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1 Positive logic

1.1 Motivation: the semantics of hyperimaginary sorts

Classical approach: Semantics encoded by syntactic objects

Syntax Semantics
Formulae  ∅-Definable sets

L(n) = {ϕ(x0, . . . , xn−1)} L∅(n) = L(n)/≡

Let Sn be the Stone space of the Boolean algebra L∅(n), i.e., the set of all complete
consistent n-types in L. By Stone duality:

Sn = {ultrafilters on L∅(n)}
{clopen sets in Sn} = L∅(n)
{closed sets in Sn} = type-definable properties

If T is a theory, we have a similar duality between LT (n) = L(n)/≡T and Sn(T ).

Positive model theory: an alternative (and more general) approach to semantics
in model theory

• Idea: Semantics can be coded by topological objects.

• Advantage: it is easier to “relax the hypotheses” on a topological space than on a
Boolean algebra.

• Why should we want to relax the hypotheses? For example, hyperimaginary sorts.
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Imaginary elements: first order syntax works
Let E(x̄, ȳ) be a definable equivalence relation on n-tuples, and:

L∗ = L ∪ {πE}
M∗ = M ∪Mn/E, πM

∗

E (ā) = ā/E.

T ∗ = ThL∗{M∗ : M � T}
= T ∪ {“for all x̄, πE(x̄) is the E-class of x̄”}.

If M is a monster model of T then M∗ is a monster model of T ∗; if T is model complete so
is T ∗; etc.

Example: cosets
Let M = 〈G, 1, ·, . . .〉 be a group, and H ≤ G a definable subgroup. Let E(x, y) be the

formula

∃z (z ∈ H ∧ x = yz).

Then E is a definable equivalence relation, and the sort ME is the sort of left cosets of H:
{gH : g ∈ G}.

If H is a normal subgroup, then we can define multiplication on ME by the formula
ϕ(xE, yE, zE):

∃xy
(
πE(x) = xE ∧ πE(y) = yE ∧ πE(xy) = zE

)
.

Hypermaginary elements: first order syntax fails
Let E(x̄, ȳ) be a type-definable equivalence relation on α-tuples (possibly infinite).
E-classes are called hyperimaginary elements.
If α = n < ω, we may again try to define:

L∗ = L ∪ {πE}
M∗ = M ∪Mn/E, πM

∗

E (ā) = ā/E.

T ∗ = ThL∗{M∗ : M � T}.

However, even if M is saturated M∗ needs not be, and in a saturated model N∗ � T ∗ we
may find ā, b̄ such that E(ā, b̄) but πE(ā) 6= πE(b̄).

For the purpose of studying E-classes, T ∗ is useless.
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Example: infinitesimals
Let RCF be the theory of real closed fields in the language of ordered rings. Let E(x, y)

be “x− y is infinitesimal”. This is type-definable:

E(x, y) = {−1/n < x− y < 1/n : n < ω}.

If M � RCF then the set πE(x) 6= πE(y) ∪ E(x, y) is finitely realised in M∗, but not
realised. It would be realised in a saturated model of T ∗, which means that πE is not what
we want it to be.

Solution: semantics via types
Let U be a monster model for T , UE = Uα/E a hyperimaginary sort.

As sets: Sn(T ) = Un/Aut(U),
Sα(T ) = Uα/Aut(U), etc.

 SE(T ) = UE/Aut(U).

We obtain a projection Sα(T ) � SE(U). We equip SE(U) with the quotient topology:
it is compact and Hausdorff. We can similary construct Sn,m×E(T ) (n real elements, m
E-classes), and do the same with more than one equivalence relation.

From definable sets to type-definable ones
We have a new feature: the type-space SE(T ) is not necessarily totally disconnected (no

base of clopen sets).
Hence, no Stone duality with a Boolean algebra, and no canonical notion of a for-

mula/definable set. We do have a formal analogue of the notion of type-definable properties,
i.e., properties definable by a set of formulae, through the classical correspondence:

type-definable properties ↔ closed sets of types.

The family of type-definable properties is closed under conjunction, disjunction, existen-
tial (and universal) quantification, but not negation. It also satisfies:

Compactness for type-definable properties
If {pi(x̄) : i ∈ I} is a family of type-definable properties which is finitely satisfiable, then it
is satisfiable.

Recovering some syntax
Let LE consist of a n-ary predicate symbol PR for every closed set R ⊆ Sm×E(T ). Let ∆E

be the set of all quantifier-free positive LE-formulae. Then UE is naturally an LE structure.
The type of a tuple in UE is determined by the ∆E-formulae it satisfies (its ∆E-type),

and every finitely satisfiable small set of ∆E-formulae is satisfied (more precise definitions
follow).

(We can do the same with several sorts simultaneously.)

This is our motivating example for positive logic.
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1.2 Positive fragments and universal domains

Syntax for positive logic
Let L be any first order language.

Definition. A positive fragment of L is a subset ∆ ⊆ L closed under positive Boolean
combinations, change of variables and sub-formulae. (Caution: only ∧,∨,¬,∃ are allowed.)

We fix a positive fragment ∆ and define:

Σ = ∃∆ = {∃ȳ ϕ(x̄, ȳ) : ϕ ∈ ∆} (positive existential formulae)

Π = ¬Σ = {∀ȳ ¬ϕ(x̄, ȳ) : ϕ ∈ ∆} (negative universal formulae)

Note that Σ is also a positive fragment.

Universal domains

Definition. A (partial) ∆-homomorphism between two structures f : M → N (f : M 99K
N) is a mapping such that for all ā ∈ dom(f) and ϕ(x̄) ∈ ∆:

M � ϕ(ā) =⇒ N � ϕ(f(ā)).

Definition. A (κ-)universal domain is an L-structure U satisfying:

• ∆-Compactness: Every small (< κ) set of ∆-formulae which is finitely realised in U is
realised in U .

• ∆-Homogeneity: Every partial ∆-homomorphism f : U 99K U with small domain ex-
tends to an automorphism of U .

• Elimination of ∃: Every Σ-formula ∃ȳ ϕ(x̄, ȳ) is equivalent in U to some partial ∆-type
p(x̄).

Complete positive Robinson theories
Universal domains replace the monster models: big homogeneous models in which the

saturation assumption is restricted to our positive fragment ∆. Therefore:

A partial ∆-type (i.e., a set of ∆-formulae) Φ(x̄) is realised in U if and only if it is consistent
with its negative universal theory:

T = ThΠ(U) = {∀x̄¬ϕ(x̄) : ϕ ∈ ∆ and U � ∀x̄¬ϕ(x̄)}.

We therefore say that U is a universal domain for T .

Definition. A complete positive Robinson theory is a Π-theory which has a universal domain.
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Examples

Example. If ∆ = Lω,ω, T is a complete first order theory, and U is a monster model of T .
We call this the “first order” case.

Example. With UE and ∆E as constructed in the example of hyperimaginaries, UE is a
universal domain with respect to ∆E.

Example. If ∆ is closed for negation, T is a Robinson theory and U is its universal domain
(Hrushovski [Hru97]), whence the term “positive Robinson theory”.

1.3 On ∆-inductive theories and e.c. models

∆-inductive limits
Fix a positive fragment ∆ of L. Here ∆-homomorphisms will play the role of embeddings.

Note that a ∆-homomorphism f : M → N needs not be injective, so we cannot say that N
extends M . Instead, we will say that N continues M .

∆-inductive limits
Let (I,<) be totally ordered, (Mi : i ∈ I) be structures, and for each i < j let fij : Mi →Mj

be a ∆-homomorphism such that fjk ◦ fij = fik.
One can construct in the obvious manner a direct limit N = lim−→Mi, equipped with

∆-homomorphisms gi : Mi →M , such that gj ◦ fij = gi for i < j.

If ∆ = {q.f. formulae}. . .
Then a ∆-homomorphism is an embedding, and a ∆-inductive limit is an increasing union.

∆-inductive theories

Definition. A first order theory T is ∆-inductive if an inductive limit of models of T is a
model of T .

For example, every Π-theory is ∆-inductive. More generally:

Lemma (Characterisation of ∆-inductive theories). A first order theory T is ∆-
inductive if and only if it can be axiomatised by sentences of the form

∀x̄∃ȳ ϕ(x̄) → ψ(x̄, ȳ) ϕ, ψ ∈ ∆.

If ∆ = {q.f. formulae}. . .
This is the classical characterisation of inductive theories.
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Existentially closed (e.c.) models

Definition. A model M of a theory T is existentially closed if for every ∆-homomorphism
f : M → N � T , and every ā ∈M and ϕ(x̄, ȳ) ∈ ∆:

N � ∃ȳ ϕ(f(ā), ȳ) =⇒M � ∃ȳ ϕ(ā, ȳ).

We can use the classical chain argument to show:

Lemma (Existence of existentially closed models). If T is ∆-inductive and M � T ,
then M continues to an e.c. model N � T . (Uses the Axiom of Choice.)

If ∆ = {q.f. formulae}. . .
This is the classical definition of e.c. models.

Companions
We will be interested in what happens in the class of e.c. models of a ∆-inductive theory.

If two such theories have precisely the same e.c. models, we call them companions, and for
our purposes they are equivalent.

Lemma. The companionship class of a ∆-inductive theory T is determined by the set of
Π-consequences of T , denoted TΠ.

Therefore, on the one hand we may restrict our consideration to Π-theories. On the
other, when it is convenient to consider other ∆-inductive theories, we are allowed to do so.

Example (Positive Morleyisation). Let ∆ ⊆ Lω,ω be a positive fragment, and T an ∆-
inductive theory (e.g., a Π-theory).

L′ = {Rϕ(x̄) : ϕ(x̄) ∈ ∆}
∆′ = positive quantifier-free L′-formulae

T ′ = ∀x̄∃ȳ Rϕ(x̄) → Rψ(x̄, ȳ) ∀x̄∃ȳ ϕ(x̄) → ψ(x̄, ȳ) ∈ T
∀x̄∃!y Rf(x̄)=y(x̄, y) f ∈ L
∀x̄ R¬ϕ(x̄) ↔ ¬Rϕ(x) ¬ϕ ∈ ∆

∀x̄ R∃ȳϕ(x̄) ↔ ∃ȳ Rϕ(x̄, ȳ) ∃ȳϕ ∈ ∆

. . . (same for ∨, ∧)

Then T ′ is ∆′-inductive, and up to a change of language it has the same e.c. models as T .

∴ We may always assume that ∆ consists only of positive quantifier-free formulae.

6



Positive Robinson theories, revisited
We can now re-define positive Robinson theories by a “quantifier elimination” property:

Definition. Let T be a ∆-inductive theory. It is:

• A positive Robinson theory if every Σ-formula ∃ȳ ϕ(x̄, ȳ) is equivalent, in the class of
e.c. models of T , to a partial ∆-type (a set of ∆-formulae).

• Complete if every two models of T continue to a third (“positive JEP”).

Our new definition of a complete positive Robinson theory agrees with the previous one:

Theorem. A Π-theory is a complete positive Robinson theory if and only if it has a κ-
universal domain for some (all) big enough κ.

Proof. =⇒: The class of e.c. models of T has enough amalgamation properties to construct
a sufficiently homogeneous e.c. model of T in which all small e.c. models ∆-embed.

⇐=: Verify the definition for small (cardinality < κ) e.c. models by ∆-embedding them
in the universal domain. The same properties for arbitrary e.c. models follow easily.

Types and type spaces

• Classical concepts and methods transfer (mostly) to positive logic:

Monster model Universal domain
 

Lω,ω ∆

• Types (over a small set A ⊆ U):

tp(ā/A) = {ϕ(x̄, b̄) : ϕ ∈ ∆, b̄ ∈ A,U � ϕ(ā, b̄)}
Sn(A) = Un/AutA(U) = {tp(ā/A) : ā ∈ Un}

• Topology: every ∆-formula with parameters in A defines a closed subset:

[ϕ(x̄, ā)] = {p(x̄) ∈ Sn(A) : ϕ(x̄, ā) ∈ p}.

These sets form a base of closed sets for a compact, T1 topology.

A word of caution
Because there is no canonical notion of a formula, the choice of language is even more

arbitrary than in first order logic: ∆-formulae define closed sets of types (i.e., a partial type),
but a closed set of types may or not be defined by a ∆-formula. If such a closed set is not
definable by a ∆-formula, we can always expand the language so that it is. The semantic
contents, coded by the type spaces, would not change. Therefore:

Different positive Robinson theories in different (arbitrary!) languages with the homeomor-
phic type spaces are to be considered equivalent. The common semantic contents will be
referred to as a compact abstract theory, or cat.
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1.4 Simplicity

Closing the circle: simplicity
Our motivation for positive logic was the notion of hyperimaginary elements. These were

introduced by Hart, Kim and Pillay [HKP00] for the construction of canonical bases in first
order simple theories.

They had to re-prove for hyperimaginaries most of the theorems concerning independence
in simple theories.

One can define indiscernible sequences, non-dividing and simplicity (= local character of
non-dividing) in the positive setting.

Caution: not all equivalent definitions of first order logic are equivalent.)

Definition. • A sequence of tuples (āi : i < ω) is indiscernible over A if for all i0 < i1 <
. . . < in−1 < ω: tp(āi0 , . . . , āin−1/A) depends solely on n.

• A type p(x̄, b̄, A) ∈ Sn(b̄A) divides over A if There exists an A-indiscernible sequence
(b̄i : i < ω) such that b̄0 = b̄, and

⋃
i<ω p(x̄, b̄i, A) is inconsistent.

• Let A,B,C ⊆ U . If tp(ā/b̄C) does not divide over C for all ā ∈ A, b̄ ∈ B, we say that
A and B are independent over C, in symbols A |̂

C
B.

• A cat T is simple if for all a and A there is A0 ⊆ A, |A0| ≤ |L|, such that a |̂
A0
A.

Theorem. If T is simple, then |̂ satisfies:

• Symmetry: A |̂
C
B ⇐⇒ B |̂

C
A.

• Transitivity: A |̂
B
CD ⇐⇒

[
A |̂

B
C ∧ A |̂

BC
D

]
.

• Invariance, finite character, local character.

• Extension only holds for some types (e.g., types over sufficiently saturated models). We
call such types extendible.

• Independence theorem for extendible Lascar strong types.

Conversely, if |′^ satisfies these hypotheses, then T is simple and |′^ = |̂ .

Moreover, extendible Lascar strong types admit hyperimaginary canonical bases.

As we may add hyperimaginary sorts and remain within positive logic, we may always
assume that canonical bases exist in the structure, achieving our original goal.

Definition. A cat T is Hausdorff if Sn(T ) is Hausdorff for all n. It follows that Sα(A) is
Hausdorff for every α and set of parameters A.

Example. Adding hyperimaginary sorts to a first order theory (as in the beginning) yields a
Hausdorff cat.
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Theorem. If T is Hausdorff (in fact, a weaker assumption, “thickness”, suffices) then:

• Every type has non-dividing extensions to arbitrary sets.

• The theory of hyperdefinable groups [Wag01] holds.

• Lovely/beautiful pairs construction can be carried out.

• Etc.

2 Continuous first order logic

2.1 Characterising first order logic

Going back a bit closer to first order logic

• It really is fun to look for the most general context in which a certain argument works.

• But our original goal was merely to “relax the conditions defining first order logic”,
whatever that means.

So what precisely does define the full first order logic?
Let T be a complete first order theory (equivalently: a positive Robinson theory with

∆ = Lω,ω). Then:

• Sn(T ) is totally disconnected for all T (i.e., has a base of clopen sets).

• The restriction mapping Sn+1(T ) → Sn(T ) is open.

If a cat satisfies the latter property we say it is open.
(The mapping Sn+1(T ) → Sn(T ) is continuous and closed for every cat.)

Conversely, let T be a cat:

• If Sn(T ) is totally disconnected for all n, then we may choose a language for it such
that ∆ is closed for negation.

• Then, T being open is equivalent to the class of e.c. models of T being elementary, or
to any universal domain being a saturated model of its own theory.
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First order logic without negation?!

• When adding a hyperimaginary sort we relaxed the first condition, replacing “totally
disconnected” with “Hausdorff” (which is indeed next-best.)

• In the totally disconnected case (i.e., “with negation”), openness of Sn+1(T ) → Sn(T )
meant the existence of a first order model completion for T . In the case without
negation, does it still mean that some kind of a first order model completion exists?

• Surprisingly enough: YES.

• By the way, hyperimaginary sorts do satisfy the openness hypothesis.

Convention. From now on we assume T is an open Hausdorff cat, i.e., that Sn(T ) is
Hausdorff and Sn+1(T ) → Sn(T ) is open for all n.

Continuous predicates

• A compact totally disconnected topology is given by the family of clopen sets; equiva-
lently: by the family of functions to {0, 1} (also known as {T, F}).

• Similarly: A compact Hausdorff topology is given by the family of all continuous
functions to [0, 1] (or to C).

• In first order logic, a continuous mapping from Sn(T ) to {0, 1} is simply a formula, or
a definable n-ary predicate.

• By analogy, we define:

Definition. A (definable) continuous n-ary predicate is a continuous mapping ϕ : Sn(T ) →
[0, 1]. For a tuple ā ∈ Un we write ϕ(ā) instead of ϕ(tp(ā)).

A lemma concerning open mappings

Lemma. Let X and Y be compact Hausdorff space, f : X � Y a continuous (=⇒ closed)
and open projection. Let ϕ : X → [0, 1] be a continuous mapping, and define

ψ(y) = inf
x∈f−1(y)

ϕ(x).

Then ψ : Y → [0, 1] is continuous.

Proof. For any r ∈ [0, 1]: ψ−1([0, r]) = f(ϕ−1([0, r])) is closed. Assume now that ψ(y) < r:
then there is x ∈ f−1(y) such that ϕ(x) < r, and there is a neighbourhood U of x such that
ϕ(U) ⊆ [0, r). Then f(U) is a neighbourhood of y, and ψ(f(U)) ⊆ [0, r). Thus ψ−1([0, r)) is
open.
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Operations on continuous predicates

• Variable manipulation: If ϕ(x, y) is a definable predicate, then so are:

ψ(x, y, z) := ϕ(x, y) (dummy variables)

χ(x) := ϕ(x, x) (repetition of variables).

• Continuous (instead of Boolean) combinations: If f : [0, 1]2 → [0, 1] is continuous
and ϕ(x, y) and ψ(x, z) are definable continuous then so is:

χ(x, y, z) := f(ϕ(x, y), ψ(x, z)).

• Continuous quantification: If ϕ(x̄, y) is a definable continuous predicate, then so
are:

ψ(x̄) := inf
y
ϕ(x̄, y) χ(x̄) := sup

y
ϕ(x̄, y).

(Applying the Lemma to Sn+1(T ) → Sn(T ).)

An (important) example
Assume |L| ≤ ω. As [x = y] ⊆ S2(T ) is closed, it is the zero set of a continuous mapping

ϕ : S2(T ) → [0, 1].

In other words, we have a definable continuous predicate ϕ(x, y) such that for every
a, b ∈ U : ϕ(a, b) = 0 ⇐⇒ a = b.

Let d(x, y) := supz |ϕ(x, z) − ϕ(y, z)|. Then d is also a definable continuous predicate,
satisfying:

d(x, y) = d(y, x)

d(x, y) ≤ d(x,w) + d(w, x)

d(x, y) = 0 ⇐⇒ x = y.

In other words, d is a definable metric.

Uniform continuity

Notation. If ϕ(x̄) is an n-ary definable continuous predicate, let [ϕ(x̄) ≤ r] denote the
(closed) set {p ∈ Sn(T ) : ϕ(p) ≤ r}.

Let ϕ(x, z̄) be any definable continuous predicate, and ε > 0. Then:

[sup
z̄
|ϕ(x, z̄)− ϕ(y, z̄)| ≥ ε] ∩

⋂
δ>0

[d(x, y) ≤ δ] = ∅.
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By compactness, there is δ > 0 such that for all a, b ∈ U :

d(a, b) ≤ δ =⇒ sup
z̄
|ϕ(a, c̄)− ϕ(b, c̄)| < ε.

In other words, every definable continuous predicate is uniformly continuous with respect to
d.

A similar argument shows that if f : Un → U is type-definable (i.e., its graph is) then it
is uniformly continuous.

If d′ is another definable metric, then d and d′ are uniformly continuous w.r.t. each other,
i.e., they are uniformly equivalent.

We have all we need to motivate continuous logic.

(Another motivation: local stability. Not in this talk.)

2.2 Formal definitions

Continuous logic
Continuous first order logic as presented here was defined independently by B. and Usvy-

atsov [BUa]. It is similar to the logic defined by Chang & Keisler [CK66], but is far better
adapted to our needs.

• We replace the set of truth values {T, F} with the compact interval [0, 1]. (It turns
out to be more elegant to identify “True” with 0 rather than 1.)

• The distinguished equality symbol = is replaced with a distinguished metric symbol d.

• First order logic requires that = be a congruence relation for all predicate and function
symbols. Analogously, we require that all symbols be uniformly continuous w.r.t. d.

Definition. A continuous signature is a collection L of predicate and function symbols,
with various arities, where each symbol s is equipped with a uniform continuity modulus
ε 7→ δs(ε).

Continuous structures

Definition. A continuous pre-L-structure consists of:

• A set M0.

• For each n-ary predicate symbol a mapping PM0 : Mn
0 → [0, 1].

• For each n-ary function symbol a mapping fM0 : Mn
0 →M0.

Such that in addition dM0 is a pseudometric, and all the interpretations of the symbols
respect their uniform continuity moduli.

Definition. A continuous structure is a pre-structure M in which dM is a complete metric.

For every pre-structure M0 we may construct its completion M = M̂0 by modding out
d(a, b) = 0 and completing.
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Continuous syntax

• Terms: constructed using variables and function symbols as usual.

• Atomic formulae: defined as usual.

• Connectives: In theory any continuous function f : [0, 1]n → [0, 1]: if ϕi, i < n are
formulae then so is

f(ϕ0, . . . , ϕn−1).

• Quantifiers: inf and sup:
sup
x
ϕ inf

x
ϕ.

Continuous semantics
Writing ϕ(x̄) we mean that all free variables of ϕ are in x̄.

If M is a structure, then every term t(x̄) and formula ϕ(x̄) induce uniformly continuous
mappings (by induction on the structure of the term or formula):

tM : M |x̄| →M

ϕM : M |x̄| → [0, 1].

For example, if ψ(x̄) = supy ϕ(x̄, y), then:

ψM(ā) = sup{ϕM(ā, b) : b ∈M}.

A little more about connectives
The family of all possible continuous connectives is of the size of the continuum. In

practise, it suffices to use:

¬x = 1− x (unary – like negation)

1

2
x =

x

2
(unary – no analogue)

x−· y =

{
x− y x ≥ y

0 x < y
(binary – like “y → x”)

We can get most of the connectives we’d like to use by composing these:

|x− y| = ¬(¬(x−· y)−· (y −· x))

By lattice Stone-Weierstrass: every continuous function can be uniformly approximated by
terms in ¬, 1

2
,−· .
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2.3 Theories

Statements and compactness

Definition. A statement is something of the form “r ≤ ϕ(x̄) ≤ s”. It is closed if ϕ has no
free variables.

Theorem ( Loś’s Theorem for continuous logic). Let (Mi : i ∈ I) be L-structures, U
an ultrafilter on I. Let M =

∏
Mi/U . Then for every formula ϕ(x̄), and tuples āi ∈Mi:

ϕM([āi : i ∈ I]) = lim
U
ϕMi(āi).

Corollary (Compactness for continuous first order logic). A set of statements which
is finitely satisfiable is satisfiable.

Theories

Definition. A theory is a set of closed statements. (We could restrict to statements of the
form ϕ = 0, so theories are “ideals” – this boils down to the same thing).

Definition. We say that T eliminates quantifiers if for every formula ϕ(x̄) and ε > 0 there
is a quantifier-free formula θ(x̄) such that:

T � sup
x̄
|ϕ− θ| ≤ ε

i.e.: M � T =⇒ (sup
x̄
|ϕ− θ|)M ≤ ε.

Example: probability algebras
The language: functional language of Boolean algebras + one unary predicate symbol µ:

LPrAlg = {0, 1,∨,∧, ·c, µ}.
The theory TPrAlg: “Boolean algebra with an additive probability measure; distance is

the measure f the symmetric difference”.

supx,y d(x
c ∧ yc, (x ∨ y)c) = 0 (i.e., ∀xy xc ∧ yc = (x ∨ y)c)

. . . axioms of Boolean algebras . . .

µ(1) = 1

µ(0) = 0

∀xy µ(x) + µ(y) = µ(x ∨ y) + µ(x ∧ y) (sup | . . .− . . . | = 0)

∀xy d(x, y) = µ((x ∧ yc) ∨ (y ∧ xc))

TAtlsPrAlg = TPrAlg + “no atoms”:

supx infy

∣∣∣∣µ(x ∧ y)− 1

2
µ(x)

∣∣∣∣ = 0

The theory TAtlsPrAlg is complete and eliminates quantifiers (a back-and-forth argument). It
the “model completion” of the “universal theory” TPrAlg (note that M ⊆ N � TPrAlg =⇒
M � TPrAlg).
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Types

• A complete n-type is a maximal (finitely) satisfiable set p(x̄) of statements of the form
ϕ(x̄) = rp,ϕ ∈ [0, 1]. We may also view it as a mapping ϕ(x̄) 7→ ϕ(x̄)p = rp,ϕ.

• The type of an n-tuple ā ∈M is given by:

tpM(ā) = {ϕ(x̄) = 〈value of ϕM(ā)〉 : ϕ(x̄) ∈ L}.

• The space of all n-types consistent with a theory T is denoted Sn(T ). It is equipped
with the minimal topology in which the sets:

[r ≤ ϕ(x̄) ≤ s] := {p : r ≤ ϕp ≤ s}

are closed (equivalently: such that all the mappings p 7→ ϕp are continuous).

• T eliminates quantifiers if and only if every p ∈ Sn(T ) is determined by the mappings
ϕ 7→ ϕp for quantifier-free ϕ.

Back to the motivation
The expressive power of an open Hausdorff cat T is the same as that of a continuous first

order theory T ′:

• To get from T to T ′: define a continuous language

L′ = {Pϕ n-ary predicate : continuous ϕ : Sn(T ) → [0, 1]}
T ′ = ThL′(U

′) viewing U as an L′-structure U ′.

Then T ′ eliminates quantifiers and U is a monster model.

• To go back, using a monster model U ′ � T :

L = {PR n-ary predicate : closed R ⊆ Sn(T
′)}

∆ = {quantifier-free positive formulae}
T = ThΠ(U) viewing U ′ as an L′-structure U.

Then U is a universal domain for T .

• Going in either direction we have

Sn(T ) ∼= Sn(T
′).
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3 The metric

3.1 In continuous logic, every space is metric. . .

What now?
We can proceed to look at:

• Existentially closed models, inductive theories, model completions, model compan-
ions. . .

• Definability: Beth, Svenonius.

• Saturation, homogeneity. Monster models.

• Omitting types, isolated (and semi-isolated) types, Ryll-Nardzewski.

• Stability, and local stability (counting types ⇐⇒ non order property ⇐⇒ notion of
independence).

• Superstability.

Many of these require us to take into account the metric on the universal domain, and metrics
it induces on other spaces.

My message for the day: do not forget the metric
In continuous logic, each time we have an object we might think of as a “set with

additional structure”, it is in fact a metric space with additional structure (in classical logic
the metric is discrete, so these ARE just sets. . . ):

• In a continuous structure, the interpretations of the symbols are uniformly continuous:
this is a (complete) metric space with additional structure.

• Spaces of types admit a natural metric:

d(p, q) = inf{d(ā, b̄) : ā � p, b̄ � q}.

(Here d(ā, b̄) = maxi<n d(ai, bi).) Although this may be less obvious, one should view
type spaces as metric spaces (rather than sets) with a topological structure: shows up
when considering superstability, omitting types, and even ω-saturation.

And yet another metric (to be looked at. . . )
If M is a countable discrete structure, then Aut(M) is a polish group in the pointwise

convergence topology. The uniform convergence metric is discrete.
In the separable metric case, the topological structure of pointwise convergence comes on

top of the (non-trivial) metric structure of uniform convergence:
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M is discrete Hilbert space: U(H)
Pointwise (polish): . . . Strong operator topology
Uniform (metric): discrete Operator norm.

Question. Can we simply take a categorical definition of a topological space in the category
of sets, and transfer it to the category of metric spaces?

3.2 Omitting types

“Any fool can realise a type, but it takes a model-theorist to omit one.” G.S.

Theorem (Omitting Types Theorem, classical version). Let T be a first order theory
in a countable language, and for each n < ω, let Xn ⊆ Sn(T ) be meagre. Then there is a
model M � T omitting every type in

⋃
Xn.

Proof. The set of all p ∈ Sω(T ) which are types of enumerations of models of T is co-meagre
(Tarski-Vaught test). Removing countably many meagre sets we still have something co-
meagre, and in particular non-empty.

Corollary. A closed set X ⊆ Sn(T ) is realised in every model if and only if it has non-empty
interior.

Theorem. Let T be a continuous first order theory in a countable language, and for each
n < ω, let Xn ⊆ Sn(T ) be meagre. Then there is a pre-model M0 � T (i.e., a dense subset
of a model M � T ) omitting every type in

⋃
Xn.

Proof: same. The set of all p ∈ Sω(T ) which are types of enumerations of pre-models of T
is co-meagre (Tarski-Vaught test). . .

Corollary. A closed set X ⊆ Sn(T ) is realised in every dense subset of model if and only if
it has non-empty interior.

So what?! Well, we forgot the metric

A “classical” example: Isolated (principal) types
Recall: d(p, q) = inf{d(ā, b̄) : ā � p, b̄ � q}.
The metric limits the resolution: we cannot “see” single points, only balls of positive

radius:

Definition. A type p ∈ Sn(T ) is isolated if for every ε > 0, the ε-ball pε is a neighbourhood
of p.

Theorem (Henson). A type can be omitted in a model if and only if it is non-isolated.

Proof. If p is not isolated, it’s that pε is nowhere dense for some ε > 0. Then there is a
pre-model M0 which omits pε, and the model M = M̂0 omits p. Conversely: construct a
convergent sequence. . .
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Omitting more than a single type: 0+-interior

Definition. • Let X ⊆ Sn(T ), ε > 0 The ε-interior of X, denoted Xε,◦, is the interior
of Xε = {p : d(p,X) ≤ ε} (if X is closed, so is Xε).

• The 0+-interior of X is defined as:

X0+,◦ =
⋂
ε>0

Xε,◦.

• X is nowhere 0+-dense if X̄0+,◦ = ∅.

• X is 0+-meagre if it is a countable union of nowhere 0+-dense sets.

Real Omitting Types Theorem

Remark. A type p is isolated if and only if {p}0+,◦ 6= ∅, if and only {p}0+,◦ = {p}.
Therefore, the omission of non-principal types is a special case of:

Theorem. Let T be a continuous theory in a countable language. Let Xn ⊆ Sn(T ) be
0+-meagre for all n. Then there exists a model M � T omitting

⋃
Xn.

Proof. We may assume we only need to omit oneX ⊆ Sn(T ), thatX is closed andX0+,◦ = ∅.
For m < ω define

Ym = ∂(X
1
m ) = X

1
m rX

1
m
,◦.

Each Ym is closed and nowhere dense, so there is a pre-model M0 omitting them all.
Assume that p ∈ X. Then there is ε > 0 such that p /∈ X2ε,◦.
Let W = Xε,◦. Then W is open, and it follows that W<ε is also open, so W<ε ⊆ X2ε,◦.

Therefore d(p,W ) ≥ ε. Let m > 1
ε
. Then p

1
m ⊆ X

1
m , and

p
1
m ∩X

1
m
,◦ ⊆ p<ε ∩W = ∅.

Therefore p
1
m ⊆ Ym.

As Ym is omitted by M0, p is omitted by M = M̂0.

3.3 Semi-isolation and superstability

Semi-isolation

Definition (Classical case: Pillay [Pil83]). Let ā, b̄ be finite tuples, p(x̄, ȳ) = tp(ā, b̄),
q(ȳ) = tp(b̄).

We say that ā semi-isolates b̄ (over ∅) if there exists ϕ(x̄, ȳ) ∈ p such that ϕ(ā, ȳ) ` q(ȳ).
In other words: let X = [q(ȳ)] ⊆ Sn(ā). Then ā semi-isolates b̄ if and only if p(ā, ȳ) ∈ X◦.

Definition (Semi-isolation, continuous version). Let X = [tp(b)] ⊆ Sn(ā) as above.
Then ā semi-isolates b̄ if tp(b̄/ā) ∈ X0+,◦.

18



Semi-isolation and realising types

Corollary. Assume that p and q are types over ∅, and every model of T realising p also
realises q. Then there exists ā � p which semi-isolates a realisation b̄ � q.

Proof. Let ā � p in a large model M , and let T ′ = T (ā) = Th(M, ā). Let X = [q] ⊆ Sm(ā) =
Sm(T ′). Then by assumption every model of T ′ realises X, whereby X0+,◦ 6= ∅.

Let b̄ realise a type tp(b̄/ā) ∈ X0+,◦. Then ā semi-isolates b̄.

Corollary (Towards Lachlan’s Theorem). Assume T has finitely many separable models,
and let (āi : i < ω) be any sequence. Then there is n < ω, and a copy b̄≤n of ā≤n, such that
ā<n semi-isolates b̄≤n

Properties of semi-isolation still hold with this definition:

• If tp(b̄/ā) is isolated then ā semi-isolates b̄.

• If ā semi-isolates b̄, and b̄ semi-isolates c̄, then ā semi-isolates c̄.

• In a stable theory, if ā semi-isolates b̄, but tp(b̄) is not isolated, then ā 6 |̂ b̄.
Proof of last item. Let q(ȳ) = tp(b̄), X = [q]Sn(ā).

Assume we did have ā |̂ b̄. We know there is ε > 0 such that (qε)◦ is empty. But then:

tp(b̄/ā) ∈ Xε,◦ ⊆ Xε, so by the Open Mapping Theorem: qε has non-empty interior.
Contradiction.

Approximate dependence/independence
In the previous argument we wasted information: assume that ε > 0 is such that (q2ε)◦ =

∅. Then the same argument shows that if d(b̄′, ′̄) ≤ ε then b̄′ 6 |̂ ā as well.

Definition (Approximate independence). Let b̄ be a finite tuple, and ε > 0. We say
that b̄ε |̂

B
C (“b̄ is independent up to ε from C over B”) if there is a tuple b̄′ such that

d(b̄, b̄′) ≤ ε and b̄′ |̂
C
B.

So in fact we proved:

Lemma. Assume that tp(b̄) is not isolated. Then there is ε > 0 such that for every tuple ā,
if ā semi-isolates b̄, then b̄ε 6 |̂ ā.

A further consequence

Lemma (Towards Lachlan’s Theorem). Assume T is stable and has finitely many sep-
arable models, and that p ∈ S1(T ) is non-isolated. Let (ai : i < ω) be a Morley sequence in
p. Then there is ε > 0, n < ω, and an independent sequence (bi : i < ω) of realisations of p,
such that bεj 6 |̂ a<n for all j < ω.

Proof. By a previous lemma, there are n < ω, and a copy c0≤n of a≤n such that a<n semi-
isolates c0≤n. Then a<n semi-isolates b0 = c0n, and a<n semi-isolates c0<n.

Now find c1≤n such that c1≤nc
0
<n ≡ c0≤na<n and c1≤nc

0
<n |̂ b0. Let b1 = c1n. Proceed by

induction.
Existence of ε is by non-isolation of p.
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Superstability

Definition (Iovino, for Banach spaces). • T is λ-stable, if for every set |A| ≤ λ, the
space of types Sn(A) has metric density character λ.

• T is superstable if it is λ-stable for all λ ≥ 2|L|.

Theorem. T is superstable if and only if T is stable and for every singleton (or finite tuple)
a and set A:

∀ ε > 0 ∃A0 ⊆ A finite s.t. aε |̂
A0

A.

If we do not take the metric into account, no “truly continuous” theory can be superstable.
With these definitions, most known stable examples are superstable.

Putting some of this together: Lachlan’s Theorem

Theorem (improved version of B.,Usvyatsov [BUb]). Assume that: (1) T is super-
stable; and (2) there are “enough” elements a such that ∀ε∃δ such that if aδ |̂ b then bε |̂ a.
Then T has either one or infinitely many separable models.

Sketch of proof. Assume the contrary. Then there is a non-isolated type, and there is there-
fore one p whose realisations satisfy (2).

Find an independent sequence ā = (ai : i < n) in p, and an infinite independent sequence
(bi : i < ω) in p, and ε such that bεj 6 |̂ a<n or all j.

Since ā consists of independent realisations of p, it also satisfies (2), and choose δ accord-
ingly, so āδ 6 |̂ bj for all j.

As (bj : j < ω) are independent, it follows that āδ 6 |̂
b<j

bj for all j, contradicting super-

stability.

Remarks about the proof

• Assumption (2) is not redundant. For example, the theory of Lp Banach lattices is
superstable, but if we name a single parameter it has precisely two models:

The models of Th〈L1([0, 1]), χ[0,1]〉 are

– 〈L1([0, 1]), χ[0,1]〉 (χ[0,1] supports everything).

– 〈L1([0, 2]), χ[0,1]〉 (χ[0,1] does not support everything).

Indeed, χ[0,1] does not satisfy the property in (2) and it cannot even be approximated
by elements which do.

• Pillay’s proof of Lachlan’s Theorem [Pil83] used the fact that if T has finitely many
countable models then a prime model M exists over every finite tuple ā (and ā isolates,
and therefore semi-isolates, every tuple in M). This is not true in continuous logic,
but we can get semi-isolation directly using the Omitting Types Theorem.
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Further questions

• Find a necessary and sufficient condition for a closed set X ⊆ Sn(T ) to be always
realised (in first order: X◦ 6= ∅):

We showed that if X is closed and X0+,◦ = ∅, it can be omitted.

It is fairly easy to show that if X is closed and X0+,◦ = X, then X is always realised
(suffices: X closed in the metric).

What if ∅ ( X0+,◦ ( X? Boils down to: what if X 6= X0+,◦ but X = X0+,◦?

Further questions, cntd.

• Structure perturbation:

Theorem: if T is a superstable (supersimple) continuous theory, so is the theory TP of
its beautiful (lovely) pairs.

But: there exists a superstable continuous theory T such that TA (T + generic automor-
phism) is not supersimple: for example, the theory of probability algebras [BH, Ben04].

Maybe this is because we should only look at an automorphism up to the uniform
convergence metric (i.e., allow minor perturbations of the automorphism)?

Related to a theorem of Henson (unpublished. . . ) characterising theories of pure Ba-
nach spaces which are separably categorical up to small perturbation of the norm. A
more general version has recently been proved [Ben05b].

Some background references:

• Positive logic: [Ben05a] (BSL survey).

• Continuous logic:

– Mostly oriented towards local stability: B., Usvyatsov [BUa].

– Text from Henson and Berenstein’s tutorial:
http://www.math.uiuc.edu/~henson/newton/newton.pdf

– An older, too-general-and-yet-not-general-enough approach: [CK66].

References

[Ben04] Itay Ben-Yaacov, Probability algebras with an automorphism are not superstable,
unpublished notes, 2004.

[Ben05a] , Compactness and independence in non first order frameworks, Bulletin of
Symbolic 11 (2005), no. 1, 28–50.

21



[Ben05b] , On perturbations of continuous structures, in preparation, 2005.

[BH] Alexander Berenstein and C. Ward Henson, Model theory of probability spaces with
an automorphism, submitted.

[BUa] Itay Ben-Yaacov and Alexander Usvyatsov, Continuous first order logic and local
stability, in preparation.

[BUb] , On d-finiteness in continuous structures, in preparation.

[CK66] Chen Chung Chang and H. Jerome Keisler, Continuous model theory, Princeton
University Press, 1966.

[HKP00] Bradd Hart, Byunghan Kim, and Anand Pillay, Coordinatisation and canonical
bases in simple theories, Journal of Symbolic Logic 65 (2000), 293–309.

[Hru97] Ehud Hrushovski, Simplicity and the Lascar group, unpublished, 1997.

[Pil83] Anand Pillay, Countable models of stable theories, Proceedings of the American
Mathematical Society 89 (1983), no. 4, 666–672.

[Wag01] Frank O. Wagner, Hyperdefinable groups in simple theories, Journal of Mathemat-
ical Logic 1 (2001), 152–172.

22


	Positive logic
	Motivation: the semantics of hyperimaginary sorts
	Positive fragments and universal domains
	On -inductive theories and e.c. models
	Simplicity

	Continuous first order logic
	Characterising first order logic
	Formal definitions
	Theories

	The metric
	In continuous logic, every space is metric…
	Omitting types
	Semi-isolation and superstability


