On the
one hand, we have measure preserving point maps between the spaces; on
the other, we have measure preserving maps between measured algebras.

18.1 Definition. Let (X1,B1, µ1), (X2,B2, µ2) be probability spaces
and let B̂1, B̂2 be their measure algebras. By an isomorphism of the mea-
sured algebras we mean a bijection Φ: B̂1 → B̂2 that preserves comple-
ments, countable unions and intersections and satisfies µ2(Φ(b)) = µ1(b)
for all b ∈ B̂1. The probability spaces are said to be conjugate if their
measured algebras are isomorphic.

18.2 Definition. Let (X1,B1, µ1), (X2,B2, µ2) be probability spaces
and let B̂1, B̂2 be their measure algebras. Let C1 ∈ B1, C2 ∈ B2 with
µ1(C1) = 1 = µ2(C2). An invertible measure preserving transforma-
tion Φ: C1 → C2 is called an isomorphism between (X1,B1, µ1) and
(X2,B2, µ2). If (X1,B1, µ1) = (X2,B2, µ2), we call Φ an automorphism.
For b ∈ B̂1, let B ∈ B1 be such that [B]µ1 = b. Let Φ̂(b) = [Φ(B∩C1)]µ2 .
The induced map Φ̂: B̂1 → B̂2 is an isomorphism and it is called an in-
duced isomorphism of the measured algebras.

Clearly any two isomorphic probability spaces are conjugate; however,
the converse does not hold in general. The next definition concerns a
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well-known special class of probability spaces where the converse does
hold.

18.3 Definition. A probability space (I,L,m) is a Lebesgue space if
it is isomorphic to a probability space that is the disjoint union of two
spaces:

(1) One that is a countable (or finite) set of points {y1, y2, . . . }, each
of positive measure.

(2) The space ([0, s],L([0, s]), l), where L([0, s]) is the Lebesgue σ-
algebra on [0, s] and l is Lebesgue measure.

Here s = 1−
∑∞

i=1 pi, where pi > 0 is the measure of {yi}.

On Lebesgue spaces the notion of isomorphism and conjugacy coin-
cide. (See Theorem 2.2 in [40].)

18.4 Definition. Let (Y, C, µ) be an atomless probability space and let
τY be an automorphism of (Y, C, µ). We say that τY is aperiodic if for
every n ∈ N+, the set {y ∈ Y | τn

Y (y) = y} has measure zero.

For the rest of this section we will study aperiodic maps and their
properties. A good source for this material is the book of Halmos [21,
pages 69–76] on ergodic theory. One of the key tools for studying ape-
riodic automorphisms is:

18.5 Theorem. (Rokhlin’s Lemma [21, page 71]) Let (Y, C, µ) be an
atomless probability space and τY an aperiodic automorphism of this
space. Then for every positive integer n and ε > 0, there exists a mea-
surable set E ∈ C such that the sets E, τY (E), . . . , τn−1

Y (E) are disjoint
and µ(∪i<nτ

i
Y (E)) > 1− ε.

18.6 Remark. Let (Y, C, µ) be an atomless probability space and let τY
be an automorphism of this space. Let N be the probability structure
induced by (Y, C, µ) and let τ be the automorphism of N induced by τY .
Then τY is aperiodic iff

inf
e

max
(
|1/n− µ(e)|, µ(e ∩ τ(e)), µ(e ∩ τ2(e)), . . . , µ(e ∩ τn−1(e))

)
= 0

for all n ≥ 1.

For the rest of this section we fix an atomless Lebesgue space (I,L,m).
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18.7 Fact. [21, page 74] Let A,B ∈ L be such that m(A) = m(B).
Then there is an automorphism η of (I,L,m) such thatm(η(A)4B) = 0.

From now on, G denotes the group of measure preserving automor-
phisms on (I,L,m), where we identify two maps if they agree on a set
of measure one. There is a natural representation of G in B(L2(I,L,m))
(the space of bounded linear operators on L2(I,L,m)); it sends τ ∈ G to
the unitary operator Uτ defined for all f ∈ L2(I,L,m) by Uτ (f) = f ◦τ .
The norm topology on B(L2(I,L,m)) pulls back to a group topology
on G, which is called the uniform topology on G in [21, page 69]. For
τ, η ∈ G, let ρ(τ, η) = m({x ∈ X | τ(x) 6= η(x)}). It is shown in [21,
pages 72–73] that ρ is a metric for the uniform topology.

18.8 Definition. We call a map η ∈ G a cycle of period n if there is a
set E ∈ L of measure 1/n such that E, η(E), . . . , ηn−1(E) are pairwise
disjoint, and ηn = id �X (up to measure zero).

18.9 Remark. (1) Let τ ∈ G be aperiodic. For every n > 0 there is a
cycle η ∈ G of period n such that ρ(τ, η) ≤ 2/n. (By Rokhlin’s Lemma.)
(2) Given any two cycles η1, η2 ∈ G of period n, there is γ ∈ G such that
γ−1η1γ = η2. (This follows from Fact 18.7.)
(3) Let τ1, τ2 ∈ G be aperiodic. Then for every ε > 0, there is γ ∈ G

such that ρ(τ1, γ−1τ2γ) ≤ ε. (This follows from (1) and (2).)

Existentially closed structures

We denote by L be the language of probability structures and by APA
the theory of atomless probability structures. Write Lτ for the language
L expanded by a unary function with symbol τ and let APAτ be the
theory APA ∪ “τ is an automorphism”. We can axiomatize APAτ by
adding to APA the following conditions:

(1) supx

∣∣µ(x)− µ(τ(x))
∣∣ = 0

(2) supx infy

∣∣µ(x4τ(y))
∣∣ = 0

(3) supx supy

∣∣µ(τ(x ∪ y)4(τ(x) ∪ τ(y)))
∣∣ = 0

(4) supx supy

∣∣µ(τ(x ∩ y)4(τ(x) ∩ τ(y)))
∣∣ = 0

( Note that (1) expresses that τ is measure preserving, (2) that τ is
surjective, and (3,4) that τ is a Boolean homomorphism.)

We write tp for types in the language L and tpτ for types in the
language Lτ . Let M be the probability structure associated to (I,L,m).
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Recall that G is the group of automorphisms of (I,L,m), where we
identify two maps if they agree on a set of measure one.

18.10 Proposition. Let τI , τ ′I be aperiodic automorphisms of (I, L,m)
and let τ , τ ′ be the corresponding induced automorphisms of M. Then
(M, τ) ≡ (M, τ ′).

Proof An application of Remark 18.9(3) with the values for ε ranging
over the sequence {1/n | n ∈ N+} together with the uniform continuity
of formulas shows that (M, τ) ≡ (M, τ ′).

Thus any two models induced by aperiodic transformations on an
atomless Lebesgue space have the same elementary theory. The aim of
this section is to study this theory.

18.11 Definition. Let (X,B, µ) be a probability space, let B̂ be the
corresponding measure algebra of events and let τ be an automorphism
of the measure algebra B̂. The map τ is called aperiodic if it satisfies the
following condition corresponding to the conclusion of Rokhlin’s lemma:

inf
e

max
(
|1/n− µ(e)|, µ(e ∩ τ(e)), µ(e ∩ τ2(e)), . . . , µ(e ∩ τn−1(e))

)
= 0

for all n ≥ 1.

Let APAA be the theory APAτ together with the conditions in Lτ

describing that τ is an aperiodic automorphism.

18.12 Lemma. The theory APAA is complete.

Proof Let (M1, τ1) and (M2, τ2) be two models of APAA. Then there are
separable models (M ′

i , τ
′
i) |= APAA that are elementarily equivalent to

(Mi, τi) for i = 1, 2 respectively. By separable categoricity of APA, for
i = 1, 2 we may assume that M ′

i is the probability structure associated
to a Lebesgue space and that τ ′i is induced by an automorphism ηi

of the corresponding Lebesgue space. Then η1 and η2 are aperiodic
automorphisms of the Lebesgue spaces and thus by Proposition 18.10
we have (M ′

1, τ
′
1) ≡ (M ′

2, τ
′
2).

18.13 Remark. The theory of aperiodic automorphisms on probability
structures is the limit, as n goes to infinity, of the theory of a probability
structure formed by n atoms {a1, . . . , an} each of measure 1/n, equipped
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with a cycle τ of period n; that is, τ is a permutation of {a1, . . . , an}
such that

{a1, τ(a1), . . . , τn−1(a1)} = {a1, . . . , an}.

Indeed, for each sentence ϕ in the language of APAA, let v(n, ϕ)
denote the value ϕ gets in the n-point probability space with a cycle
of period n. On the other hand, let v(ϕ) be the value ϕ gets in any
model of APAA. (This value is well defined since APAA is complete.)
Then, limn→∞ v(n, ϕ) = v(ϕ). Otherwise there would be a non-principal
ultrafilter U on the positive integers such that if M is the U-ultraproduct
of the family consisting of the n-point probability structures with cycles
of period n, then ϕM 6= v(ϕ). But this is a contradiction, because any
such M is a model of APAA.

Our next aim is to show that APAA is model complete. The tech-
niques used for the proof are similar to the ones used in proving the
completeness of the theory APAA, but now we need to include parame-
ters.

18.14 Proposition. The theory APAA is model complete. That is, if
(N0, τ0) ⊆ (N1, τ1) are models of APAA, then (N0, τ0) � (N1, τ1).

Proof Let (M, τ) ⊆ (N , τ) be separable models of APAA. We may as-
sume that there is an atomless Lebesgue space (X,B,m) such that M is
the model induced by (X,B,m) and that there is an atomless Lebesgue
space (Y, C,m) such that N is the structure induced by (Y, C,m). Fur-
thermore, we may assume that there is an aperiodic automorphism τX
on (X,B,m) that induces the action of τ on M and that there is an
aperiodic automorphism τY on (Y, C,m) that induces the action of τ on
N . Note that both maps τX and τY are aperiodic.

Let a1, . . . , ap ∈ M . Take AX
1 , . . . , A

X
p ∈ B such that [AX

j ]m = aj for
j = 1, . . . , p, and AY

1 , . . . , A
Y
p ∈ C such that [AY

j ]m = aj for j = 1, . . . , p.
Let ε > 0 and let n be a positive integer such that 1/n < ε. By

Rokhlin’s Lemma, there is B ∈ B such that B, τX(B), . . . , τn−1
X (B) are

disjoint and m(∪i<nτ
i
X(B)) ≥ 1 − ε. Let PX be the partition of B

generated by τ−i
X (τ i

X(B) ∩ AX
j ) for 1 ≤ j ≤ p and 0 ≤ i < n. Since

(M, τ) ⊆ (N , τ), there is C ∈ C such that [C]m = [B]m. Let PY be
the partition of C generated by τ−i

Y (τ i
Y (C) ∩ AY

j ) for 1 ≤ j ≤ p and
0 ≤ i < n.

Since (X,B,m) and (Y, C,m) are Lebesgue spaces, by Fact 18.7 there
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is h0 : B → C a measure preserving bijection such that

h0(τ−i
X (τ i

X(B) ∩AX
j )) = τ−i

Y (τ i
Y (C) ∩AY

j )

(up to measure zero) for 1 ≤ j ≤ p and 0 ≤ i < n. Extend h0 to
∪1<i<nτ

i
X(B) by setting h0(τ i

X(x)) = τ i
Y (h0(x)) for x ∈ B, 0 < i < n.

Let ZX = X \ ∪1<i<nτ
i
X(B) and let ZY = Y \ ∪1<i<nτ

i
Y (C). Extend

h0 to a measure preserving bijection h from (X,B,m) to (Y, C,m) by
defining h : ZX → ZY so that h(ZX ∩AX

j ) = ZY ∩AY
j for all 1 ≤ j ≤ p.

Note that h induces a map ĥ from M to N satisfying ĥ(aj) = aj for
all j and that ρ(τX , h−1τY h) ≤ 2ε. The proposition follows from the
uniform continuity of formulas.

18.15 Definition. We say that (M, τ) |= APAτ is existentially closed
if whenever (N , τ) |= APAτ , (N , τ) ⊇ (M, τ), a ∈ Mn and ϕ(x, y)
is a quantifier free formula such that (N , τ) |= infx ϕ(x, a) = 0, then
(M, τ) |= infx ϕ(x, a) = 0. (Here x, y are disjoint finite sequences of
distinct variables, with y of length n.)

18.16 Lemma. Let M be an Lτ -structure. Then M |= APAA if and
only if M is an existentially closed model of APAτ .

Proof Any model of APAτ can be embedded in a model of APAA.
Indeed, if M |= APAτ , then M can be embedded in the product of M
and the Lτ -structure that is based on the unit circle with normalized
Lebesgue measure plus the rotation through an irrational multiple of π.
It is easy to see that this product is a model of APAA. Since APAA is
axiomatized by adding a set of inf-conditions to APAτ , this yields that
any existentially closed model of APAτ is a model of APAA. The other
direction follows from the previous proposition.

In ergodic theory, joinings (see [18, page 125]) give different ways
of amalgamating two probability structures with automorphisms into
a common extension. In particular, the relative independent joining
over a common factor (described in [18, page 127]) corresponds to a
free amalgamation of two models M1, M2 of APAτ over a common
substructure N . Call this new structure M1 ⊕N M2.

18.17 Theorem. The theory APAA has elimination of quantifiers.

Proof We apply Proposition 13.6. Let M1, M2 |= APAA, let N be a
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substructure of M1 and let f : N → M2 be an embedding. We may
assume that f is the identity. Since APAA is model complete, M1 ⊕N
M2 is an elementary extension of M2 and the canonical embedding of
M1 into this space gives the desired extension of f .

18.18 Proposition. Let (M, τ) be a κ-universal domain of APAA,
with κ ≥ ω1, and let A ⊆ M . Then the definable closure of A in Lτ is
the smallest σ-algebra of events containing τ i(A) for all i ∈ Z.

Proof This follows from quantifier elimination plus an analysis of re-
stricted quantifier free formulas.

Independence and stability

In this section we introduce an abstract notion of independence, which
we call τ -independence, and show that it agrees with non-dividing. This
idea follows the approach used in [14, Section 3] to characterize non-
dividing inside a first-order stable structure expanded by a generic au-
tomorphism. We reserve the word “independence” here for independence
of events in the sense of probability structures. Fix a κ-universal domain
(U , τ) |= APAA, where κ ≥ ω1.

18.19 Definition. Let A,B,C ⊂ U be small. We write A |τ^C
B, and

say that A is τ -independent from B over C, if dclτ (A) is independent
from dclτ (B) over dclτ (C).

We will show that |τ^ is a stable independence relation. We start by
proving a strong form of stationarity:

18.20 Proposition. Let a, b ∈ Un and let C ⊆ D ⊆ U . Suppose that
tpτ (a/C) = tpτ (b/C) and that a |τ^C

D and b |τ^C
D. Then tpτ (a/D) =

tpτ (b/D).

Proof Let a, b, C,D be as above. Then for every k < ω,

tp(τ−k(a), . . . , τk(a))/dclτ (C)) = tp(τ−k(b), . . . , τk(b))/dclτ (C)).

By stationarity of types in models of APA, we get

tp(τ−k(a), . . . , τk(a))/dclτ (D)) = tp(τ−k(b), . . . , τk(b))/dclτ (D)).

Since this equality holds for all k < ω, by quantifier elimination of
APAA, tpτ (a/D) = tpτ (b/D).
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18.21 Corollary. The theory APAA is stable and the relation of τ -
independence agrees with non-dividing.

Proof We note that τ -independence is a stable independence relation
on κ-universal domains for APAA, where κ ≥ ω1. Using the prop-
erties of independence in a κ-universal domain U for APA, it is clear
that τ -independence satisfies: invariance, symmetry, transitivity, exten-
sion, local character and finite character. By the previous proposition
it also satisfies stationarity. Applying Theorem 14.14, this shows that
τ -independence agrees with non-dividing and APAA is stable.

18.22 Remark. The theory APAA is not ω-stable. For every irrational
α ∈ [0, 1], consider the model of APAA that is based on the unit circle
with normalized Lebesgue measure and is equipped with the aperiodic
automorphism corresponding to rotation by the angle 2πα. Let pα be the
1-type realized in this model by the event corresponding to the semicircle
in the upper half plane.

Assume now that α, β are irrational and that α− β is also irrational.
Let a |= pα and let b |= pβ . For every ε > 0 there is n < ω such that
d(a, σn(a)) = µ(a4σn(a)) < ε while d(b, σn(b)) > 1− ε. It follows that
d(a, b) + d(σn(a), σn(b)) ≥ 1 − 2ε. Since d(a, b) = d(σn(a), σn(b)), we
conclude that d(a, b) ≥ 1

2 − ε. Therefore d(pα, pβ) ≥ 1
2 .

Since we can choose 2ℵ0 irrationals in [0, 1], each two of which are
linearly independent over Q, this yields 2ℵ0 types over ∅ each two of
which have distance ≥ 1

2 from each other.

Further results about probability algebras with a generic automor-
phism can be found in [10]. In particular, it is shown there how entropy
can be seen as a model-theoretic rank.
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