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1 Introduction

Let W be a classical Weyl group, i.e. W is either the symmetric group A, i, the
hyperoctahedral group B,, or the even-signed permutation group D,. Consider
the natural diagonal and tensor actions of W and W?, respectively, on the polyno-
mial ring C[zy, ..., 2,]®" and denote by DIA and TIA the corresponding invariant
algebras. Let Zy (q) be the quotient of the Hilbert series of DIA and TIA.

A well known result due to MacMahon [20] asserts that the major index is equidis-
tributed with the length function on the symmetric group. The Euler-Mahonian
distribution of descent number and major index was extensively studied (see e.g.
[7, 12, 13, 16]) and its generating function is known as Carlitz’s identity. Although
its nature is combinatorial, the major index has also important algebraic properties.
It is known that, if W = A,_q, then Z4, _,(g) is a polynomial with non-negative
integer coefficients, which admits an explicit simple formula in terms of the major
index [14]. Moreover, Garsia and Stanton provide a descent basis for the coinvariant
algebra of type A whose elements are monomials of degree uqual to the major index
of the indexing permutation [15]. The problem of generalizing these results to the
hyperoctahedral group has been open for many years. Several authors have defined
analogues of the major index for B,, (see, e.g., [8, 9, 10, 19, 21]) but none of these is
Mahonian, (i.e. equidistributed with length). Finally in a recent paper [1] Adin and
Roichman introduced the flag-major index (fmaj) on the hyperoctahedral group.
They show that it is Mahonian and find a formula for Z5_(g) by means of this new
statistic. In [2] the previous two authors and Brenti give a generalization to B,
of Carlitz’s identity. The flag-major index has been further studied in [3]; it plays
a crucial role in representation theory, more precisely in the decomposition of the
coinvariant algebra into irreducible modules. In [4] the first of the present authors
defines the D-flag major index (fmajp) for the even-signed permutation group, and
proves that it is Mahonian. Moreover, he defines a pair of Euler-Mahonian statistics
that allows a generalization of Carlitz’s identity to D,,. Neither similar formula for

Zp, (q) nor other algebraic properties have been found so far.
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The purpose of this work is to introduce a new “major” statistic on D, from
which one can generalize all the combinatorial and algebraic properties known for
type A and B. In particular we would like to find an explicit formula for Zp, (g) using
this new statistic. Toward this end, we define two new Mahonian statistics nedp
and Dmaj. The latter Dmaj, defined in a combinatorial way, has the analogous
algebraic meaning for D,,, as the major index for S,, and fmaj for B,; namely,
it allows us to find an explicit formula for Zp (§) which implies, in particular,
that this series (as in types A and B) is actually a polynomial with non-negative
integer coefficients. To prove the results we introduce suitable even and odd t-partite
partitions. These are related with the ¢-partite partitions introduced by Gordon in
[17], and further studied by Garsia and Gessel in [14] where applications to the
permutation enumerations are shown. Using similar ideas, we define the Mahonian
statistic nedg on B, and we find a new and simpler proof of the Adin-Roichman
formula for Zg, (¢). Finally, we define a new descent number Ddes on D,, so that the
pair (Ddes, Dmaj) gives a generalization to D,, of Carlitz’s identity. In a upcoming
paper [5] we show that Dmaj and Ddes play an important role in the decomposition
in irreducible submodules of the coinvariant algebra of type D.

The organization of the paper is as follows. In §2 we introduce some preliminaries
and notation. In particular we present some combinatorial properties of classical
Weyl groups and we define their actions on the polynomial rings. In §3 we define
several new combinatorial tools that are needed in the rest of our work and we
prove some of their fundamental properties: we introduce the concept of parity of
a partition and the new statistics nedg, nedp and Dmaj. In §4 we study some
combinatorial properties of Dmaj. We prove that it is equidistributed with length
and that, together with Ddes, satisfies the Carlitz’s identity for D,. Moreover
we define another descent statistic on D,,, fdesp, solving a problem stated in [4].
Section 5 is devoted to the proof of our main result, i.e. we find an explicit formula
for the polynomial Zp, (¢) using Dmaj. In §6 we show how the ideas developed

for D,, can be applied to give a new and simpler proof of the analogous formula for
ZBn (q_)'

2 Notation, Definitions and Preliminaries

2.1 Classical Weyl Groups

In this section we give some definitions, notation and results that will be used in the
rest of this work. We let P := {1,2,3, ...} , N := PU{0}, Z be the ring of integers
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and C be the field of complex numbers; for a € N we let [a] := {1,2,...,a} (where
[0] := 0). Given a,b € N we let [a,b) := {i € N : min(a,b) < i < maxz(a,b)}
and similarly for n,m € Z , n < m, [n,m| := {n,n+1,...,m}. Given n,m € Z,
by n = m we mean n = m (mod 2). For a set A we denote its cardinality by |A|
and the set of all its subsets by 24. If A C [n] its complementary set [n] \ A will
be denoted by C,(A). Given two sets A and B we denote by AAB their symmetric
difference (AU B) \ (AN B).

We always consider the linear order on Z
1< -2<-<-n=<-=<0=<1<2<---<n=<---

instead of the usual ordering. Given a sequence o = (01,...,0,) € Z" we let
Neg(o) :={i € [n] : 0; < 0} and neg(o) := |Neg(o)|. We say that (i,7) € [n] X [n]
is an inversion of o if i < j and o; > o; and that i € [n — 1] is a descent of o if
o; = 0i11. We denote by Inv(o) and Des(o) the set of inversions and the set of
descents of o and by inv(o) and des(o) their cardinalities, respectively. Moreover
we define, for all i € [n — 1]

1, if 0i > Oit1,
g;ilo) = 1
() { 0, otherwise. (1)

We also set €,(0) := 0. Finally we let

maj(o) := Z i
i€Des(o)

and call it the major indez of o.

Given a set A we let S(A) be the set of all bijections 7 : A — A, and S,, := S([n]).
If o € S, then we write 0 = 07...0, to mean that o(i) = o0;, for i = 1,...,n.
Given 0,7 € S,, we let 07 := 0 o T (composition of functions) so that, for example,
1423 - 2134 = 4123.
Given a variable g and a commutative ring R we denote by R|g| (respectively, R[[q]])
the ring of polynomials (respectively, formal power series) in ¢ with coefficients in
R. For i € N we let, as is customary, [i],:=1+q¢+¢*+...4+ ¢ (so [0], = 0).
For n € P we let

An(t, q) o= ) theslo)gmaile),
o€ESn

and Ag(t,q) := 1. For example, As(t,q) = 1 + 2tg® + 2tq + t?¢>. The following
result is due to Carlitz, and we refer the reader to [7] for its proof, (see also [3] for

a refinement).



Theorem 2.1 Let n € P. Then

nyr __ An(t7 q)
20 = - )

in Zg][[t]].

Let B, be the group of all bijections 3 of the set [—n,n] \ {0} onto itself such

that
B(—i) = —p(z)

for all i € [-n,n| \ {0}, with composition as the group operation. If 3 € B,, then,
following [6], we write 8 =[5, ..., B,] to mean that 5(i) = f;, fori =1,...,n, and
call this the window notation of 5. The group B, is often called the group of all
signed permutations on [n| or the hyperoctahedral group of rank n.
We find it convenient to introduce this pair notation: for each o € S, and H C [n],

we let (o, H) := [f1, ..., Ba] be the signed permutation defined as follows:
o [ o ieH
"\ o, ifidH.
Note that in this notation we have
(0, H) ' = (07, 0(H)) (2)

and
(0, H)(1,K) = (o1, KAT™'(H)) (3)

For example, if (o, H) = (43512, {1,2,5}) = [-4,—3,5,1,—2] € Bs then (o, H) ! =
(45213,{2,3,4}) = [4, -5, -2, —1, 3] and if (7, K) = (21345, {2,5}) then (¢ H)(1, K) =
(34512, {1}). It is well known (see, e.g., [6]) that B, is a Coxeter group with respect
to the generating set S := {so, $1,.-.,S,_1} Where

so:=1[-1,2,3,...,n]

and
sit=[1,2,...,i—1,i4+1,ii+2,...,n] (4)

for s = 1,...,n — 1. This gives rise to another natural statistic on B,,, the length

(similarly definable for any Coxeter group),
LB) =min{r e N: 8 =s; ...s; forsome iy,...,i €[0,n—1]}.
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There is a well known direct combinatorial way to compute this statistic (see, e.g.,
[6]), namely, for 8 € B,

(B) =inv(B)— D BG).
JjENeg(B)

Following [1] and [2] we define the flag-major indez of § € B,, by

fmaj(B) = 2maj(B) + neg(B) (5)

and the flag descent number of B by

fdes(B) := 2des(B) + n(b), (6)

where

0, otherwise.

n(8) i { 1, if B(1) <0,

For example, if § = [-4,—-3,5,1,—2] € Bs then fmaj(f) = 2-8+ 3 = 19 and
fdes(B)=2-3+1=T.

It is known that fmaj is equidistributed with length on B, (see [1, Theorem 2]
where fmaj is denoted flag — major).

The pair of statistics (fdes, fmaj) gives a generalization of Carlitz’s identity (The-
orem 2.1) to B,,. More precisely we have the following theorem due to Adin, Brenti

and Roichman [2] (see also [3] for a refinement).

Theorem 2.2 Letn € P. Then

S sep, Hes(®) gmei(®)

Z[r +15t" = (1 —0) [, (1 - £2¢%)

r>0

in Zg][[t]]-

We denote by D,, the subgroup of B, consisting of all the signed permutations

having an even number of negative entries in their window notation, more precisely

D, :={vy € B, : neg(y) = 0}.

As for B,, we introduce a pair notation: for each o € S, and K C [n — 1] we let
(0, K)p :==[71,---,7n] be the unique even-signed permutation 7 such that |vy;| = o;
for all i € [n] and K U {n} D Neg(y) 2 K. More precisely
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—0;, ifi e K,
i =% 0y, if i ¢ KU {n},
(-D)IXlg,, ifi=n.

For example (54312,{1,3,4})p = [-5,4,—-3,—1,—2] € Ds. We will usually omit
the index D in the pair notation of D, when there is no risk of confusion with the
pair notation of B,,.

It is well known (see, e.g., [6]) that D, is a Coxeter group with respect to the

generating set S := {sP, s,...,s,_1} where
sg :==1[-2,-1,3,...,n]

and s; is defined as in (4), for i € [n—1]. There is a well known direct combinatorial
way to compute the length of v € D,, (see, e.g., [6]), namely

Uy) =inv(y) = Y (i) — neg(v).

JENeg(7)

Following [4], for every v € D,, we define the D-negative multiset
DDes(7) := Des(7) [H{-7(1) = 1 : i € Neg(y)} \ {0},

ddes(vy) := |DDes(7)|

and

dmaj(y) := Z i
i€DDes(y)
For example, if v = [—5,4, —3, —1, —2] € Dj then DDes(y) = {1,2%,3,4}, ddes(y) =
5 and dmaj(y) = 12.
The pair of statistics (ddes, dmaj) gives a generalization of Carlitz’s identity to D,,.
More precisely, we have the following theorem, (see [4, Theorem 3.4]).

Theorem 2.3 Let n € P. Then

Z%D tddes(y) gdmag ()

2 = G e T )

r>0 =1

in Zg][[t]].



2.2 Group Actions on Polynomial Rings.

Let W be a classical Weyl group, i.e W = S,,, B,, or D,,. There is a natural action
of W on the polynomial ring P, := Clzy,...,2,], ¢ : W — Aut(P,,) defined on the
generators by

p(w) : z; = %xm(i),
for all w € W and extended uniquely to an algebra homomorphism. This action
gives rise to two actions on the tensor power P¥ := P, ® --- @ P, ( t-times): the
natural tensor action @7 of W := W x --- x W (t-times), and the diagonal action
of W on P®', op := pr od defined using the diagonal embedding d : W — W7,
w = (w,...,w).
The tensor invariant algebra

TIA := {p € P : pop(w)p = p for all w € W'}
is a subalgebra of the diagonal invariant algebra
DIA := {p € P®" : op(w)p=p forallw € W}.

These two algebras are naturally multigraded and hence we can consider the corre-

sponding Hilbert series

FD(Q) = Z dimC(DIAm,-.-,nt)qzll t 'tha

1 e eyt

Fr(q) == Z dimC(TIAm,---,nt)q?l gyt
M1 5yt
where DIA,,, ., and TIA,, ., are the homogeneous components of multi-degree
(ni,...,n;) in DIA and TIA respectively and ¢ = (q1, - - -, q)-
We denote the quotient series by

Fp(q)

Zw(q) == Fr(d)

€ Z[[q]].

3 New Statistics on B, and D,,

In this section we introduce some new combinatorial objects and we prove some

preliminary results that are used in the proof of our main result (Theorem 5.12).
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3.1 Bijections and Parity Sets

Definition. We define a map ¢, : 2I"l — 2[?l for every n € N, in the following
inductive way: for n > 1,

Con—1(H), i HC[n—1],

o) = { pn A(H\ {n}), T H & [n—1],
and @o(0) := 0.

Lemma 3.1 The map ¢, : 2" — 2" is a bijection for every n € N.

Proof. It suffices to show that ¢, is injective. We proceed by induction on n. If
n = 0, it is trivial so suppose n > 0. Let H, # H, € 2" be such that ¢(H,) = p(H>).
Then necessarily we have that either n € Hy N Hy or n ¢ Hy U Hy. In both cases we

can easily conclude by the definition of ¢,, and our induction hypothesis. ]
For example, let n = 4 and H = {2}, then,

0s({2}) = Cups({2}) = CaCsp2({2}) = CuC301(0) = C4C3C100(0)
= C4C3({1}) = C4({2,3}) = {1,4}-

There is also a direct way to compute ¢,,.

Lemma 3.2 Let n € N and H C [n]. Then
on(H) ={i € [n]: |[i,n]\ H| = 1}.

Proof. We proceed by induction on n. If n = 0 it is trivial, so suppose n > 1. If

n € H we have

on(H) = @na(H\{n})
= {ien=1]:[,n =1\ (H\{n})| =1}
= {ien]:|li,n]\ Hl =1}

The case n ¢ H is similar and is left to the reader. |

Our goal is to understand the action of a permutation o on ¢,(H). For this it is
useful to introduce the following concept. From now on denote with B, ; the set of

all integer partitions with at most n parts.
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Definition. Let A = (A, Ao, ..., An,0,0,...) € B, 1. We define the parity set of A
to be
HO\) ={i€n] : A\ — Ay =0}

Definition.Let 0 € S,, and H C [n]. Let A € B,,; be such that H = H(\). Then
we define
H? := H(p),
where 4 is any partition in By 1 such that A; + () = 0 for all 7 € [n].
Note that the definition of H? does not depend on A and p but only on H and o.

Observe that the following statements are equivalent:
i) (H(A)7 = H(p);
ii) Ai + poiy = 0 for all ¢ € [n)].

For example, suppose n = 4 and 0 = 4312. Let \; = p;+- - -+p, and p; = r;+- - -+7p,,
for i = 1,...,n. The condition A\; + p,i) = 0 for all 7 € [n] is equivalent to the
following system of congruences:

P1+DP2+DP3+Ps=T4
P2+ P3tPs=r3+Ts
P3+pPa=r1+r2+T3+ T8
Py =79+ T3+ 74.
If H ={1,3} is the parity set of A then p;, p3 are even, and po, p; are odd. All these
conditions force r3,74 to be even and ry, 75 to be odd, hence H? = {3,4}.
It is also possible to give an explicit direct description of H?.

Lemma 3.3 Letn € N,H C [n| and 0 € S,. Then
B = {i € n]: [0 (i), 0 (i+ 1) \ H| = 0},
where 0™ (n+ 1) :=n+ 1.

Proof. Let )\ be a partition with parity set H and set p; := A\; — A;j11. Let u be
a partition such that A; + s = 0 and set r; := p; — pg1. Then, by definition,
1 € H? if and only if r; is even. But

Ty = M — i1

Ao-1() — Ao—1(i41)

_ S

J€lo~1(i),0 1 (i+1))

and the result follows. ]



We can now prove the main technical result of this section.
Lemma 3.4 Let n € N. Then for all H C [n] and o € S,, we have
opn(H) = ¢n(H?).
Proof. From Lemma 3.2 we have that
i € opn(H) <= |lo~'(i),n] \ H| =1,

and
i€ pn(H?) <= |[i,n]\ H°| = 1.

The latter condition is equivalent to the following statement: the number of the

following congruences

o™ @), 0 '@+ D))\ H| = 0
o7 G+ 1),07'(i+2)\H| = 0
o™ (n), 0" (n+ 1))\ H| = 0

which are not satisfied is congruent to 1. Hence the sum of the members in the
left-hand side is congruent to 1. But

n

Y o7 @) o G+ D)\ HI = |07 (@), n+ 1) \ H]

j=i

and we are done. ]

Note that Lemma 3.4 implies that (o, H) — H? is a left action of S, on 2",

Definition. Let p : 2"/ — 2["=1 be the following projection of sets

H if H
C.(H), ifne H.

Definition. Let 0 € S,,, H C [n] and A € B, be such that H(\) = H. We define
H? := H(p) (8)

where p € B, is such that \; 4 ;) = 1 for all i € [n].

The proof of the following technical lemma is left to the reader.
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Lemma 3.5 Let o € S,, and H C [n]. Then
He = H°A{n} = (HA{n})".
Lemma 3.6 Let o € S, and K C [n — 1]. Then
en-1(K7\{n}) = p(0¢n-1(K)) .
Proof. Suppose n ¢ K°. Then, by Lemma 3.4, we have that
Pn-1(K7) = Copn(K?) = Cuopn(K) = ChoCrion_1(K) = opn_1(K).
If n € K? we have similarly that

Pn1(K7\{n}) = ou(K?) = 0pn(K) = 0Cpipn_1(K) = Cropn_1(K)

and the result follows. ]

3.2 Generalization to the Multivariable Case

In this section we generalize the definitions and results given in §3.1 to the multi-

variable case.

Let n,t € N,01,...,0; € S, and Hy,...,H; C [n]. Let AM ... .\ € B, | be such
that the parity set H(A(®)) = H; for all i € [t]. Then we define

(Hy, ..., H)Cvo0) = H(y),

where the partition p € B, is such that for all j € [n], )\g-l) + A\ y Tt

o1(j
)‘Er?_l---al(j) + lgyor(j) = 0. Note that, as for the one-dimensional case, the definition

of (Hy, ..., H;)) does not depend on the A(¥)’s and x but only on the H;’s and
O'i’S.
Observe that the following conditions are equivalent:

i) (HOAD), ..., HAO)) e = H(p);

oy (1 2 —

i) A+ A Ay Tt = 0.

The following two technical lemmas are needed for the proof of the main result
(Theorem 5.12).

Lemma 3.7 Let n,t € N, 0, € S, and H; C [n] for alli € [t]. Then

(Hy, ..., H)@v=o0) = CHY (HO Ot AHZ 2 A - - AHPY)
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Proof. We sketch the proof in the case t = 2, for ¢ > 2 it is similar. We have to
prove that
(Hi, HQ)(UI,UZ) = C,(H*' AHS?).

Let AW, A\@ 1 € B, be such that for all i = 1,2, H(A®) = H;, and for all j € [n]
)\g-l) + )\z(721)(j) = Uoyor(5)- (9)

Let p; = AW A0 ry = AP -\

i1 and s; = pj—p;yq for all j € [n]. The condition

(9) is equivalent to

8§ = Z Ti + Z Dis

i€loy 1 (5),05 1 (G+1)) i€loy toy 1) 0y Loy H(G+1))

and the thesis follows from Lemma 3.3. ]

The next result says that the bijection ¢, is “almost” distributive with respect
to the symmetric difference of sets.

Lemma 3.8 Let n € N. Then for all Hy, ..., H; C [n] we have:
on(H)A -+ Do (Hy) = 0uCt (HIA -+ AHY) .

Proof. We proceed by induction on ¢. If £ = 1 it is trivial, so suppose ¢ = 2. In this
case we have to prove that

on(H1)Apn(Ha) = ©nCr (Hi1AH,) . (10)

By Lemma 3.2 the set in the left-hand side is given by the ¢ € [n] that verify exactly
one of the following congruences

I[i,n]\ Hi| =1
I[i,n] \ Ha| = 1.

Hence

on(H1)Apn(Hy) = {i €[n]:[[i,n]\ Hi| +[[i,n] \ Hy| =1}

The set in the right-hand side is

onCn(H1AHy) = {i€ln]:|[i,n]\Co(HiAHY)| =1}
= {i€[n]:|HiAHyN[i,n]| = 1}.
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Now suppose t > 2. We have

on(H)A - DNy (Hy) = (@ncfz(HlA T 'AHt—l)) Apn(Hy)
= nCp (CL(H1A--- AH,_1)AH,)
= @ .CHYH\A - ANHY),

where we have used the induction hypothesis and (10). [

We can now prove the following generalization of Lemma 3.4.

Corollary 3.9 Let n € N. Then for all Hy,---,H; € [n] and o1,...,00 € S we
have

Og- - ‘01<Pn(H1)AUt .- '029071(1[]2)A .- 'AUtSOn(Ht) = ¥n ((H17 cey Ht)(ol """ Ut)) -
Proof. By Lemmas 3.7, 3.8 and 3.4 there follows that

©On ((I{17 e, Ht)(cn ..... Ut)) — SDn(cfl—i-l (Hf’t"'UIAHgt"'U2A ce AHgt))
= Qpn(Hlﬂmal)A"'Agpn(Hgt)
= o0y 010, (Hy)A - - DNoyon(Hy).

Let 01,...,0; €S, and Hy,..., H; C [n]. Moreover, let A1), ... A® € B, | be such
that H(A®)) = H; for all i € [n]. Then we define

(H,, ..., Hy)o1—o0 = H(p)

where 1 € B, is such that )\5-1) + )\221)(].) + -+ /\E;?fl---al(j) + Ugyor(j) = 1 for all
J € [n].

The following two results are natural generalizations of Lemmas 3.5 and 3.6 and

again we leave the proof of the former to the reader.

Lemma 3.10 Let 01,...,0; € S, and Hy,...,H; C [n]. Then for all i € [t] we
have:

(Hi,...,H)@00) = (Hy, ..., H) ) A{n}
= (Hy,...,Hi_y, H;{A{n}, Hips, ..., Hy)O100),

Lemma 3.11 Let 01,...,041 € Sy and Ky,..., Ky 1 C [n—1]. Then
On1 (K1, ..., K1) 7N\ {n}) = 7 (041 01001 (K1) A - Aoy_10n-1(K;1)) -
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Proof. If n ¢ (K,..., K,_;) 1) we have, by Corollary 3.9,

On1((Kpyeo oy Ky 1)) = Copn(Kyy ..., Kyoq)000t-1)
= Cnlop1- 010n(K1)A - Aoy 10 (K1)
= Cp(01-1- - 01Chon1 (K1) A - - Aoy 1Cripn—1 (K1)
= C:L(O't—l o 01on-1 (K1) A - Aoy 1pn-1(Ki-1))-

Similarly, if n € (K1, ..., K, 1)1 we have that
On1(Ky, ..., K)om0y = CH (o) ooy 0p 1 (K1) A - - Aoy 10n—1 (K;_1))

and the result follows. ]

3.3 The Statistics ned and Dmay

In this section we introduce the fundamental statistics ned and Dmaj and study
some of their basic properties.

For every 3 € B, we define 8 € B,_; by deleting the last entry of 8 and scaling the

others as follows

B0, if [6(2)] < [B(n)l,
pi) = q B() — 1, if (i) > 0 and [B(i)| > |B(n)],
pli)+1, if 5(i) <0and |5(z)] > [B(n)].

For example, if 8 = [~4,-3,5,1, 2] € By then 8 =[-3,-2,4,1].

Definition. We let B, be the set of the signed permutations 8 € B, such that
B(n) > 0.

Lemma 3.12 Let 5 € B,S. Then
maj(—p) = maj(B) + neg(f),

where —f := [—B(1),...,—B(n)].

Proof. We proceed by induction on n. For n = 1 it is true, so let n > 1. We have
three cases to consider:

i) B(n—1)> p(n)
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Then maj(8) = maj(B) +n—1,maj(—pB) = maj(—B) +n—1 and neg(B) = neg(B).
Since 8 € B;f | by induction we have

magj(—B) = magj(B) + neg(B) (11)
and the thesis follows.
ii) f(n) > B(n—1) >0

Then maj(B) = maj(3), maj(—pB) = maj(—pB) and neg(B) = neg(5), and the result
follows by (11), as above.

iii) B(n—1) <0

Then we have maj(—8) = maj(—B)+n—1 and maj(8) = maj(B). Since —8 € B, |
by induction there follows that maj(3) = maj(—B) + neg(—3). Hence

maj(—B) = maj(B) — neg(—p) +n — 1 = maj(B) — neg(—f) +n — 1,
and the result follows since neg(—3) = n — 1 — neg(B). u
Corollary 3.13 Let § € B;". Then
fmaj(=pB) = fmaj(B) + n.
Proof. This follows immediately from neg(—f3) = n — neg(f) and Lemma 3.12. =

The verification of the following observation is left to the reader.

Lemma 3.14 Let 0 € S, and H C [n]. Then

_(5a (pnfl(H))’ if n ¢H,
(G, on-1(H \ {n})), ifne H.

Recall the definition of £;(0) given in (1). We are ready to introduce two new

(0, on(H)) = {

fundamental statistics for this work.
Definition. For (0, H) € B,, we let
nedg (o, H) ZQZS, Z i (12)
icH i€Cn (H)
For (0, K)p € D,, we let
nedp (o, K) ZQZ& Z i (13)
€K i€Cn1(K)
For example, if 8 = [—2,4, -3, —1] = (2431, {1, 3,4}) € B, then nedg(8) = 2-3+2 =
8 and if v = [2,4, -3, —1] = (2431, {3}) € D, then nedp(y) =2-3+1+2=09.
The main property of nedp is the following one.
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Theorem 3.15 For every (0,H) € B,

nedg(o, H) = fmaj(o, o,(H)). (14)
Proof. We proceed by induction on n, (14) being easy to check for n = 1. Let
n>1, H C [n] and o € S,,. We have four cases to consider.
a)n¢H,n—1€ Des(c)andn—1€ H
Then

nedg(o, H) = 2(n—1)+z2iei(6)+ Z i+n

i€H Co—1(H)
= 3n—2+nedp(d, H).

Let’ s compute the right-hand side of (14). We have n — 1,n € p,(H) and n — 1 ¢
¢n—1(H). From this, Lemma 3.14 and Corollary 3.13, it follows that
fmaj(o,0u(H)) = fmaj(o,en(H))+2(n—1)+1
= fmaj(=(3,¢n-1(H))) +2n—1
= fmaj(a-a (pn—l(H)) +3n — 2:
so (14) follows from our induction hypothesis.
b) n & H and either n — 1 ¢ Des(o) orn—1¢ H
Then
nedg(o, H) = ZQiEi(ﬁ) + Z i+n
i€H Cnfl(H)
= nedg(,H) + n.

Consider now the right-hand side of (14). We have two possibilities.
Ifn—1¢ Hthenn—1¢ p,(H),n € p,(H)andn—1 € ¢, 1(H). By Lemma 3.14
and Corollary 3.13 we obtain
fmaj(o, on(H)) = fmaj(o,¢n(H))+2(n—1)+1
= fmaj(—(0,pn-1(H))) +2n — 1
= fmaj(c, on_1(H)) + n.
If n—1¢ Des(c)andn—1¢€ Hthenn—1,n€ ¢,(H) andn—1¢ ¢, 1(H). By
Lemma 3.14 and Corollary 3.13 we have that
fmaj(o,0n(H)) = fmaj(o, en(H))+1
= fmaj(=(0, on-1(H))) + 1
— Fmaj(@, () + (n—1) + 1,
and (14) follows.
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c)n€e Hn—1¢€ Des(c) andn—1€ H
Then

nedg(o, H) = Z 2ig;(0) + Z i+ 2n—2
icH\{n} Cn—1(H\{n})
= nedg(a,H \ {n}) +2n — 2.

On the other hand, from n — 1,n ¢ ¢,(H) and Lemma 3.14 we have that
fmaj(o,on(H)) = fmaj(o,on1(H)) +2(n — 1)
= fmaj(@, on1(H \{n})) +2n -2,
and (14) again follows.
d) n € H and either n — 1 ¢ Des(c) orn—1¢ H
Then
nedp(o,H) = Y 2ig(o)+ Y i

icH\{n} Cn—1(H\{n})
= nedg(c,H \ {n}).

But n ¢ ¢,(H) hence by Lemma 3.14 it follows that
fmaj(o, on(H)) = fmaj(o, on(H)) = fmaj(o, en-1(H \ {n})),
and this concludes the proof.

The next corollary says that nedg is a Mahonian statistic on B,,.

Corollary 3.16 Let n € P. Then

Z qnedB(ﬂ) — Z quaj(ﬂ).

BeB, BEBy

The following statistic is fundamental for this work and its definition is naturally
suggested by Theorem 3.15. We will see in §4 that it is Mahonian and in §5 that it

has the same algebraic role for D,,, as maj for S, and fmaj for B, in the quotient

of the Hilbert series of DIA and TTA defined in §2.
Definition. Let v € D,,, we define

Dmaj(y) = fmaj([n,-- - Yn=1, [7al])-

For example, if v = [-2, 3, =1, =5, —4], then Dmaj(y) = fmaj([-2,3, -1, =5,4]) =

2.2+ 3 ="7. Note that Dmaj((o, K)p) = fmaj((o, K)).

The next result plays an important role in the computation of the Hilbert series

and its proof follows immediately from Theorem 3.15.
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Corollary 3.17 Let (0,K) € D,,. Then

nedp(o, K) = Dmaj(o, on_1(K)).

4 Combinatorial Properties of Dmaj

In this section we study the statistic Dmaj introduced in §3 and we show that it is
equidistributed with length on D,,. Moreover we introduce a new “descent number”,
Ddes, on D,, and we show that the pair (Ddes, Dmaj) solves the generalization of
Carlitz’s identity to D,,. Finally, we give another generalization of Carlitz’s identity

to D, thus solving a question posed in [4].

4.1 Equidistribution

Following [1] we let, for all i € [n — 1], 7; 1= $;8;_1 - - - o € B,,. The family {7;}; is a
set, of generators for B,, and for any 8 € B,, there exist unique integers rg,...,7, 1,
with 0 <7; <2i+4+1fort=0,...,n—1, such that

8= St 7_2rz7_1r17_go_ (15)

n—1

The following is a further characterization of the flag-major index, (see [1]).

Proposition 4.1 Let § € B,. Then

n—1
fmaj(B) = i
=0

Now recall the definition of B, given in §3 3. Let B =7,"7" - 1{'15° € By.
Since 7,"7'(n) > 0 if and only if 7, ; = 0, . — 1, it follows that 8 € B, if and
only if r,_; =0,...,n— 1. Now consider ﬁl = TnZE . T{lrgo €B, .. If3 € B:[ 1
then r,_o < n — 2. Otherwise, if 3, ¢ B |, then 8, = 7", 3, with 3, € B |. So

we have the following decomposition of B,
:UU({T 15}U{ TR 7€
c ¢

where c=0,...,n—1and £ € B,_|
Following [4] we let for all i € [n — 1],

— D
ti = 8548;-1°""95p -
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The family {¢;}; is a set of generators for D,, and for every v € D,, there exists a

unique representation
- hnfl knfl hn—2 kn72 h1 k1
Y=ttty Tty ety

with 0 < h, <1,0< k. <2r—1and &k, € {2r —1,r — 1} if h, =1 for all
r=1,...,n—1, (see [4, Proposition 4.1}).
For any v € D, the D-flag major index of -y is defined by (see [4])

n—1 n—1
fmajp = Zk’ -+ Z h;.
i=1 i=1

This statistic is equidistributed with length on D,,, ([4, Proposition 4.2]).
Now we are ready to state and prove the main result of this section, namely that
Dmaj is equidistributed with length on D,,.

Proposition 4.2 Let n € P. Then

Z quaj(W) = Z qf(v)

YEDn Y€Dn

Proof. We define a map ¥ : D,, — B, as follows:

~1
Q/(hton ighn—iy . H‘I’ thnighniy,
=1

where
2n 2z 1 —— n—i,.n—i
\Il(t t ) = Tp—iTh—i—1
(totn i 1) = Tulioi;

Kki—; . .

( ) = Tk if ko1 <n-—1;

_ kn—i—n+t_n—i : ;

( ) - n—i Tn—i—13 if knfl >n—1.

It is easy to see that the map W is a bijection that sends fmajp to fmaj. The
thesis follows from the equidistribution of the D-flag major index and the definition
of Dmayj. [ ]

4.2 Carlitz’s Identity

In this section we give two different generalizations of Carlitz’s identity to D,,.
For g € B, by Corollary 3.13 we know that

fmaj(=B) = fmaj(B) + n. (16)
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JFrom definition (6), it is not hard to prove that for 5 € B,

fdes(—pB) = fdes(B) + 1. (17)

Definition. For v € D,, we define the D-descent number by

Ddes(y) :== fdes([v1, ..., Yn=1,|"nl])-

For example, if v = [-2, —1,4,5, —6, —3] € Dg then Ddes(y) = fdes(|—2,—1,4,5,—6,3]) =
2-24+1=05.

Now we are ready to prove the main result of this section

Theorem 4.3 Let n € P. Then

S e, Pdes0)gDmai()

2 = G - ) T =)

in Zg][[t]]-

Proof. From (16) and (17) we have that

§ i) gimei®) — N yfdes(s) gfmas(p) . yfdes(=p) g fmai(=5)
BEBy, geB;t
= 37 s mai(8) . yfdes(B) g fmas(B)in

BeB;E

— (1+tq”) Z tfdes(ﬂ)quaj(ﬂ)

BEB;T

— (1 +tqn) Z thes(’y)quaj('y).
Y€Dn

Now the result follows easily from Theorem 2.2. [ |

Finally, we answer a question posed in [4]. To this end we define the following

D-flag descent number on D,,,

fdesp(y) := fdes(¥(y)),

where U has been defined in the proof of Proposition 4.2. By Theorem 4.3 and the
definition of W it is easy to see that the two pairs of statistics (fdesp, frnajp) and
(Ddes, Dmaj) are equidistributed in D,. This and Theorem 2.3 imply the next

corollary.
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Corollary 4.4 Let n € P. Then

Z gddes(v) gdmagp (v Z tfdesp(v) gfmajn(v) — Z ¢ Pdes(v) g Dmai(7)

YED, YEDy, YEDy,

Finally, the case t = 1 and Proposition 4.2 imply the following result.

Corollary 4.5 Let n € P. Then

dmagj(y fmajp(y) — Dmaj(v)
2 =3 "= >

YEDn YEDy YEDn YEDn

5 The Main Results

In this section we use the combinatorial tools developed in §3 to prove the main
result of this work, namely, we find a closed formula for Z, () in terms of the
statistic Dmaj. This formula implies that the series is actually a polynomial with
non-negative integer coefficients.

5.1 t-Partite Partitions

In this section we recall the language of t-partite partitions which was originally
defined by Gordon [17] as well as some results of Garsia and Gessel [14] that we use
in the rest of this work.

Let F,, be the set of all functions f : [n] = N. For f € F,, we let

|ﬂ:2ﬂm

and we denote F,,; := (F,)". Moreover, for f = (fi,..., fi) € Fns, we define

=ZM%

and we let 7, = {f € Foy : o;(f) =0 forall j € [n]} and F2, := {f € Foy :
aj(f) =1 forall j € [n]}.
A t-partite partition with n parts is a sequence f = (f1,...,f;) € Far



satisfying the following condition:
for i, € [t] and j € [n], if f;(j) = fi(j + 1) for all i < ig, then f; (j) > fi, (5 + 1).
Note, in particular, that for 7y = 1 this implies that

fi(1) > fi(2) > ... > fi(n) >0,

so fi is a partition with at most n parts.
We denote the set of all the ¢-partite partitions with n parts by B, ;.
For example, if n = 5 and ¢t = 2, then f = (f1, fo) with f; = (4,4,4,3,3) and
fo=1(3,3,2,5,4) is a bipartite partition with 5 parts.

Given a permutation o = oy - - - 0, we say that the partition A = (Ay,..., \,) is
o-compatible if \; — X\i11 > €;(o) for all i € [n — 1], where ¢;(0) is defined in (1).

Clearly, a partition A is o-compatible if and only if it is of the form
Ai = Pi+ Pit1 -+ Pn

with p; > €;(o) for all i. We let P (o) be the set of all o-compatible partitions.

For example, if 0 = 15342 then A = (6,6,4,4,3) € P(0).

The following two theorems are due to Garsia and Gessel (see [14, Theorems 2.1
and 2.2)):

Theorem 5.1 The map (),

M A A,
(0,/\,#)*—>( S )

Moy Moy --- Moy

is a bijection between By o and the set Py o of the triplets (o, A, ), where
i) o€ Sy,

it) A€ Plo);

1) u€P(ol).

Theorem 5.2 Let W = S,,. Then

[f1l | f2l
ZfGBn,z U maj(o) maj(o!)
= "

Z lg| |hl
g,heB, 41 42 0ESn

ZSn (Qb QZ) =

We let
B ,:={f €Bz : a;(f) =0 forallj € [n]}
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and
By i={f € Buz i oy(f) =1 forall j € [n]}

be the sets of all the even and odd bipartite partitions with n parts, respectively.
Moreover, we let

,P;Z,Q = {(0: A, M) € PH,Q DA+ Ho(s) = 0 forallie€ [n]}
and

Pry:={(0, A1) € Pra = Ai+ oy = 1 foralli € [n]}.
It is clear that, by restriction, the map {2 of Theorem 5.1 gives rise to two bijections
By 5 <> Pr: o and By 5 <> Py 5.

Theorems 5.1 and 5.2 can be extended to the general case (¢ > 2) as follows, (see
[14, Remark 2.2]).
Theorem 5.3 There exists a bijection between By, ; and the set Py, of the 2t-tuples
(01,..., 0, A1 A0)

where o; € S, \&) € P(0;) for all i € [t] and 0,---090, = id. This bijection is

given by
pog s
2 2 2
Q(O'l ... 0 )\(1) . )\(t)) = )\01(1) )\01(2) s /\Ul(n)
)\(t) . )\(t) ' ) ‘

ot—1--01(1) ot—1-01(2) """ ot—1--01(n)

We define B¢ ,, B°

n,tr n,t?

the correspondence (2 restricts to bijections By, , <> Py, and By , <> Py,

Theorem 5.4 Let W = S,, andt € N. Then

an Z H maj o)

O1,..,0¢ 1=1

Pr; and Py, analogously to the case ¢ = 2. Note again that

where the sum is over all t-tuples (o1, . . ., 0¢) of permutation in S, such that oyoy_1---01 =
id.
The following is the corresponding result of Theorem 5.4 for B, and it is due to

Adin and Roichman [1].
Theorem 5.5 Let n,t € N. Then

Zo@= Y [Jd™®.

B, Bt i=1
where the sum is over all the signed permutation By, ..., B € B, such that B;--- 5, =
id.
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5.2 A Basis for TIA and DIA for D,

Let W = D,. The tensor invariant algebra TIA is (PP»)® and PPr is freely

generated (as an algebra) by the n—1 elementary symmetric functions e;(z%, ..., z2)

rv'n

for j € [n — 1] and the monomial z; - - - x,, (see, e.g., [18, §3]). Hence

n—1

Fr(q) = H1 ((1 —1q£‘) 1 (1 —1%‘%)).

=1

S,

A linear basis for P consists of all tensor monomials

7= ® ﬁxf(j)

i=1 j=1

where f = (f1,..., ft) € Fns. The canonical projection 7 : P®" — DIA is defined
by
m(@) =) ep(n)(@)

YEDy
so that
DIA =< {n(z7): fe€ Fns}>.

Lemma 5.6 For f € F,,,

(@) #£ 0= feFL,UF]

n,t?

where F: , and Fp , are defined in §5.1.

Proof. Let §; =[-1,2,3,...,—1,...,n] for i € [2,n]. Note that
op(6:) (@) = (1) WD+alN s

Therefore, if C' is any coset in D,, of the subgroup 7T; = {id, d;}, then

Y en(@) #0

yeC

if and only if
a1(f) + ai(f) = 0.

Hence we conclude that if w(z/) # 0 then f € F¢, U Fg, .
For the converse, let H be the subgroup of all the generalized identity permutations
h = (id, B) € D,,, (i.e. |h(3)| =1 for all i € [n]). We have that D,, = S,, x H, hence
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every v € D,, has a unique representation y =0 - h with 0 € S,, and h € H.
For any f € F¢,U Fg, and for any h € H we have ¢p(h)(z/) = z/ hence

> en(M(@") = [H|pn(o)(@),

yEoH

for any o € S,,, and the thesis follows. [ ]

Clearly B¢

5t U By, is a complete system of representatives for the orbits of all f €

Fn+UFn,, under the action of the symmetric group. Hence we have

Proposition 5.7 The set

{r(@z'): feB JUBy Y
s a homogeneous basis for DIA.

Corollary 5.8 The Hilbert series for DIA is

FD(Q) — Z q|f1| . qlf”-

FeBe ,UBS,

5.3 The Polynomial Zp (g1, q2)

We start showing the case ¢t = 2. The following definition is fundamental.

Definition. We define an involution « : D,, — D,, by
(0,K) = (o7%,p(o(K))), (18)

where p is the projection defined in (7).
For example, (4213, {1, 3}) = (3241, p({1,4}) = (3241,{2, 3}).

We are now ready to state and prove the following

Theorem 5.9 Let n € N. Then

Dmaj Dmaj(a
Zp.(q1,0) = 3 gPmI D gPmete),

YEDy

Proof. By Corollary 5.8 and the note below Theorem 5.2 we have that

Fp(qi,q2) = 3 g1l gl

FEB; 2UB;, 5

= > ¢+ D e (19)

(07A1“)6P2,2 (U’A7N)6P3,2
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By the definitions of H(\) and H” given in §3.1, the first part in (19) can be rewritten

” Z q\lAlqlzul - Z Zqu 2297

(0, 1)EP;, 5 OESn DiyTi
where the last sum runs through all p;,7; € N, i € [n], such that p; > &;(0),
r; > gi(0™!) and (H(N))° = H(u), with \; = p; +---+pp and p; =15 + - - + 7.
Now we split the previous sum according to the parity set of A\. Note that p; is even
if and only if ¢ € H()), and similarly for x. Hence we obtain

zqw 7 Z Z Hq%é‘z H ql H 2ie;(o 1_([ Z 2ZJ7TJQQEJPJ

P o 0€S, HC[n i€EH 1€Cn(H) 1€H o) w;,pi €N
2
. 2iei(o) 2igi (o )
= HH o7 2 Z [« H HLe™ " T a ) @0
i=1 j=1 —-4") fs., HC[n] \icH Co(H) icH” i€Cp (H)

where p; = 2m; + 2¢;(0) for i € H, p; = 2m; + 1 for i € C,(H), r; = 2p; + 2e;(c7")
for i € H and r; = 2p; + 1 for i € C,(H").

Analogously, recalling the definition of H given in §3.1, we can evaluate the second
part of (19), substituting H? with H?, obtaining

> e —HH QJ > Z [Ta“ 1T &[] &5 7

(o, A\, u)EPC =1 j= 1 % UESn HC[n] \i€H 1€Ch(H)  icHo i€C,, (H°
n,2 n

Hence by (19), (20) and (21) we have that

p(q1,92) ﬁﬁ(l_ Z Z HQQZEZ H g -

i=1 j=1 o HCn]i€H 1€Cn(H)
H 2iei(o H q2+ H 2iei(o H q;‘
icHo i€Cn (H) i€eHe i€Cn(H?)
=2 Z > ™ I @
—1] He{K,KU{n}}icH i€Cp (H)
H 2iei(o H q2+ H 215Z H qé
€EH° 1€Cr (H) i€Ho A{n} 1€CL(H A{n})
Z Z (1+4¢")(1+g3) H CIQZSZ H Cli'
o KCn—1] 1€ KU{n} 1€Cr (KU{n})
[I & I &
i€eKoU{n} 1€Cr(KU{n})
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where we have used the fact that ¢,(0) = 0 for all o € S,,, and Lemma 3.5. Applying
Corollary 3.17 and Lemma 3.6 it follows that

ne o, ne o1 o\{n
Zpae) = Y. Y greireOgpeinlT KN

o KC[n—1]
_ Z Z DmaJ 0pn-1(K)) Dmaj(o~ " pn_1(K7\{n}))
q;

o KC[n—1]

_ Z Z DmaJ Oypn— 1(K))quaj(0‘1,pwn—1(K))
= 2

o KC[n—1]

D D
_ Z g maj 7)q2 maj(a (7)),
YEDy

as desired. -

Example. Consider the case n = 2. One may easily check that a(y) = ~ for all
v € Dy and hence

Zp,(q1,92) = (Q1Q2)Dmaj(1’2) + (Q1Q2)Dmaj(2’1) + (Q1Q2)Dma]‘(71’72) + (Q1Q2)Dmaj(72’71)
= (1+ Q1QQ)2-

We denote by ¢ the inversion in D,, so that «(y) := v~ !. The next lemma says that

it is possible to “substitute” « with ¢ in Theorem 5.9.

Lemma 5.10 « and v are conjugate in S(Dy,).

Proof. It is well known that two elements of a symmetric group are conjugate if
and only if they have the same cycle type. Since both « and ¢ are involutions it
is enough to show that they have the same number of fixed points. For this it is

sufficient to prove that i, = a,, for every o € S,,, where
=|{K e o= (0, K)™' = (0,K)}|

and
= |{K e 2. q(0,K) = (UaK)H'

It is clear that ¢, = a, = 0 if ¢ is not an involution in S,,. On the other hand if o
is an involution with some fixed point then we have i, = a, = 2c1(o)te2(0) =1 while if
o has no fixed point then a, = i, = 2©(9) | where ¢;(c) is the number of cycles of

length 7 of o. |

Corollary 5.11 There exists a function M : D, — N, equidistributed with length,

such that
-1
Zp,(q1,92) Z o' Ve,
YED,
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Proof. By Lemma 5.10 we know that there exists 1) € S(D,) such that ) = .
Then the function M := Dmaj o ¢ realizes the above formula for Zp (q¢1,q2). It
follows immediately from Proposition 4.2 that this M is equidistributed with length
on D,. [

We will show a combinatorial description of the parameter M when n is odd in §5.5.

5.4 The Polynomial Zp (q)

In this section we prove the main result of this work, i.e. we provide an explicit
simple formula for the polynomial Zp_(g) in terms of the Dmaj.
We denote by o : DI — D,, the map

((0'1, Kl), PPN (Ut—la Kt—l)) —> ((O-t—l s 0'1)_1,]) (O't_l e Ul(Kl)A R Agt—l(Kt—l))) .

For example,

o ((4231,{1,3}), (2143, {3})) = (2413, p(3142({1,3})A2143({3}))
= (2413,p({3})) = (2413, {3}).

Note that this is consistent with the definition of o given in (18).
Theorem 5.12 Let n € N. Then

t
ZDn (q—) — Z H qiDmaj(’Yi),

Y1y ¥t €Dy 1=1

where the sum runs through all vy, ...,y € D, such that v = a(y1, ..., Y-1)-

Proof. The proof is similar to that of Theorem 5.9, and hence we will not go
through all the details. By Corollary 5.8 we have that

t
Fp(q) = >, IId" (22)
(f1ynft)EBE LUBG | i=1

Let’s consider the sum in (22) restricted to By, ;. By the note below Theorem 5.4 we
have that

>, "= 2. "= ¥ S @

(f1,---ft)€Bg ; i=1 (010t A L AB)ePE | i=1 opo1=id () i=1
, , i
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where the last sum is over all pg-i) € N, fori € [n] and j 6 [t], such that pg-i) > gj(0y)
and (H(OAW), ..., HAED))enmoe1) = FOAO) with AP = pl ... 4 p¥), where
the set (Hy, ..., H;)“»~?) has been defined in §3.7. We proceed in a similar way
for the sum in (22) over By, ;. If we split these sums according to the parity sets of

the A()’s for i € [t — 1] we obtain, by Lemma 3.10, that

o[I[la-¢) = > > HH jren) H qj (24)

=1 j=1 01,--,0¢ H1,....,Ht j=1 h€ H; heCn(H
2hep (o 2h (o
e I ae I T a).
heH; hECn(Ht) h,EHtA{n} hECn(HtA{n})
where the sums run through all o4,...,0; € S, such that o, = (6;_1---01)”" and all

Hi,...,H, C [n] such that H, = (Hy,..., H,_;)(®?-1)_ Now using the fact that
en(0) =0 for all o € S, and Lemma 3.10 we obtain that

P@llIl0-ah= 2 > o= T @ I

=15=1 01y, oy Ki,...,K¢ 1=1 keK;U{n} keCn(K;U{n})

where the second sum runs over all K1, ..., K; C [n—1] such that K, = (Ky,..., K, 1)@t-0-1)
and hence, by Corollary 3.17, Lemma 3.11 and the definition of o we conclude that

Zo) = > > I @& Il

015.050t K1,.., Kt KEK;U{n} keCn(K;U{n})

_ Z Z ﬁ qﬂedD(Ui,Ki\{n})
7

01,00t K1,...,K¢ 1=1

t—1
— Dmaj(oi,pn—1(Ks) Dmaj(‘”"p"—l((Kl’“"Kf—l)(al """ at_l)\{n})
= 2 2 1l a

01,00t K1,...,K¢ 1=1

t—1
= Z Z Hq.Dmaj(Ui,wn—l(Ki)thmaj(Ut,p(Ut—l"'01<Pn—1(Kl)A"'AUl%—l(Kt—l))
2

01,...,0¢ K1,.. ,Kt =1

_ Z H Dmaj(7y:) Dmaj(a(vl ----- Yi-1))
= q t .

Y15 Yt—1€Dp i=1

5.5 The case n odd

If n is odd the formula appearing in Theorem 5.12 can be slightly improved. In

particular we define one more statistic, Dmaj°, that allows us to obtain a formula
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for Zp,_ (q) similar to the corresponding ones for S, and B, appearing in Theorem
5.4 and Theorem 5.5. Consider the set S, x 2" 1 with the binary operation

(0,H) x (1,K) := (o1,p(KAT™' (H))).
Proposition 5.13 Let n > 1. Then A, = (Sn x 2ln=1, *) IS a group.

Proof. The operation is clearly well-defined, the identity element is (e,) and
inversion is given by (o, H) ! = (¢!, po(H)). We check the associativity property
(0, H)* ((1,K) * (v, L)) = (0, H)* (tv,p(LAVT(K)))
= (omv,p(p(LAVHK))Av 't (H)))
= (otv,p(LAVH(K)Av™'T7H(H)))
and

(0, ) (1K) + (1) = (om,p(KAT™ () # (v, )
= (orv,p(LOV 'p(KAT ' (H))))
= (otv,p(LAVTH(K)Av 't (H))),

where we have used the distributivity of v ! with respect to the symmetric difference
and the fact that p(p(H)AK) = p(HAK) for all H, K C [n]. u

Theorem 5.14 A, is isomorphic to D,, if and only if n is odd.

Proof. It is not difficult to see that, if n is odd, the map ® : D,, — A,, defined by

v = (17, p(Neg(v)))

is an isomorphism, where |y| = (|71],---,|7|).- Now suppose that n is even and
let ¢ : D, — A, be a group homomorphism. Let (0;, K;) = ¢(s;), for i =
0,...,m» — 1, be the images of the Coxeter generators of D,. Then the Coxeter
relations for D,, force the permutations oy, ...,0,_1 to have the same sign and the
sets Ky, ..., K,_1 to have all the same parity. These conditions imply that the set
{(04,K;) :i=0,...,n — 1} cannot generate A,,. m

Let n € N be odd. Then we let
Dmaj° := Dmajo ®,

where we identify A, with D,, through the pair notation and @ is defined as in the
proof of Theorem 5.14 above.
For example Dmaj°([3,—1,5,2, —4]) = Dmaj(31524,{1,3,4}) =2-5+ 3 = 13.
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Corollary 5.15 Let n € N. Then

t
Zppn@= D [,

Y1y ¥t 1=1

where the sum is over all vy, ...,V € Doy such that v ---v1 = id.

Proof. It is an immediate consequence of the proof of Theorem 5.14 that

a(®(n),. .-, P(2) = B(ye- - )~

and the thesis follows from Theorem 5.12. ]

Theorem 5.14 implies that, if n is even, there is no & € S(D,) such that
a(®(m),---,P(y2)) = ®(y---71)"! that would imply the corresponding result of
Corollary 5.15. Nevertheless, we know that this result holds for ¢ = 2 (Corollary
5.11) but we haven’t been able to define a nice statistic, Dmaj®, that works in this
case, or to understand if it exists for ¢ > 2. We therefore propose the following
Problem. Let n € N be even. Is there a statistic Dmaj® : D,, — N, necessarily
equidistributed with length on D,,, such that

with v« v =1d ?

6 Applications to Weyl groups of type B

In this last section we show how the ideas developed for the Weyl groups of type
D can be used to give a new and simpler proof of the closed formula for Z5_ (g)
appearing in Theorem 5.5 which was discovered by Adin and Roichman [1] using
different methods.

6.1 A Basis for TIA and DIA for B,.

Let W = B,. The tensor invariant algebra TTA is clearly equal to (P2»)®! Tt is
well known, (see, e.g.,[18, §3]), that P5» is freely generated (as an algebra) by the

n elementary symmetric functions in the squares of the indeterminates, =2, ..., z2

s
2 2\ ._ 2 2
ej(z1,...,x;) = E T;, T,

1<i1<...<i;<n
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for j € [n]. Hence

For all z/ € P& let

be the corresponding invariant element in DIA. Following [1, Claim 5.1] we have
that

( )7é0<:>f€ nta

where F7 , is defined in §5.1. An easy consequence is the following.

Lemma 6.1 The set
{r(@’): feB}

is a homogeneous basis for DIA.

Corollary 6.2 The Hilbert series for DIA is

FD(CY): Z q\lfl\_”qifd.

feB; .

Note that we choose a different parametrization of the basis of DIA with respect to

[1, Corollary 5.4] and we will use this one to compute the generating function Fp(q).

6.2 The polynomial Zg (g)
Theorem 6.3 Let n,t € N. Then
Zg, (q) — Z quma] Bi) ’
/31, 7ﬂt€Bn =1
where the sum is over all the signed permutation By, ..., B € By such that By--- 5, =

id.

Proof. By Corollary 6.2, (23) and (24) in the proof of Theorem 5.12 we easily
obtain that

ZBn Z Z H 2hs r(oi) H qzh, ’

01,..,0¢ Hy,...,Hy i=1 \ heH; heCn(H;)
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where the sums run through all o¢,...,0; € S,, and Hy,... H; C [n] such that o, =
(041 ---01) " and H, = (Hy, ..., H,_;)@o-1 By Theorem 3.15 and Corollary

3.9, we conclude that

ZBn (q_) _ Z Z anedB 04, (H,

01550t Hy,ooHy 1=1

- ¥ ¥ qumaaamnm

01,...,0¢ H1,...,Hy =1

= Z Z qumaj(m P (H;) quaj(O't,O't—l...Gl‘Pn(Hl)A...AU-t_l(pn(Ht_l))

01,.,0¢ H1y...yHy—1 =1

- H gfmaiB),

B-+-Pr=1d i=1

(01—1, Hy—1) -+ (01, H1)) " = ((04=1 -+ 01) 041 -+ =01 (H) D -+ - Aoy (Hy—1)).
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