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Riccardo Biagioli ∗

Université de Lyon, Université Lyon 1

Institut Camille Jordan - UMR 5208 du CNRS

43, boulevard du 11 novembre 1918

F - 69622 Villeurbanne Cedex

Abstract

We generalize some identities and q-identities previously known for the symmetric
group to Coxeter groups of type B and D. The extended results include theorems of
Foata and Schützenberger, Gessel, and Roselle on various distributions of statistics, like
of inversion number, major index, and descent number. In order to show our results
we provide explicit caracterizations of the systems of minimal coset representatives of
Coxeter groups of type B and D.

1 Introduction

A well known theorem of MacMahon [17] shows that the length function and the major
index are equidistributed over the symmetric group Sn. We recall that the length of a
permutation σ ∈ Sn is given by the number of inversions, denoted inv(σ) := |{(i, j) | i <

j, σ(i) > σ(j)}|, and the major index of σ is the sum of all its descents. More precisely,

maj(σ) :=
∑

i∈Des(σ)

i,

where Des(σ) := {i ∈ [n− 1] | σ(i) > σ(i+1)}. Foata gave a bijective proof of this equidis-
tribution theorem in [9]. He studied further his bijection and together with Schützenberger
derived the two following results [13]. The first one is a refinement of MacMahon’s theorem,
asserting the equidistribution of major index and number of inversions over descent classes.

Theorem 1.1 (Foata-Schützenberger). Let M = {m1, . . . ,mt}< ⊆ {1, . . . , n− 1}. Then∑
{σ∈Sn|Des(σ−1)=M}

qmaj(σ) =
∑

{σ∈Sn|Des(σ−1)=M}

qinv(σ).

∗Dedicated to the memory of my friend and colleague Giulio Minervini.
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The second one concerns the symmetry of the distribution of the major index and the
inversion number over the symmetric group.

Theorem 1.2 (Foata-Schützenberger). The pairs of statistics (maj, inv) and (inv,maj)
have the same distribution on Sn, namely

Sn(t, q) :=
∑
σ∈Sn

tmaj(σ)qinv(σ) =
∑
σ∈Sn

tinv(σ)qmaj(σ).

Theorem 1.1 has been extensively studied and generalized in many ways in the last three
decades. Nevertheless, it still receives a lot of attention as shown by two recent papers of
Hivert, Novelli, and Thibon [16], and of Adin, Brenti, and Roichman [3], where a multi-
variate generalization and an extension to the hyperoctahedral group of it are provided. In
the latter paper, the problem of finding an analogue of this Foata-Schützenberger theorem
for the Coxeter groups of type D is proposed [3, Problem 5.6].

In this paper we answer this question. Actually, we show that the negative major
indices “nmaj”, introduced in [2] on Coxeter groups of type B, and “dmaj”, defined in [6] on
Coxeter groups of type D, give generalizations of the first and second Foata-Schützenberger
identities to Bn and Dn. In our analysis we derive nice relations among quotients, or sets
of minimal coset representatives, of Bn and Dn that are interesting in their own. Explicit
maps between these quotients are shown, and used to compute some generating functions.

Finally, we use our results, and the negative descent numbers, to give generalizations to
Bn and Dn of two classical q-identities. The first one, due to Roselle [19] (see also Rawlings
[18, (2.4)]), is the generating function of the inversion number and major index over the
symmetric group: for undefined notation see next section.

Theorem 1.3 (Roselle). ∑
n≥0

Sn(t, q)
un

(t; t)n(q; q)n
=

1
(u; t, q)∞,∞

,

where S0(t, q) = 1. The second one is the trivariate distribution of inversion number, major
index, and number of descents, due to Gessel [15, Theorem 8.4], (see also [14]).

Theorem 1.4 (Gessel).

∑
n≥0

un

[n]q!

∑
σ∈Sn

tmaj(σ)qinv(σ)pdes(σ)

(t; q)n+1
=

∑
k≥0

pke[u]qe[tu]q · · · e[tku]q.

2 Preliminaries and notation

In this section we give some definitions, notation and results that will be used in the rest of
this work. For n ∈ N we let [n] := {1, 2, . . . , n} (where [0] := ∅). Given n, m ∈ Z, n ≤ m,
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we let [n, m] := {n, n + 1, . . . ,m}. We let P := {1, 2, 3, . . .}. The cardinality of a set A

will be denoted by |A| and we let
(
[n]
2

)
:= {S ⊆ [n] | |S| = 2}. Given a set A, we denote

A< := {a1, a2, . . .} where a1 < a2 < . . ..
For our study we need notation for q-analogs of the factorial, binomial coefficient, and

multinomial coefficient. These are defined by the following expressions

[n]q := 1 + q + q2 + . . . + qn−1; [n]q! := [n]q[n− 1]q · · · [2]q[1]q;[
n

m

]
q

:=
[n]q!

[m]q![n−m]q!
;

[
n

m1, m2, . . . ,mt

]
q

:=
[n]q!

[m1]q![m2]q! · · · [mt]q!
.

As usual we let

(a; q)0 := 1

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1)

(a; q)∞ :=
∏
n≥1

(1− aqn−1).

Moreover, for r, s ∈ N we let

(a; t, q)r,s :=


1 if r or s are zero∏

1≤i≤r

∏
1≤j≤s

(1− ati−1qj−1) if r, s ≥ 1 ,

and
(a; t, q)∞,∞ :=

∏
i≥1

∏
j≥1

(1− ati−1qj−1).

Finally,

e[u]q :=
∑
n≥0

un

[n]q!
,

is the q-analogue of the exponential function. The following q-binomial theorem is well
known (see e.g. [4])

Theorem 2.1.

(−xq; q)n =
n∑

m=0

[
n

m

]
q

q(
m+1

2 )xm.

2.1 Coxeter groups of type B and D

We denote by Bn the group of all bijections β of the set [−n, n] \ {0} onto itself such that

β(−i) = −β(i)

for all i ∈ [−n, n] \ {0}, with composition as the group operation. This group is usually
known as the group of signed permutations on [n], or as the hyperoctahedral group of rank
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n. If β ∈ Bn then we write β = [β(1), . . . , β(n)] and we call this the window notation of β.
As set of generators for Bn we take SB := {sB

1 , . . . , sB
n−1, s

B
0 } where for i ∈ [n− 1]

sB
i := [1, . . . , i− 1, i + 1, i, i + 2, . . . , n] and sB

0 := [−1, 2, . . . , n].

It is well known that (Bn, SB) is a Coxeter system of type B (see e.g., [8, §8.1]).

s s s s s s0 1 2 3 n⌧2 n⌧1

4

Figure 1: The Dynkin diagram of Bn

To give an explicit combinatorial description of the length function `B of Bn with respect
to SB, we need the following statistics. For β ∈ Bn we let

inv(β) := |{(i, j) | i < j, β(i) > β(j)}|,
N1(β) := |{i ∈ [n] | β(i) < 0}|, and

N2(β) :=
∣∣∣∣{{i, j} ∈ (

[n]
2

)
| β(i) + β(j) < 0

}∣∣∣∣ .

Note that, if β ∈ Bn,
N1(β) + N2(β) = −

∑
{i∈[n]|β(i)<0}

β(i). (1)

For example if β = [−3, 1,−6, 2,−4,−5] ∈ B6 then inv(β) = 9, N1(β) = 4, and N2(β) = 14.
The following characterizations of the length function, and of the right descent set of

β ∈ Bn are well known [8].

Proposition 2.2. Let β ∈ Bn. Then

`B(β) = inv(β) + N1(β) + N2(β), and

DesB(β) = {i ∈ [0, n− 1] | β(i) > β(i + 1)},

where β(0) := 0.

We denote by Dn the subgroup of Bn consisting of all the signed permutations having
an even number of negative entries in their window notation, more precisely

Dn := {γ ∈ Bn | N1(γ) ≡ 0 (mod 2)}.

It is usually called the even-signed permutation group. As a set of generators for Dn we
take SD := {sD

0 , sD
1 , . . . , sD

n−1} where for i ∈ [n− 1]

sD
i := sB

i and sD
0 := [−2,−1, 3, . . . , n].

There is a well known direct combinatorial way to compute the length, and the right
descent set of γ ∈ Dn, (see, e.g., [8, §8.2]).
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s s s s s s

s

1 2 3 4 n-2 n-1

0

Figure 2: The Dynkin diagram of Dn

Proposition 2.3. Let γ ∈ Dn. Then

`D(γ) = inv(γ) + N2(γ), and

DesD(γ) = {i ∈ [0, n− 1] | γ(i) > γ(i + 1)},

where γ(0) := −γ(2).

2.2 Negative statistics

In [2], Adin, Brenti and Roichman introduced the following statistics on Bn. For β ∈ Bn

let
NDes(β) := Des(β)

⊎
{−β(i) | β(i) < 0},

where
⊎

denotes disjoint union, and define

nmaj(β) :=
∑

i∈NDes(β)

i, and ndes(β) := |NDes(β)|.

Note that NDes(β) is a multiset. It follows from (1) that

nmaj(β) = maj(β) + N1(β) + N2(β), and (2)

ndes(β) = des(β) + N1(β). (3)

For the element β = [−3, 1,−6, 2,−4,−5] ∈ B6, nmaj(β) = 29, and ndes(β) = 7.

In [6], a notion of descent multiset for γ ∈ Dn is introduced

DDes(γ) := Des(γ)
⊎
{−γ(i)− 1 | γ(i) < 0} \ {0},

and the following statistics are defined

dmaj(γ) :=
∑

i∈DDes(γ)

i, and ddes(γ) := |DDes(γ)|.

It easily follows that

dmaj(γ) = maj(γ) + N2(γ), and (4)

ddes(γ) = des(γ) + N1(γ) + ε(γ), (5)
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where

ε(γ) :=

{
−1 if 1 6∈ γ([n])
0 if 1 ∈ γ([n]).

(6)

For example if γ = [−4, 1, 3,−5,−2,−6] ∈ D6 then dmaj(γ) = 21, and ddes(γ) = 5.

The statistics nmaj and dmaj are usually called negative major indices; ndes and ddes
negative descent numbers for Bn and Dn, respectively. The negative major indices are
Mahonian statistics, namely they are equidistributed with the length over the group,∑

β∈Bn

qnmaj(β) =
∑

β∈Bn

q`B(γ), and
∑

γ∈Dn

qdmaj(γ) =
∑

γ∈Dn

q`D(γ).

The pairs (ndes,nmaj) and (ddes,dmaj) give generalizations to Bn and Dn of a famous
identity of Carlitz, see [2, Theorem 3.2], and [6, Theorem 3.4].

2.3 Quotients of Coxeter groups

To show some of the next results we will need of the following decomposition that comes
from the general theory of Coxeter group. We refer the reader to [8] for any undefined
notation.

Let (W,S) be a Coxeter system, for J ⊆ S we let WJ be the parabolic subgroup of W

generated by J , and

W J := {w ∈ W | `(ws) > `(w) for all s ∈ J},

the set of minimal left coset representatives of WJ , or the (right) quotient. The quotient
W J is a poset according to the Bruhat order. The following is well known (see [8, §2.4]).

Proposition 2.4. Let (W,S) be a Coxeter system, and let J ⊆ S. Then:

i) Every w ∈ W has a unique factorization w = wJwJ such that wJ ∈ W J and wJ ∈ WJ .

ii) For this factorization `(w) = `(wJ) + `(wJ).

As a first application of this decomposition to the groups Bn (and Dn), let us consider
the parabolic subgroup generated by J := SB \{sB

0 }. In this case, by looking at the Dynkin
diagram in Figure 1, we obtain that BJ = Sn. Moreover it is not hard to see that

BJ := BJ
n = {u ∈ Bn | u(1) < u(2) < . . . < u(n)}. (7)

Hence from Proposition 2.4 we get

Bn =
⊎

σ∈Sn

{uσ | u ∈ BJ}. (8)
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Note that in the case Dn, for J := SD \ {sD
0 }, a similar decomposition holds,

Dn =
⊎

σ∈Sn

{uσ | u ∈ DJ},

where once again DJ = Sn, and DJ = {u ∈ Dn | u(1) < u(2) < . . . < u(n)}.

Remark 2.5. The construction or right quotient can be mirrored, by considering left
descents. Let J ⊆ S. A left quotient of W is defined by

JW := {w ∈ W | `(sw) > `(w) for all s ∈ J}.

Proposition 2.4 holds for left quotients too, but the factorization in i) becomes w = wJ ·Jw,
with Jw ∈ JW . Left and right quotients are isomorphic posets, by means of the inversion
map. In the next section, we will work with subsets of Bn and Dn that are left quotients.
They are called descent classes for reasons that will be immediately clear.

3 Combinatorial description of descent classes

Let us fix a subset of descents M := {m1,m2, . . . ,mt}< ⊆ [0, n− 1]. The set

B(M) := {β ∈ Bn | DesB(β−1) ⊆ M}, (9)

is usually called a B-descent class. Note that this set is nothing but a left quotient of Bn.
More precisely, it is the one corresponding to the subset J = S \ M̃ , where M̃ := {si | i ∈
M}. The following result can be found in [3, Lemma 4.1].

Lemma 3.1. Let β ∈ Bn, and M = {m1, . . . ,mt}< ⊆ [0, n − 1]. Let mt+1 := n. Then
DesB(β−1) ⊆ M if and only if there exist (unique) integers r1, . . . , rt satisfying mi ≤ ri ≤
mi+1 for all i, and such that β is a shuffle of the following increasing sequences:

[1, 2, . . . ,m1] ,
[−r1,−r1 + 1, . . . ,−(m1 + 1)] ,
[r1 + 1, r1 + 2, . . . ,m2] ,

...
[−rt,−rt + 1, . . . ,−(mt + 1)] ,
[rt + 1, rt + 2, . . . , n] .

(10)

Some of these sequences may be empty, if ri = mi or ri = mi+1 for some i, or if mi = 0.

The following one is an explicit description of D-descent classes

D(M) := {γ ∈ Dn | DesD(γ−1) ⊆ M}. (11)
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Lemma 3.2. Let γ ∈ Dn, and M = {m1, . . . ,mt}< ⊆ [0, n − 1]. Let mt+1 := n. Then
DesD(γ−1) ⊆ M if and only if there exist (unique) integers r1, . . . , rt satisfying mi ≤ ri ≤
mi+1 for all i, and such that γ is a shuffle of the following increasing sequences. There are
three cases, and six possible “blocks” of sequences.

1) If 0 ∈ M : (m1 = 0)
[−r1,−r1 + 1, . . . ,−2,−1] ,
[r1 + 1, r1 + 2, . . . ,m2] ,

...
[−rt,−rt + 1, . . . ,−(mt + 1)] ,
[rt + 1, rt + 2, . . . , n] ,

(12)

with
t∑

i=1

(ri −mi) ≡ 0 (mod 2).

2) If 0, 1 6∈ M : (note m1 ≥ 2)

[1, 2, . . . ,m1] , [−1, 2, . . . ,m1]
[−r1,−r1 + 1, . . . ,−(m1 + 1)] , [−r1,−r1 + 1, . . . ,−(m1 + 1)]
[r1 + 1, r1 + 2, . . . ,m2] , [r1 + 1, r1 + 2, . . . ,m2]

...
...

[−rt,−rt + 1, . . . ,−(mt + 1)] , [−rt,−rt + 1, . . . ,−(mt + 1)]
[rt + 1, rt + 2, . . . , n] [rt + 1, rt + 2, . . . , n]

(13)

with
t∑

i=1

(ri −mi) ≡ 0 (mod 2);
t∑

i=1

(ri −mi) ≡ 1 (mod 2).

3) If 0 6∈ M and 1 ∈ M : (note m2 ≥ 2, and r1 ≥ 2)

[1] [−r1, . . . ,−2, 1]
[2, 3, . . . ,m2] , [−1, 2, 3, . . . ,m2] [r1 + 1, r1 + 2, . . . ,m2]
[−r2,−r2 + 1, . . . ,−(m2 + 1)] , [−r2,−r2 + 1, . . . ,−(m2 + 1)] , [−r2,−r2 + 1, . . . ,−(m2 + 1)]
[r2 + 1, r2 + 2, . . . ,m3] , [r2 + 1, r2 + 2, . . . ,m3] , [r2 + 1, r2 + 2, . . . ,m3]

...
...

...
[−rt,−rt + 1, . . . ,−(mt + 1)] , [−rt,−rt + 1, . . . ,−(mt + 1)] , [−rt,−rt + 1, . . . ,−(mt + 1)]
[rt + 1, rt + 2, . . . , n] [rt + 1, rt + 2, . . . , n] [rt + 1, rt + 2, . . . , n]

(14)
with

t∑
i=2

(ri −mi) ≡ 0 (mod 2);
t∑

i=2

(ri −mi) ≡ 1 (mod 2);
t∑

i=1

(ri −mi) ≡ 0 (mod 2).

Some of these sequences may be empty, if ri = mi or ri = mi+1 for some i, or if mi = 0.
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Proof. The only difference with respect to the Bn case is for the 0, 1 descents. They depend
on the relative positions of ±1 and ±2 in the window notation of γ. The following are the
D-descent classes of all elements of B2. We have that

D(∅) = {[1, 2], [−1, 2]}
D({0}) = {[2,−1], [−2,−1]}
D({1}) = {[−2, 1], [2, 1]}
D({0, 1}) = {[1,−2], [−1,−2]}.

From this, the parity conditions
∑t

i=1(ri − mi) ≡ 0 or ≡ 1 (mod 2), and Lemma 3.1 the
result follows.

Remark 3.3. Let us fix a subset of descents M := {m1,m2, . . . ,mt}. Consider the de-
compositions of Bn and Dn given by Proposition 2.4 by using left quotients. Recall that
|Bn| = 2nn! and that |Dn| = 2n−1n!. By looking at the Dynkin diagrams in Figure 1 and
Figure 2, it is easy to derive the following equalities.

♣ If 0 ∈ M , then |B(M)| = 2 · |D(M)|;

♣ If 0, 1 6∈ M , then |B(M)| = |D(M)|;

♣ If 0 6∈ M , and 1 ∈ M , then |B(M)| = m2 · |D(M)|.

Now we make explicit these equalities by showing relations between D and B left
quotients.

Proposition 3.4. Let M ⊆ [0, n− 1], such that 0 ∈ M . Then

i) B(M) splits into the disjoint union

B(M) = D(M) ] D̄(M),

where D̄(M) := {γ̄ = [−γ(1), γ(2), . . . , γ(n)] | γ ∈ D(M)} = {γ · sB
0 | γ ∈ D(M)}.

ii) Moreover ∑
β∈B(M)

q`D(β) = 2 ·
∑

γ∈D(M)

q`D(γ).

Proof. Let γ ∈ D(M). By Lemma 3.2 γ is a shuffle of the sequences in (12), and so it
can also be obtained as a shuffle of the sequences in (10). Hence γ ∈ B(M). Now, let
us change the sign to the first entry of γ, by getting γ̄. We are changing the sign of −ri,
or of ri + 1 for i ∈ [t], in one of the sequences in (12). Note that this operation does
not create a new B-descent for γ̄. Hence γ̄ ∈ B(M) \ D(M). More precisely, γ̄ can be
obtained by shuffling the same sequences that give γ where the twos involving ri are replaced
either by [−ri + 1, . . . ,−(mi + 1)] and [ri, ri + 1, . . . ,mi], or by [−ri − 1, . . . ,−(mi + 1)]
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and [ri + 2, . . . ,mi], depending if it is the sign of −ri, or of ri + 1, that changes. All those
sequences belong to (10). So i) follows by Remark 3.3.

Now, it is easy to see that for all γ ∈ D(M), one has `D(γ) = `D(γ̄). To see that,
suppose γ(1) > 0. Then

inv(γ̄) = inv(γ)− (γ(1)− 1) and N2(γ̄) = N2(γ) + (γ(1)− 1),

and so the length `D is stable. If γ(1) < 0 a similar computations holds, hence ii) follows.

Note that the two subsets D(M) and D̄(M) are not isomorphic as posets, when they
are considered as sub-posets of (B(M), <B), where <B denotes the B-Bruhat order . An
example is given for n = 3 and M = {0, 2}.

Proposition 3.5. Let M ⊆ [0, n− 1], such that 0, 1 6∈ M . Then

i) The map ϕ : B(M) −→ D(M) defined by

β 7→

{
β, if β ∈ Dn;
sB
0 · β, otherwise,

is a bijection.

ii) Moreover ∑
β∈B(M)

q`D(β) =
∑

γ∈D(M)

q`D(γ).

Proof. Let β ∈ B(M), it is a shuffle of the sequences in (10). If β ∈ Dn, then it is also
a shuffle of the sequences in the first block of (13). Hence β ∈ D(M). Now suppose that
β 6∈ Dn. Since 0 6∈ DesB(β−1), then 1 ∈ β[n]. By multiplying on the left by sB

0 , we change
the sign of 1, and so the parity of β. Hence sB

0 · β ∈ Dn. Actually, we obtain an element
which is a shuffle of the sequences in second block of (13). From Remark 3.3 i) follows.

Since N2(γ) = N2(ϕ(γ)) and inv(γ) = inv(ϕ(γ)), one has `D(γ) = `D(ϕ(γ)), and so ii)
follows.

The map ϕ is not a poset isomorphism between (B(M), <B) and (D(M), <D), where
<B and <D denote the corresponding Bruhat orders. When n = 3, and M = {2}, B(M)
is a chain, while in D(M) there are two not comparable elements.

Proposition 3.6. Let M ⊆ [0, n− 1], such that 0 6∈ M , and 1 ∈ M . Then

i) B(M) splits as the disjoint union of the following m2 subsets

B(M) = D1(M) ]D12(M) ] . . . ]D12...m2(M).

Each D1...i(M) is in bijection with D(M), and it is recursively defined as follows:

12



1) D1(M) is obtained by shuffling the sequences defining D(M) where −1 (if present)
is replaced with 1.

2) For each i ≥ 2, D12...i(M) is obtained by shuffling the sequences defining D12...i−1(M)
where:

♣ 1 and ±i are swiched if they are in the same sequence;

♣ i is replaced by 1, and 1 is replaced by −i, otherwise. This case happens when 1
is at the beginning of a sequence of type [1,−(i− 1), . . . ,−2], and i is the initial
value of the sequence [i, i + 1, . . . ,m2].

ii) Moreover ∑
β∈B(M)

q`D(β) = [m2]q ·
∑

γ∈D(M)

q`D(γ).

Before writing down the proof let us consider an example.

Example 3.7. Consider n = 4 and M = {1, 3}. Then D(M) is given by the shuffles of the
following blocks of increasing sequences (written in column).

D(M) =


[1] [−1, 2, 3] [−2, 1] [−3,−2, 1]

[2, 3] [−4] [3] [4]
[4] [−4]


Then B(M) splits as disjoint union of the following three subsets:

D1(M) =


[1] [1, 2, 3] [−2, 1] [−3,−2, 1]

[2, 3] [−4] [3] [4]
[4] [−4]


D12(M) =


[−2] [2, 1, 3] [1,−2] [−3, 1,−2]
[1, 3] [−4] [3] [4]

[4] [−4]


D123(M) =


[−2] [2, 3, 1] [−3,−2] [1,−3,−2]
[3, 1] [−4] [1] [4]

[4] [−4]

 .

Proof. The transformations defining D1...i(M) involve only the first two sequences of the
three blocks of (14). It is easy to see that D1...i(M) ⊆ B(M) for all i ∈ [m2], and that
D1...i(M) and D1...j(M) are disjoint if i 6= j. Hence the decomposition in i) follows from
Remark 3.3.
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Since changing −1 into 1 in a signed permutation γ affects neither inv(γ) nor N2(γ), it
follows that ∑

γ∈D(M)

q`D(γ) =
∑

γ∈D1(M)

q`D(γ).

Now let us show that for all i ≥ 2∑
γ∈D1...i(M)

q`D(γ) = q
∑

γ∈D1...i−1(M)

q`D(γ).

Let γ ∈ D1...i−1(M). Consider the block in (14) whose a particular shuffle gives γ.
If 1 and ±i are in the same sequence, it can be either of the form [. . . , 1, i, . . . ,m2], or

of the form [−r1, . . . ,−i, 1 . . . ,−2]. Now consider the shuffle giving γ, where 1 has been
switched with ±i. We get a new element γ̄ ∈ D1...i(M). It is clear that γ̄ has one more
inversion with respect to γ, and so the D-length go up by 1. In fact, all other sequences
in the block (whose shuffle gives γ) are made by elements that are either all bigger or all
smaller of both 1 and ±i. Hence the difference between inv(γ) and inv(γ̄) depends only on
the relative positions of 1 and ±i within the same sequence.

Suppose that 1 and i are not in the same sequence. This means that 1 is at the
beginning of the sequence [1,−(i− 1), . . . ,−2] and i is at the beginning of the sequence
[i, i + 1, . . . ,m2]. So γ̄ ∈ D1...i(M), the element corresponding to γ after the switch, is
obtained by shuffling a block that contains the following two sequences

[−i,−(i− 1), . . . ,−2] and [1, i + 1, . . . ,m2] .

Once again all other sequences of the block are made by elements that are either all smaller
or bigger of both 1 and i. The difference between the values of inv(γ̄) and inv(γ) depends
only on the relative positions of 1 and i. Hence γ̄ loses i − 2 inversions with respect to γ

(the ones given by the 1 at the beginning of the sequence), and N2(γ̄) = N2(γ) + (i − 1)
thanks to −i. So `D(γ̄) = `D(γ) + 1.

4 Equidistribution over descent classes

In this section we show generalizations of Theorem 1.1 to Coxeter groups of type B and
D. We need the following classical result; see [14, Theorem 3.1], and [20, Example 2.2.5]
for a proof.

Theorem 4.1. Let n ∈ P and M = {m1,m2, . . . ,mt}< ⊆ [n− 1]. Then

∑
{σ∈Sn|Des(σ−1)⊆M}

qmaj(σ) =
∑

{σ∈Sn|Des(σ−1)⊆M}

qinv(σ) =

[
n

m1, m2 −m1, . . . , n−mt

]
q

.
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Theorem 4.2. Let n ∈ P and M = {m1,m2, . . . ,mt}< ⊆ [0, n− 1]. Then∑
{β∈Bn|DesB(β−1)⊆M}

qnmaj(β) =
∑

{β∈Bn|DesB(β−1)⊆M}

q`B(β) =
∑

{β∈Bn|DesB(β−1)⊆M}

qfmaj(β)

=

[
n

m1, m2 −m1, . . . , n−mt

]
q

·
n∏

i=m1+1

(1 + qi). (15)

Proof. Let us denote by Sh(r1, . . . , rt) the set of signed permutations obtained as shuffles
of the sequences in (10), with prescribed r1, . . . , rt. From Theorem 4.1 it follows that

∑
β∈Sh(r1,...,rt)

qmaj(β) =
∑

β∈Sh(r1,...,rt)

qinv(β) =

[
n

m1, r1 −m1, . . . , rt −mt, n− rt

]
q

. (16)

In fact inversion number and major index of a shuffle depend only on the order of the
elements in the shuffled sequences. From this, and the definitions of nmaj(β) = maj(β) +
N1(β) + N2(β) and of `B(β) = inv(β) + N1(β) + N2(β), the first equality in (15) follows.
The second equality and the sum have been computed in [3]. The symbol fmaj denote the
flag-major index introduced by Adin and Roichman in [1].

By the Principle of Inclusion-Exclusion we obtain

Corollary 4.3.∑
{β∈Bn|DesB(β−1)=M}

qnmaj(β) =
∑

{β∈Bn|DesB(β−1)=M}

q`B(β) =
∑

{β∈Bn|DesB(β−1)=M}

qfmajB(β).

The following lemma will be useful in the computation of our main result Theorem 4.5.

Lemma 4.4. Let n ∈ P and M = {m1,m2, . . . ,mt}< ⊆ [0, n− 1]. Then

∑
{β∈Bn|DesB(β−1)⊆M}

q`D(β) =

[
n

m1, m2 −m1, . . . , n−mt

]
q

·
n−1∏
i=m1

(1 + qi).

Proof. Let β ∈ B(M). Recall that `D(β) = `B(β) − N1(β), and that `B(β) = inv(β) +∑
β(i)<0 |β(i)|. Note that β(i) < 0 if and only if there exists a j such that mj +1 ≤ |β(i)| ≤

rj . Therefore

∑
β(i)<0

|β(i)| =
t∑

i=1

(mi + 1) + . . . + ri

=
t∑

i=1

[
(ri −mi)mi +

(ri −mi)(ri −mi + 1)
2

]

=
t∑

i=1

1
2
(ri −mi)(ri + mi + 1).

15



Moreover N1(β) =
∑t

i=1(ri −mi), and so

`D(β) = inv(β) +
t∑

i=1

1
2
(ri −mi)(ri + mi + 1)− (ri −mi)

= inv(β) +
t∑

i=1

(
ri −mi + 1

2

)
+ (ri −mi)(mi − 1)

Hence by (16)∑
β∈B(M)

q`D(β) =
∑

r1,...,rt

∑
β∈Sh(r1,...,rt)

qinv(β)q
Pt

i=1 (ri−mi+1
2 )+(ri−mi)

=
∑

r1,...,rt

[
n

m1, r1 −m1, . . . , n− rt

]
q

· q
Pt

i=1 (ri−mi+1
2 )+(ri−mi)(mi−1)

=

[
n

m1, m2 −m1, . . . , n−mt

]
q

·
t∏

i=1

mi+1∑
ri=mi

[
mi+1 −mi

ri −mi

]
q

· q(
ri−mi+1

2 )+(ri−mi)(mi−1)

=

[
n

m1, m2 −m1, . . . , n−mt

]
q

·
t∏

i=1

mi+1−1∏
j=mi

(1 + qj) (17)

=

[
n

m1, m2 −m1, . . . , n−mt

]
q

·
n−1∏

j=m1

(1 + qj)

where the sum runs over mi ≤ ri ≤ mi+1, and (17) is obtained by applying the q-binomial
Theorem 2.1 with x = q(mi−1).

Theorem 4.5. Let n ∈ P and M = {m1,m2, . . . ,mt}< ⊆ [0, n− 1]. Then∑
γ∈D(M)

qdmaj(γ) =
∑

γ∈D(M)

q`D(γ)

=



[
n

m1, m2 −m1, . . . , n−mt

]
q

·
n−1∏
i=1

(1 + qi) if 0 ∈ M ;[
n

m1, m2 −m1, . . . , n−mt

]
q

·
n−1∏
i=m1

(1 + qi) if 0, 1 6∈ M ;[
n

m1, m2 −m1, . . . , n−mt

]
q

·
∏n−1

i=1 (1 + qi)
[m2]q

if 0 6∈ M, and 1 ∈ M.

Proof. Once again the first equality follows from (16) and the definitions of dmaj and
`D. The computation of the sum is now an easy application of Lemma 4.4, together with
Propositions 3.4, 3.5, and 3.6.

As corollary we obtain the desired generalization.
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Corollary 4.6. ∑
{γ∈Dn|DesD(γ−1)=M}

qdmaj(γ) =
∑

{γ∈Dn|DesD(γ−1)=M}

q`D(γ).

Remark 4.7. If we replace DesB with the usual descent set Des, Corollary 4.3 is still valid.
It easily follows from Theorem 4.2 since Des(β−1) ⊆ M if and only of DesB(β−1) ⊆ M∪{0}.
Analogously, by replacing DesD with Des, Corollary 4.6 holds for the Coxeter group of type
D.
The two corollaries are not true if as descent set one chooses NDes for Bn and DDes for
Dn.

5 Symmetry of the joint distribution

In this section we find generalizations of Foata-Schützenberger Theorem 1.2, Roselle The-
orem 1.3, and Gessel Theorem 1.4.

The following is an easy computation.

Lemma 5.1. Let n ∈ P. Then∑
u∈BJ

pN1(u)qN1(u)+N2(u) =
∑

S⊆[n]

p|S|q
P

i∈S i =
n∏

i=1

(1 + pqi) = (−pq; q)n.

Moreover

∑
u∈DJ

pN1(u)+ε(u)qN2(u) =
∑

S⊆[n−1]

p|S|q
P

i∈S i =
n−1∏
i=1

(1 + pqi) = (−pq; q)n−1.

Proposition 5.2. The distribution of (nmaj, `B) over Bn is symmetric, namely

Bn(t, q) :=
∑

β∈Bn

tnmaj(β)q`B(β) =
∑

β∈Bn

t`B(β)qnmaj(β)

Proof. Let consider the decomposition (8) of Bn. Let u ∈ BJ (or DJ) and σ ∈ Sn. Then
the following equalities hold

maj(uσ) = maj(σ) and inv(uσ) = inv(u).

Moreover
N1(uσ) = N1(u) and N2(uσ) = N2(u).
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Then from Theorem 1.2 it follows∑
β∈Bn

t`B(β)qnmaj(γ) =
∑

u∈BJ

∑
σ∈Sn

tinv(uσ)+N1(uσ)+N2(uσ)qmaj(uσ)+N1(uσ)+N2(uσ)

=
∑

u∈BJ

tN1(u)+N2(u)qN1(u)+N2(u)
∑
σ∈Sn

tinv(σ)qmaj(σ)

=
∑

u∈BJ

tN1(u)+N2(u)qN1(u)+N2(u)
∑
σ∈Sn

tmaj(σ)qinv(σ)

=
∑

u∈BJ

∑
σ∈Sn

tmaj(uσ)+N1(uσ)+N2(uσ)qinv(uσ)+N1(uσ)+N2(uσ)

=
∑

β∈Bn

tnmaj(β)q`B(β).

The analogous result holds for Dn. The proof is very similar to that of Bn and is left
to the reader.

Proposition 5.3. The pair of statistics (dmaj, `D) is symmetric, namely

Dn(t, q) :=
∑

γ∈Dn

tdmaj(γ)q`D(γ) =
∑

γ∈Dn

t`D(γ)qdmaj(γ).

Note that, the flag-major index and the D-major index [7] do not share with nmaj and
dmaj this symmetric distribution property.

The following identities are generalizations of Theorem 1.3 of Roselle to Bn and Dn.
They easily follow from the proof of Proposition 5.2, Lemma 5.1, and from Theorem 1.3.

Proposition 5.4 (Roselle Identities for Bn and Dn).∑
n≥0

Bn(t, q)
un

(t; t)n(q; q)n(−qt; qt)n
=

1
(u; t, q)∞,∞

, (B0(t, q) := 0);

1 +
∑
n≥1

Dn(t, q)
un

(t; t)n(q; q)n(−qt; qt)n−1
=

1
(u; t, q)∞,∞

.

Similarly the following identities, which generalize Gessel formula, follow from the proof
of Proposition 5.2, Lemma 5.1, and Theorem 1.4.

Proposition 5.5 (Gessel Identities for Bn and Dn).

∑
n≥0

un

[n]q!

∑
β∈Bn

tnmaj(σ)q`B(β)pndes(β)

(−tqp; tq)n(t; q)n+1
=

∑
k≥0

pke[u]qe[tu]q · · · e[tku]q;

1
1− t

+
∑
n≥1

un

[n]q!

∑
γ∈Dn

tdmaj(γ)q`D(γ)pddes(γ)

(−tqp; tq)n−1(t; q)n+1
=

∑
k≥0

pke[u]qe[tu]q · · · e[tku]q.

18



6 Concluding remarks

As we mentioned along the paper, there exists another family of statistics, the flag-statistics,
defined on Coxeter groups of type B, D (see [1] and [7]), and more generally on complex
reflection groups [5]. Several generating functions involving flag-statistics have already been
computed. In particular, we refer to the series of papers of Foata and Han [10, 11, 12], for
a complete overview on the argument.

We remark that among the series computed, none involve a combination of flag-statistics
and length. This is why we conclude the paper with the following interesting proposal.

Problem 6.1. What kind of identities, generalizing the ones of Roselle and Gessel, might
be obtained by using flag-statistics ?
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