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ABSTRACT
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Abstract

We introduce and study three new statistics on the even-signed permuta-
tion group D,,. We show that two of these are Mahonian, i.e. are equidis-
tributed with length, and that a pair of them gives a generalization of Carlitz’s
identity on the Euler-Mahonian distribution of the descent number and major

index over S,,.

1 Introduction

A well known classical result due to MacMahon (see [14]) asserts that the inversion
number and the major index are equidistributed on the symmetric group. The
joint distribution of major index and descent number was studied by Carlitz [6] and
others. Several results of this nature have been generalized to the hyperoctahedral
group B, (see, e.g., [5],[12]) and many candidates for a major index for B, have been
suggested (see, e.g., [7],[8],[9],[11],[17]), but no generalizations of MacMahon’s result
have been found until the discovery of the flag major index in the recent paper [1].
After that, Foata posed the problem of finding a “descent statistic” that, together
with the flag major index, allows the generalization to B, of the well known Carlitz’s
identity on the Euler-Mahonian distribution of descent number and major index over
Sn. In [2] Adin, Brenti and Roichman give two answers to Foata’s question. Now
it’s natural to wonder if some of these statistics and results can be generalized to

the even-signed permutation group D,,.
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The goal of this paper is to show that this is the case. More precisely, we
introduce and study three new statistics on D,; the D-negative descent number
(ddes), the D-negative major index (dmay) and the D-flag major index (fmajp).
When restricted to 5,, ddes reduces to descent number and dmajy to the major
index. The two major indices on D, are equidistributed with length, and the pair
(ddes,dmay) gives a generalization of Carlitz’s identity to D,,.

The organization of the paper is as follows. In the next section we collect some
definitions, notation and results that are needed in the rest of the work. In §3 we
introduce a new “descent set” and hence in a very natural way new definitions of
“descent number” and “major index” on D,,. It’s shown that dmaj is equidistributed
with length and that (ddes, dmayj) gives a generalization of Carlitz’s identity. In §4
we define, in terms of Coxeter elements, the D-flag major index for D, and we show
that it’s equidistributed with length. Furthermore, we describe a combinatorial
algorithm to compute it. Finally, in §5 we discuss some open problems arising from

our work.

2 Notation, Definitions and Preliminaries

In this section we give some definitions, notation and results that will be used in the
rest of this work. We let P := {1,2.3, ...} , N := P U{0}, Z be the set of integers
and C be the set of complex numbers; for a € N we let [a] := {1,2,...,a} (where
[0] :=0). Givenn,m € Z , n < m, welet [n,m] := {n,n+1,...,m}. The cardinality
of a set A will be denoted by |A| and we let ([;‘]) =45 C [n] : |S| = 2}. More
generally, given a multiset M = {1%1,2%2 ... r%} we denote by |M]| its cardinality,
so |[M| =Y_, a;. Given a variable ¢ and a commutative ring R we denote by R[q]
(respectively, R[[¢]]) the ring of polynomials (respectively, formal power series) in ¢
with coefficient in R. For 1+ € N we let, as customary, [1],:= 1+ q+ ¢+ ...+ ¢!
(50 [0], = 0).

Given a sequence o = (ay,...,a,) € Z" we say that (i,7) € [n] X [r] is an inversion
of o if i < j and a; > a;. We say that 7 € [n — 1] is a descent of o if a; > a;11. We
denote by Inv(o) and Des(o) the set of inversions and the set of descents of o and

by inv(o) and des(o) their cardinalities, respectively. We also let

maj(o) = Z 7 (1)



and call it the major index of o.

Let S, be the set of all bijections o : [n] = [n]. If 0 € S, then we write ¢ =
01...0, to mean that o(:) =0y, fori =1,...,n. If 0 € 5, then we may also write
o in disjoint cycle form (see, e.g., [15, p.17]) and we will usually omit to write the 1-
cycles of 0. For example, if 0 = 64175823 then we also write o = (2,4,7)(1,6,8,3).
Given 0,7 € S, we let o7 := 0 o 7 (composition of functions) so that, for example,
(1,2)(2,3) = (1,2,3).

We denote by B, the group of all bijections 7 of the set [—n,n]|\ {0} onto itself
such that

m(—a) = —m(a)
for all @ € [—n,n]\ {0}, with composition as the group operation. This group is
usually known as the group of signed permutations on [n], or as the hyperoctahedral
group of rank n. We identify S,, as a subgroup of B,,, and B,, as a subgroup of S5,
in the natural ways.
If 7 € B, then we write 7 = [a1,...,a,]| to mean that 7(i) = a; for i =1,... n,

we call this the window notation of w, and we let

invo(r) = inv(ar,...a,),

des(n) = des(ay,...,an),

maj(r) = maj(ay,...,a,), (2)
Neg(m) = {i€n]:a; <0},

Ni(m) = |Neg(m)l,

and
Mot = [ty € () s+ < 0. 5

We denote by D, the subgroup of B, consisting of all the signed permutations

having an even number of negative entries in their window notation, more precisely
D, :={m € B, : Ni(7r) =0 (mod 2 )}.

Obviously, the definitions in (2) and (3) are still valid for 7 € D,,.
It is well known (see, e.g., [4, §8.2]) that D,, is a Coxeter group with respect to the

generating set S := {sg, $1,...,5,-1} where

S0 :=[-2,—1,3,...,n]



and

si=[1L,2,...0 =10+ 10,0+ 2,...,n]
for: =1,...,n — 1. This gives rise to another natural statistic on D, the length
(similarly definable for any Coxeter group), namely

lm)y:=min{r e N:m =3 ..., forsome iy,...,4, €[0,n—1]}.

There is a well known direct combinatorial way to compute this statistic for 7 € D,

(see, e.g., [4, §8.2]), namely

U(m) =inv(T) — Z m(i) — Ni(m). (4)

1€Neg(m)

It’s not hard to prove that for all 7 € B, (and so also for 7 € D,,),
Ni(m) + No(m) == > (i), (5)
so equivalently (4) becomes
{(m) = inv(m) + Ny(n). (6)

For example, if 7 := [—4,1,3, =5, =2, —6] € Dg then inv(m) = 10, des(n) = 2,
maj(m) =8, Ni(m) =4, Na(m) = 13 and {(r) = 23.

We follow [4] for general Coxeter group notation and terminology. In particular,
let (W, S) be a Coxeter system, for .J C S we let W be the subgroup of W generated
by .J, and

W7 = {we W:{(ws)>Ll(w) forall s¢€.J}.

We call W; the parabolic subgroup generated by J and W the set of minimal left
coset representatives of Wy or the quotient. The quotient W7 is a poset according
to the Bruhat order (see, e.g., [4] or [13]).

The following is well known (see, e.g., [4] or [13]).

Proposition 2.1 Let J C S. Then:

i) Every w € W has a unique factorization w = w’wy such that w! € WY and

wy € Wj.



il) For this factorization ((w) = E(w‘]) + l(wy).

Now we let

T :={m € D, :des(m) = 0}. (7)

It is well known, and easy to see, that

D,= W {ru:7eT}, (8)

uE Sy

where [t denotes disjoint union. We will often use this decomposition in this paper.
Note that (8) is one case of the multiplicative decomposition of a Coxeter group into
a parabolic subgroup and its minimal coset representatives (see Proposition 2.1),
more precisely T' is the quotient corresponding to the maximal parabolic subgroup
generated by J := S\ {so}. In the next section we will analyze this issue in more
detail.

For n € P we let

Au(t,q) =Y 17 gmei@),

ogESH
and Ag(t, q) := 1. For example, A5(t,q) = 1 + 2q* + 2tq+ t*¢®. The following result

is due to Carlitz, and we refer the reader to [6] for its proof.

Theorem 2.2 Letn € P. Then

;[r + 10t = —?iét’—qiqi) (9)

i Zq][[1]].

3 The “Negative” Statistics

In this section we define a new “descent set” for elements of D,,. This gives rise, in a
very natural way, to the definitions of “major index” and “descent number” for D,.
We then show that these two statistics give a generalization of Carlitz’s identity to

D,,, and that the former is equidistributed with length.

3.1 The D-Negative Descent Multiset

For m € D, let
Des(m):={i€n—1] : n(e) > 7wt + 1)},
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we define the D-negative descent multiset
DDes(r) := Des(m) {—n(i) =1 : 1 € Neg(m)}\ {0}, (10)

where Neg(m) is the set of positions of negative entries in 7, defined in (2).
For example, if 7 = [—4,1,3, =5, =2, —6] € Dg then Des(w) = {3,5} and DDes(m) =
{1,32,4,5%}.

Note that if 7 € S,, then DDes(7) is a set and coincides with the usual descent
set of m. Also, note that DDes(m) can be defined rather naturally also in purely
Coxeter group theoretic terms. In fact, for ¢ € [n — 1] let & € D, be defined by

Ei=[-1,2,. .00, —i—1a+2,...,n].

Then &,...,&,-1 are reflections (in the Coxeter group sense, see e.g., [4] or [13]) of

D,, and it is clear from (4) that
DDes(m) :={i € [n—1] : l(ms;) < {(m)}H{i € [n — 1] : {(z7'&) < L(= ")}

These considerations explain why it is natural to think of DDes(m) as a “descent
set”, so the following definitions are natural.
For # € D,, we let

ddes(m) := |DDes(m)]

and

dmaj(r):= >, i

i€DDes()
For example if 7 = [—4, 1,3, =5, =2, —6] € D¢ then ddes(m) = 6, and dmaj(n) = 21.
Note that from (10) there follows that

dmaj(m) = maj(m)— > (i) — Ni(7) = maj(m) + Na(m). (11)

i€ Neg(r)
This formula is also one of the motivations behind our definition of dmaj(7), because
of the corresponding formulas (4) and (6) (see also [2]) .
Also note that
ddes(m) = des(m) + Ni(m) + €(m), (12)

where

() = —1 if 1 € n([n])
Lo if1en(n)



3.2 Equidistribution

Our first result shows that dmaj and ¢ are equidistributed in D,,.

Proposition 3.1 Let n € P. Then

E qdmaj(w) — Z q(f(w).

€D, n€Dy

Proof. Let T be defined by (7). It is clear from our definitions that for all u € S,
and o € T,

maj(ou) = maj(u), inv(ou) = inv(u), Ny(ou) = Ny(o). (13)

Therefore, from (6), (8), (11) and the corresponding result for S, (see, e.g., [10] or
[14, Chapter VI]), we conclude that

E qdmaj(w) — E Z qdmaj(cru)

T€Dy oceT ueSy,

— Z Z qmaj(au)+]\72 (ou)

oceT ueS,

— Z qNQ(U) Z qma](u)

oceT uESy

— Z qNQ(U') Z qznv(u)

c€eT u€Sn

— Z Z qinv(au)—}—Ng(o‘u)

oceT ueS,

= Y ¢,

€Dy

as desired. O

3.3 Generalization of Carlitz’s Identity

We start with some notation and terminology concerning partitions (see [16, §7.2]).
By an (integer) strict partition we mean a sequence of positive integers A = (Aq, ..., Az)
such that Ay > Ay > ... > Az We denote by |A| := 32, A;. We denote by Ps the set
of all (integer) strict partitions. For any u, A € Ps we define p C X if y; < A, for all

1. Given n € P we let
Ps(n) :={Ae€Ps:AC (n,n—1,...,2,1)}.

9



As before, let T'= {m € D,, : des(m) = 0} so
T={reD,:n(l)<n(2)<...<m(n)}.
Therefore, given m € T, 7w # e, there is a unique even k € [n] such that
(k) <0< m(k+1).
Given m € T we associate to m the strict partition
Alm):=(=m(1)=1,-7(2) = 1,...,—7(k) = 1). (14)

Note that the last entry of A(7) is equal to 0 if 7(k) = —1.
The following is known (see, e.g., [3]).

Proposition 3.2 The map A defined by (14) is a bijection between T and Ps(n—1).
Furthermore {(m) = |A(m)| and m# < o in T if and only if A(m) C A(o), for all
m,oe€l.

We will find it convenient to identify a strict partition A € Pg(n) with a subset of

[n]. In fact we have an inclusion preserving obvious bijection ¢ between Pg(n) and

p(n):={5:5 C[n]} given by:
(A Azs o dn) €2 {0, Ao Ak
We begin with the following lemma.

Lemma 3.3 Letn € P. Then

n—1
Z tNl(o')—i—e(O')qNQ(U) — E t|5|qz:aesZ - H (1 -+ tql).
oceT SCn—1] =1

Proof. From (6) we have that Ny(o) = {(0), for all & € T. By Proposition 3.2
we have /(o) = |A(o)| and by definition of ¢ that |A(c)| = Yico(A(s)) 1+ Therefore
No(0) = Yiepao) -

Let o € T. Suppose first that 1 € o([n]), then |¢p(A(c))| = Ni(o). On the other
hand, if 1 &€ o([n]), we have that |¢p(A(c))| = Ni(o) — 1. Hence |¢(A(0))| =
Ni(o) + €(o), and if we let S = ¢(A(0)) the result follows. O

We are now ready to prove the main result of this work, namely that the pair of
statistics (ddes, dmay) solves Foata’s problem for the group of even-signed permu-

tations D,,.
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Theorem 3.4 Letn € P. Then

E[r —I_ 1]ntr = ZWEDH tddes(w)qdma](r)
q

r>0 (1= )(1 — tqm) TI'= (1 — £2¢2) (15)

in Zq][[1]].

Proof. Let T be defined by (7). Then it is clear from our definitions that
des(ou) = des(u) , Ni(ou) = Nyi(o), e(ou) = €(o)

and

> ou(i)= > ofi),

1€Neg(ou) 1€Neg(o)
for all o € T and u € S,,. Therefore we have from (8), (11), (12), (13) and Lemma
3.3 that

Z tddes(w)qdmaj(ﬂ) — Z Z tdes(au)—}—Nl (au)—}-e(au)qmaj(cru)—}—Ng(au)

m€Dy oceT ueSy,

— Z tN1(0)+E(U)qN2(U) Z tdes(u)qmaj(u)
oeT u€Sy

n—1

— H (1 + tqz) Z tdes(u)qmaj(u)

=1 u€ Sy,

and the result follows from Theorem 2.2. O
Note that, as in (9) for S, and in ([2, Theorem 3.2]) for B,, the powers of ¢ in the
denominator of formula (15) are the Coxeter degrees of D, (see [13, p.59]).

4 The Flag Major Index for D,

In this section we introduce another new “major index” statistic for D,. This is an
analogue of the flag major index introduced in [1]. We show that this statistic is

equidistributed with length and we give a combinatorial algorithm to compute it.

4.1 The D-Flag Major Index

For:=10,...,n — 1 we define
b= 8;8;_1 " S0, (16)

11



explicitly for all ¢ € [n — 1]
Li=[-1,—i—1,2,3, .. i,i+2,...n], (17)
and for ¢ =0
toz[—Q,—l,?),...,n] = Sp. (18)

These are Coxeter elements (see e.g., [13, §3.16]), in a distinguished flag of parabolic
subgroups

1l<Gi<Gy<...<G, =D,

where G; ~ D; (i > 2) is the parabolic subgroup of D,, generated by so, s1,...,8i_1.
The family {¢;}; is a new set of generators for D,,, and we have the following propo-

sition.
Proposition 4.1 For every m € D,, there exists a unique representation

7= ity rgheey e bk (19)
with 0 < h, <1,0< k. <2r—1 and

k.e{2r—1,r—1} if h, =1 (20)
forallr=1,...,n—1.

Proof. We proceed by induction on n. For n = 2 the result is clear, so suppose

n > 3. We define
Dysi= {tff‘_‘llw D kno1 €10,2n—3], w e Dy},

Dy o= {tot?7Pw : we D,_1},
Dn7_1 = {totZ:%’UJ TwE Dn—l}-

It is not hard to see that |D, ;| = |Dn—1| = |Dn-1| and that D,1 N D, _1 = 0 as
m(n)=1and o(n)=—1,forall m € D,,; and 0 € D, _;.
On the other hand if ¢ _jw; = 15 _ wy with wy,wy € D,y and r,s € [0,2n — 3], it
is easy to see that r = s and w, = wy, hence |D,, .| = (2n — 2)|D,,_1|. Moreover the
elements m € D,, . satisfy m(n) # +1. Therefore we have the following decomposition
of D,

D, =D, DuilH D, 1,

12



and so the result follows by induction. a
Note that the representation (19) is not unique if we drop the condition (20). For
example consider m = [—=2,4,1, —3] € Dy, then 7 has two different representations
of type (19), namely, m = {3tgtatots and m = lotatatot;. The representation of Propo-

sition 4.1 is the first one.

Let m € D,, then we define the D-flag major index of m by
n—1 n—1
fmajp(m) = E k; + Z h;. (21)
=1 =1

4.2 Equidistribution

For 0 <m < 2n — 1 we define r, ,, € D,, as follows: for n = 2,

e fm=20
S1 ifm=1
T27m = .
5180 fm=2
S0 fm=3
and for n > 2,
e Hm=0
SnemSn—m41 " Sn_1 f0<m<n

Sm—nt1Sm—n " S05283 - Sp—1 fn<m<2n—1

8505283+ Sp_1 tm=2n—-1

The set {r,m : 0 < m < 2n} forms a complete set of representatives of minimal
length for the left cosets of D,,_; in D,,. Moreover this is still valid for every i € [3,n],
namely, r; ,, € D;]i for all m € [0,2: — 1], where J; := S\ {s,-1,...,si_1}. Hence we

have the following decomposition

D, = DD D,

n—1

Note that the length of r;,, is m, where

. m H0< m <21 -2
1—1 ifm=21—1.

13



From 1) of Proposition 2.1 we know that each element 7 € D, has a unique repre-

sentation as a product
n—1

™ = H Tndl—kmpy1—k (22)
k=1

where 0 < m; < 2j for all 5. From i) of Proposition 2.1 it follows that
Um) = m;. (23)
7=2

Thanks to the unique representation (22) we define a map ¢ : D, — D, in the

following way:

n—1 n—1
QD(H rn+1_k7mn+1—k) = H ¢(rn+1_k7mn+l—k)7
k=1 k=1

where for ¢ # 2,

, (4 ifm <2t -2
qb(riym) = m—1 . . .
tot" 7 2 —2<m< 21— 1,
and for ¢ = 2,
€ Hm=0
P(T2,m) = ]
( ? ) totl ifm=2

The definition of ¢, together with Proposition 4.1 and (22), imply the following

result.
Proposition 4.2 The map ¢ : D, — D,, is a bijection. O

Now we are ready to state the main result of this section, namely that the D-flag

major index is equidistributed with the length in D,,.

Theorem 4.3 Letn € P. Then

Z quajp(w) — Z qf(ﬂ')‘

7€Dn €Dy,

14



Proof. From Proposition 4.2 and the definition of m, the map ¢ is a bijection which

sends the length function in the D-flag major index. O

Note that the B-flag major index (fmaj) defined on B, (see [1]) does not work

on D,. Namely if we consider m € D,, as an element of B,,, then fmaj(m) is not
equidistributed with length on D,,. For example, if 7 = [-2, —1] then fmajp(7) =1
while fmaj(m) =4, and in Dy there is no element of length 4.
Note also that fmajp restricted to S, is not the major index and it’s not equidis-
tributed with length. It seems to be a new statistic on 5,. It’s easy to see that
for each m € S,, fmajp(n) is always even and that fmajp(m) > maj(m). If we
let E,(q) = Sres, ¢/ for n < 4 we have Ei(q) = 1, Ey(q) = 1+ ¢?
E3(q) =143¢" 4+ ¢* + ¢° and E4(q) =14 5¢° +6¢* + 7¢° + 3¢° + ¢'° + ¢"*.

4.3 A combinatorial algorithm

In this section we describe a combinatorial algorithm that allows us to compute the
D-flag major index fmajp, without using the representation of Proposition 4.1.

Let 0 = (a1,...,a,) € Z™ and i > 1. We use this split-notation

o = [a1][ag, . .., aip1][aire, ..., an)].

Sometimes it will be useful to denote the first part by A and the second by C; where
1 represents the number of its elements.

We define the following operations on o € Z":

0= [_GQ][_alv asy. .. 7ai+1][ai+27 R a’ﬂ]a
and
=
0:=[—a1][—aiq1, a2, . ., a][@iz2, ... an].
: .o =
In these cases we will write o' = (A% C?, [aitq,...,a,])and 0= (A, Ci,[aiy2,. .., a.]).

Moreover for all n € P we define

—Mi=— 00 —>21 n-times. (24)
2i

Note that for every ¢ € Z" and i > 1, ¢ = o.
For example, if 7 € D5, m = [-2][1,3, -4, 5] = (A, Cy), then

T /A0 0O
T = [—1][2,3,—4,5] = (A ,04),

15



5 -5

-5 =5
m=[2][5,—1,-3,4] = (A, Cy),

and
2

7= [~2)[-3,4,1]5] = (X, 5, [5)).

These are the two technical properties that we will use in the algorithm. Fix 1 €

[n — 1], let ¢; be as in (17),
ti=[-1][-i—-1,2,3,...,1][i + 2,...n].

It’s easy to see that for all « € [n — 1] we have

—i
2=t =1;, (25)
and by (24) that for k € P
—k-t
T (26)
Now consider ¢;_; = [—1][—¢,2,...,2 — 1][¢ + 1,...,n]. As before it is not hard to
see that
=1
litiy = 1; . (27)

Now we are able to state the algorithm to compute the unique representation of =

as in Proposition 4.1, namely
T = fn—l Ce fl
where for all r € [n — 1], f, = tg"tk with h, € [0,1] and &, € [0,2r — 1].

We construct a sequence eg, ..., e,_1 of elements of D, such that

it) € = fa—1- fasi, forall i €[l,n—1];

i) w(j) =ei(y), forall j>n—q.

From ui7) there immediately follows that e,_; = .

We need to do n—1 steps. From now on to avoid confusion, we put on A an index
corresponding to the number of steps. We begin with ey = [1][2,...,n]. Assume
that e,_; has been constructed, and we will construct e,_;41 = €,_;f;—1. Then by
i),

en—i = (An—i, Cica, [t +1),...7(n)]).

16



For simplicity, we define p(i) and p(—¢) to be the positions of 7(z) and —7(¢) in C;_4

or C?  respectively. There are four cases to consider.

1) n(i) € Ciy

Then we let k;_y =i —1 — p(2) and h;—;y = 0. Hence f;_1 = t;{j_p(i).

2) —m(1) € Ci4

Then we let k;_y = 2i —2 — p(—1) and h;—; = 0. Hence fi_; = t?if—p(_i).
3) 7(1) € Ans

Then —m(i) € C?_; and in particular p(—i) = 1. We let k;_; = 2i — 3 and h,_; = 1.

Hence f;_; = tot?i_l?’.
4) —W(i) € An—i

Then (i) € C? |, and p(i) = 1. Welet k;_y = i—2and h,_; = 1. Hence f;_; = tot'22.

We have determined the factor fi_;. By i2) welet e,_;4+1 = €,y fi_;. From (24) and
(26) it follows that e,_;1(¢) = 7(¢) and by (27) uiz) again holds.
Therefore

en—it1 = (An—iy1, Cica, [7(7), ..., m(n)]),

where in cases 1) and 2),

Ry ki

An—i—}—l ::An—i 5 Oi—? ::Oi—l \[ﬂ-(z)]y

while in cases 3) and 4),

ki1 ki1

An—i-}—l 3:A2_¢ 5 Ci—a 3202'0—1 \[W(Z)]

Observe that in the first step p(n) = 7(n) — 1 and p(—n) = —m(n) — 1. These can
be used for the computation of e;.

We finish this section by illustrating the procedure with an example.

Let m = [5,3,—4,1,—2] € Ds. We start from
€ =€ = [1][2737475] = (on 04)
1% —step) i=5, —n(h)=2€Cy
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We are in case 2) and p(—5) = 1,50 kg =7, hy =0 and f, = {].
- —
It follows that A, :AS: [—1] and Cj :CZ \[-2] = [3,4,5]. Hence,

e = [—1][3,4,5][-2].
2 —step) 1=4, —m(4)=-1€ A,

We are in case 4) so k3 = 2, hy = 1 and f3 = {t3.
—2 —

It follows that Ay =AY= [-3] and C; :C'E) \[1] = [-4, —5]. Hence,
€2 = [_3][_47 _5][17 _2]
3 —step) 1=3, w(3)=—-4¢€C,

We are in case 1) and p(3) = 1,s0 ky =1, hy = 0 and f5 = 15.
—1 —1
It follows that As =As= [3] and Cy =Cy \[—4] = [5]. Hence,

es = [3][5][—4,1, —2].
41h —step) 1=2,7(2) =3 € A3

We are in case 3) so ky = 1, hy = 1 and f; = {ot;.
—+1
It follows that Ay =A3= [5] and Cy = ). Hence,

€4 = [5][37 _47 17 _2] =m,

and we are done. Finally m = t]{t2tyloly and fmajp(r) = 12.

5 Open Problems

We close this paper with a few open questions that we find interesting.

(5.1) In [1] Adin and Roichman define the flag major index statistic (fmayj), and
show that it’s equidistributed with length in the hyperoctahedral group B,,.
Moreover it appears naturally in the Hilbert series of the diagonal action invari-
ant algebra. More precisely, let P,, := C[xz1,...,x,] be the algebra of polyno-
mials in n indeterminates. There is a natural action of G (G'= A,_1, B, D,)
on P,, ¢ : G — Aul(P,) defined on the generators by o(z;) := .

for ¢ € G, where z_; := —ux; for all j € [n]. Consider now the tensor
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power P% := P, @ --- ® P, ( {-times), with the natural tensor action @r
of G':= G x -+ x G (t-times). The diagonal embedding d : G — G" defined
by g — (g,...,g) defines the diagonal action of G on P vp := prod.

The tensor invariant algebra
TIA:={pe Py :pr(g)p=p Vge G}
is a subalgebra of the diagonal invariant algebra
DIA:={pe Py :op(g)p=p VgeG}.

Let Fp(q), be the Hilbert series for the dimensions of the homogeneous com-

ponents in DIA,

Fp(q) := Z dime(DIA,, . )at - ¢,

TV yeeey T2t
where DIA,,, . ., is the homogeneous piece of multi-degree (ny,...,n;) in DIA]

and Fr(g) similarly defined for TTA. They show the following ([1]):

Theorem 5.1 For all n,t > 1

Fp(q) _ T fmaj(n)
Frlg) 2 19

where the sum extends over all t-uples (my,...,m:) of elements in G = B, such

that the product my - - - m; is equal to the identity.

It would be interesting to investigate if in the case of G = D,, the analogue of

Theorem 5.1 is still valid.

(5.2) In [2] Adin, Brenti and Roichman define a new descent statistic, the flag

descent on B,,. This and fmaj extend Carlitz’s result to B,,, answering Foata’s
question. Can, a similar flag descent statistic (fdesp?), be defined for D,, so
that the pair of statistic (fdesp, frmajp) gives a generalization of Carlitz’s
identity to D, 7
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