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Abstract

Some posets of binary leaf-labeled trees are shown to be supersolvable lat-
tices and explicit EL-labelings are given. Their characteristic polynomials are

computed, recovering their known factorization in a different way.

1 Introduction

The aim of this article is to study some posets on forests of binary leaf-labeled trees.
These posets first appeared as an essential ingredient in the combinatorial description
of the coproduct in the Hopf operad introduced by the second author in [4]. They have
since been shown in [5] to have some nice properties, mainly that the characteristic
polynomials of all intervals factorize completely with positive integer roots. By a
theorem of Stanley [8], this factorization property is true in general for the so-called
semimodular supersolvable lattices. Since these intervals are not semimodular in
general, one can not use this theorem to recover the result of [5]. For a class of lattices,
called LL-lattices, containing the semimodular-supersolvable ones, a theorem due to
Blass and Sagan [3] generalizes Stanley’s theorem.

The first main theorem of our article states that these intervals are indeed lattices,
which was not known before. The proof uses a new description of the intervals
using admissible partitions. Our second main result is the fact that these lattices
are supersolvable. We prove it by giving explicit S,, EL-labelings and using the

recent criterion of McNamara [6]. As a third result, we show that these intervals



are LL-lattices and, using the theorem of Blass and Sagan mentioned above, we give
a different proof of the factorization of characteristic polynomials and the explicit

description of roots which were found in [5].

2 Notation, definitions and preliminaries

In this section we give some definitions, notation and results that will be used in the
rest of this work. Let N := {1,2 3,...} and Z the set of integers. For every n € N,
let [n] :=={1,2,...,n}. The cardinality of a finite set A is denoted by |A|.

2.1 Posets

We follow Chapter 3 of [9] for any undefined notation and terminology concerning
posets. In all the paper we consider only finite posets. Given a finite poset (P, <)
and x,y € P with z <y we let [z,y] := {2 € P : 2 < z < y} and call this an
interval of P. We denote by Int(P) the set of all intervals of P. We say that y covers
z, denoted = <y, if |[x,y]| = 2. A poset is said to be bounded if it has one minimal
and one maximal element, denoted by 0 and 1 respectively. The Mébius function of

P, p: Int(P) — Z, is defined recursively by

1 if x =y,
plz,y) = .
=D wcaey M, 2) if T £y

If z,y € P are such that {z € P: z > x,z > y} has a minimum element then we
call it the join of x and y, denoted by x V y. Similarly, we define the meet of z and
yif {z€ P: z <z, z <y} has a maximum element, denoted by = A y. A lattice
is a poset L for which every pair of elements has a meet and a join. A well-known

criterion is the following (see e.g. [9, Proposition 3.3.1]).

Proposition 2.1 If P is a finite poset with 1 such that every pair of elements has a

meet then P is a lattice.
A lattice L that satisfies the following condition

if x and y both cover x Ay, then x V y covers both x and y, (1)
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is said to be semimodular. The set of atoms of a finite lattice L, i.e. the elements a

covering 0, is denoted by A(L).

2.2 Edge-labelings

If x,y € P, with x <y, a chainfrom z to y of length k is a (k+1)-tuple (xq, z1, . .., zx)
such that © = 29 < 771 < ... <z, = y. A chain zo < x; < ... < 7 is said to be
saturated. A poset P with a 0 is said to be graded if, for any = € P, all saturated
chains from 0 to = have the same length, called the rank of 2 and denoted by rk(x).
We denote by M(P) the set of all maximal chains of P.

A function X : {(z,y) € P? : v <y} — Nis an edge-labeling of P. For any

saturated chain m : x = xo < z; <... <z =y of the interval [z, y] we set
A(m) = (Mo, 1), M1, 2), -+ o, M1, T1))-

The chain m is said to be increasing if A(zg,x1) < AMz1,29) < -++ < MN@p_1, Tk)-
Let < be the lexicographic order on finite integer sequences, i.e. (ai,...,ar) <r
(by,...,by) if and only if a; < b; where i = min{j € [k] : a; # b;}.

An edge-labeling of P is said to be an EL-labeling if the following two conditions

are satisfied:
i) Every interval [z, y| has exactly one increasing saturated chain m.
1) Any other saturated chain m' from z to y satisfies A(m) <p A(m/).

A graded poset is said to be edge-wise lexicographically shellable or EL-shellable,
if it has an EL-labeling. EL-shellable posets were first introduced by Bjorner [1].
Several connections with shellable, Cohen-Macaulay complexes and Cohen-Macaulay
posets can be found in the survey paper [2]. In particular EL-shellable posets are

Cohen-Macaulay [1].

A particular class of EL-labelings has an interesting property.

An EL-labeling X is said an S, EL-labeling if, for any maximal chain m : 0 =
To <Az, <<z, =1 of P, the label A(m) is a permutation of [n]. If a poset P has
an S, EL-labeling, then it is said to be .S,, EL-shellable.



Following [8], we introduce the following definition. A finite lattice L is said
to be supersolvable if it contains a maximal chain, called an M-chain of L, which
together with any other chain in L generates a distributive sublattice. Examples of
supersolvable lattices include modular lattices, the partition lattice II,, and the lattice
of subgroups of a finite supersolvable group.

McNamara [6, Theorem 1] has recently shown that supersolvable lattices are com-
pletely characterized by S,, EL-shellability.

Theorem 2.2 A finite graded lattice of rank n is supersolvable if and only if it is S,
EL-shellable.

2.3 Poset of forests

A tree is a leaf-labeled rooted binary tree and a forest is a set of such trees. Vertices
are either inner vertices (valence 3) or leaves and roots (valence 1). By convention,
edges are oriented towards the root. Leaves are bijectively labeled by a finite set.
Trees and forests are pictured with their roots down and their leaves up, by choosing
an arbitrary plane embedding. A leaf is an ancestor leaf of a vertex if there is a path
from the leaf to the root going through the vertex. For a forest F', we denote by
V(F') the set of its inner vertices and by L(F') the set of leaves. By a forest F' on I,
we mean a forest with leaf set L(F') = I. If F, F5, ..., Fy are forests on I, I, ..., I,
let Fy U F5 L --- L Fy be their disjoint union. The number of trees in a forest F' on
I is the difference between the cardinal of I and the cardinal of V(F'). By a subtree
T, we mean the union of all paths starting from any vertex v and going up to the
leaves. Note that any subtree T, can be further divided in two parts denoted by T:X
and T as shown in Figure 1. If the symbols L and R are taken to mean left and
right, then this notation of course depends on the choice of a plane embedding. In
fact, the words “left” and “right” and symbols L and R will always be used just as
a convenient set of cardinality 2.

Two ancestor leaves of an inner vertex v are said to be on the same side of v if
the paths from these leaves to the root enter v by the same edge.

Following [5] and using a simple reformulation, we introduce a partial order on
the set of forests on I denoted by For([I).



Figure 1: The subtree T, and its parts 7' and T'F.
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Figure 2: F < G.

Definition Let F' and G be forests on the label set I. Then F < @G if there is an
injective map ¢ from the set of inner vertices V(F') to the set of inner vertices V(G)

such that :

(D) For each inner vertex v of F', the set of ancestor leaves of v in F' is contained,

as a subset of I, in the set of ancestor leaves of p(v) in G.

(Dy) For each inner vertex v of I, two ancestors leaves of v in F' are on the same

side of v in F' if and only if they are on the same side of ¢(v).

Let us remark that such a map ¢ is unique when it exists. Indeed the image of
an inner vertex v is determined by its set of ancestor leaves S as the highest possible
inner vertex of G whose set of ancestor leaves contains .S.

One can depict such a map ¢ by a drawing of F' inside G where the image p(v)
of an inner vertex v of F' is joined in G with the leaves of G which were the ancestor
leaves of v in F.

The following proposition can be found in [5, Proposition 3.1].

Proposition 2.3 The poset For(I) is graded by the number of inner vertices.

b}
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Figure 3: F' and H are not comparable.

It was proved in [5] that the maximal elements of the poset For(I) are the trees.
The forest without inner vertices is the unique minimal element and is denoted by 0.
For any J C I, we denote by |, the forest such that V(];) = 0 and £(];) = J. Note
that 0 = |;.

3 Intervals are lattices

In this section we fix a finite set of leaves I of cardinality n+ 1 and consider a tree T’
on I. We study the interval [0, 7] that is a graded bounded subposet of For(I). Our

main goal is to show that [0, 7] is a lattice.

Any two distinct leaves 7,5 € I determine an inner vertex v(; ;) € V(T), as the
intersection of the two paths starting from these leaves and going down to the root.

Sometimes we will write i «—— j instead of v = V(). Forany J C I, let
S(J) ={ve V() : v=u,, for some distinct 4,j € J}.
Remark 1 For any subset J C [, it is easy to see that |S(J)| = |J| — 1.
Lemma 3.1 For any J C I, there exists a unique tree T’y on J such that
TyU|ps <T.

Proof. We define T; to be the union of all the paths starting from the leaves in J
and going down to the root. It is easy to check that all conditions in the definition

of the partial order of forests are satisfied. [ ]
Remark 2 Let J; C J; be two subsets of I. Then T, U |[p g, < Ty, U|n
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The following definition is crucial in the rest of this paper.

Let m = (my,...,m) be a partition of I. We say that m is T-admissible if and
only if S(m;) NS(m;) = 0 for all ¢ # j € [k]. We denote the set of all T-admissible
partitions of I by Ad(T).

For example, let 7' = F” be the tree in Figure 3 on the set I = {a,b,c,d}. Then
{{a,b},{c,d}} € AdA(T), but {{a,c},{b,d}} is not a T-admissible partition of I, as
in fact S({a, c}) = S({b,d}) = V(0.

It is easy to see that Ad(T) is a poset by refinement order <, i.e. (m,...,m,) <,
(T1,...,Ty) if and only if each block 7; is contained in some block 7;.

For example {{a},{b,c}, {d}} <, {{a},{b,c,d}}.

Let F € [0,T], F =T, U...UTy, we define

H(F) = (m, ..., ™),

where 7; ;= L(T;) for all i € [k]. It follows from the definition of the partial order on
forests that II(F') is a T-admissible partition.

A

Proposition 3.2 The map I : ([0,7], <) — (Ad(T),<,) is an isomorphism of

posets.

Proof. First we prove that II is a bijection. For every m = (my,...,m) € Ad(T), let
D(m) =T U...UTy,, (2)

where each tree T, is defined by Lemma 3.1.

It is clear that [IoI" = Id. By the uniqueness in Lemma 3.1, it follows that I'oIl = Id,
and so I is the inverse of II.

Now let F,G € [O,T] with F' < G. Then, by definition of <, for all T € F' there
exists a T € G such that L(Tr) C L(T). It follows that II(F) <, II(G). Conversely,
if 7 <, 7', then, by Remark 2, we have I'(m) < I'(7’). This concludes the proof. =

From now on, forests in [0, 7] and T-admissible partitions are identified via the bi-

jection II.

We are ready to state and prove the main theorem of this section.
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Theorem 3.3 For each tree T on the set I, the interval [0,T) is a lattice.

Proof. As the interval has a 1, by Proposition 2.1 it suffices to prove that each
F,G € [0,T) have a meet. Let II(F) =7 = (my,...,m,) and II(G) =7 = (71, ..., Tm).
We show that the meet of 7 and 7 as partitions, defined by

TAT:=(mNm)U(m Nn)U...U(m,Nn)U...U (7 N7y,
is also in Ad(T). For every (i,7) # (i, ') € [n] x [m] we have that
S(?TZ‘ N Tj) N S(ﬂ'i/ N Tj/) Q S(ﬂ'l) N S(Tj) N S(ﬂ'i/) N S(ij) = (Z)

In fact, since 7 and 7 are in Ad(T'), either S(m;) N S(m) or S(7;) N S(7;/) is empty.
It is immediate to see that 7w A 7 is the meet also in Ad(T); hence Ad(T) is a lattice

and we are done. ]

4 S, EL-labelings on [0, T]

In this section we introduce an edge-labeling on the poset [O, T] and prove that it is
an S, EL-labeling. By Theorem 2.2 it follows that the lattice [0, 7] is supersolvable.

A partial order < is defined on the vertex set V(7T') in the following way.

Definition A vertex v is smaller than a vertex v’, denoted by v < ¢/, if v’ is on the
path between the root and v. Any total order extending this partial order on V(T')
is called a nice total order, still denoted by <.

Using a nice total order, one can label the inner vertices by integer numbers from
1 to n. From now on, inner vertices and labels are identified in this way using a fixed
nice total order. Note that the bottom vertex is the maximum element for the order

<. An example is drawn in Figure 4.

Now we introduce an edge-labeling as follows. First remark that for all FF < G €
[0, 7], one has V(F) C V(G) C V(T) by definition of the ordering. Moreover if F <G,
by Proposition 2.3, there exists a unique v € V(G) such that V(G) = V(F) U {v}.



Figure 4: Example of nice total order on V(7).

Definition Let F < G € [0, 7). If
V(G) =V(F) U {v},

then we define A(F, G) to be the label of v.

An example of this edge-labeling is shown in Figure 5. The proof of the following

Lemma is immediate.

Lemma 4.1 The label of a mazimal chain of [F, G| is a permutation of the set V(G)\
V(F).

Lemma 4.2 For each F € [0,T]\ {T}, there exists a unique G € [0,T)] covering F
such that
A(F, G) = min(V(T) \ V(F)). (3)

Proof. Let II(F) = 7 and let vy := min(V(T) \ V(F)). Consider the two subtrees
starting from v, as explained in §2.3, denoted T and T)'. We show that L(T[) is
contained in one part of 7.

Each w € V(Tf) is such that w < vy. It follows that w € V(F') by minimality of vg.
Let i # j € L(TX). Then there is v € V(T'F) C V(F) such that i «— j. Hence i, j
are in the same part of . Therefore £(TS) is contained in only one part of 7 denoted
by mr. The same result is true for th), and we denote the corresponding part by 7.

As vy € V(F'), the parts 77, and wg are distinct. We define a new partition
7= (rp UTR, T, ..., M),
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where 7; are the remaining parts of 7. From now on, we denote 77 Ll mr by mpr.
To show that 7’ € Ad(T), it suffices to prove that

S(mr) NS(m;) =0, forallj e [K]. (4)

We have that S(mpr) 2 S(m) US(mr) U{ve}. On the other hand, by Remark 1, we
have that |S(7.)| + |S(7mr)| + 1 = |S(7wLr)|, and so we have an equality.

Now, for any j € [k], the vertex v, is not in S(m;), because all the ancestor leaves
of vy are in 7, or in 7g; hence condition (4) is verified. Now, it is clear that G :=

[(wpRr, 71, ..., 7)), where I' is defined in (2), is the unique forest covering F' satisfying
(3). [

The preceding Lemma can be extended as follows.

Proposition 4.3 For all F, H € [0,T] with F < H, there exists a unique G € [0, T]
covering F' such that

A(F,G) = min(V(H) \ V(F)).

Proof. If H = T then the result is given by Lemma 4.2. Otherwise let H =
Hy U H, U ...U Hy, where H; is a tree for all j € [k]. Since ' < H, we have
F=F UF,U...UF, where F; is a forest and F; < H; for all j € [k]. It was
observed in [5, Proposition 2.1] that the interval [F, H] is isomorphic to H?:l[Fja H;l.
Let vy := min(V(H) \ V(F)). We have V(H) = V(H;) UV(H,) U ... UV(Hy) and,
after re-ordering, we can assume that v; € V(H;). Then, by Lemma 4.2 applied to
[F1, Hq], there exists a unique G; € [Fy, Hy| covering Fj such that A\(Fy, Gy) = v;.
Define G = GiUF,U. . .UFy in [F, H]. Then G is the unique forest of [F, H], covering
F', such that A(F,G) = v;. This concludes the proof. [ |

Theorem 4.4 The lattice [0, T) is EL-shellable.

Proof. By Lemma 4.1, for any interval [F, G| of [0, T], the unique possible increasing
label for a saturated chain from F' to G is given by the unique increasing permutation
of the elements of V(G) \ V(F).

Then Proposition 4.3 implies that there exists an unique chain m from F to G with
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Figure 5: S5 EL-labeling of the interval [0, T).

this label. The other maximal chains of [F, G] are labeled by different permutations,
which are lexicographically greater than the increasing one.

Hence the edge-labeling A is an EL-labeling. [ ]
Corollary 4.5 The lattice [0, T] is supersolvable.

Proof. By Theorem 4.4, X is an EL-labeling and by Lemma 4.1, A(m) is a permu-
tation of [n] for each maximal chain m. Hence A is an S,, EL-labeling and the result

follows from Theorem 2.2. ]

Remark 3 Note that [0, T is not semimodular in general. For example, the atoms
{{7,k},{i}, {l}} and {{3,1},{j}, {k}} in Figure 5 do not satisfy the condition (1).

5 Characteristic polynomials

In this section, we recover the results of [5] concerning the characteristic polynomials
of the intervals [O, T]. Note that, by Remark 3, the well-known theorem of Stanley
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[8, Theorem 4.1] (see also [7, Theorem 6.2]) on the factorization of the characteristic
polynomials of semimodular supersolvable lattices, does not apply. We use instead a

stronger theorem due to Blass and Sagan [3].

5.1 LL-lattices

Recall that the characteristic polynomial of a graded finite lattice L of rank n is
Xe(t) = u(0,y) ),
yeL
where p is the Mébius function of L and rk(y) is the rank of y.

Following [3], we define an element z of a lattice L to be left-modular if, for all

Y=<z
yV(xAz)=(yVae)A:z.
A maximal chain m € M(L) is said to be left-modular if all its elements are left-

modular.

Remark 4 From [8, Proposition 2.2], it follows that if L is a supersolvable lattice

then its M-chain is left-modular.

Any maximal chain m : 0=axo<21 <<z, =1 defines a partition of the set

of atoms A into subsets called levels indexed by ¢ € [n]:
Ai={aceA:a<xz;and a £ z; 1}
The partial order ,,, on A induced by the maximal chain m is defined by
aCpbif andonly if a € A; and b € A; with ¢ < j.

Then the level condition with respect to m is:

k

if ag Cpp a1 Cop a2 Ty -+ - o g, then ag £ \/ai.
i=1

A lattice L having a maximal chain m that is left-modular and satisfies the level
condition is called an LL-lattice.

The following theorem is due to Blass and Sagan [3, Theorem 6.5].
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Theorem 5.1 Let P be an LL-lattice of rank n. Let A; be the levels with respect to
the left-modular chain of P. Then

n

xp(t) = H(t — |Ai]).

=1
5.2 Factorization of characteristic polynomials

A tree T with n inner vertices and leaf set [ is fixed. A nice total order on V(7)) is

chosen, defining an edge-labeling as in §4.

The set A of atoms of [0, 7] is the set of pairs (4, 5) of distinct elements of I. To
each atom (4, j) is associated an inner vertex v(; ;) of 7" as defined in §3. The covering

edge 0<(i, 1) is labeled by the integer in [n] corresponding to v(; ; in the chosen total
order on V(7).

Proposition 5.2 Let aj,aq,...,ar € A associated with pairwise distinct vertices

V1,U2,...,Vk m V(T) Then V(a1 Vay, V...V ak) = {Ul,’UQ, ce ,Uk}.

Proof. Let V = {vy,vy,...,v:}. Let 7, 7@ . 7 be the partitions of I as-
sociated to ai,as, . ..,a;. Let 7 be the join 7 v 7@ v ... v 7®) in the lattice of
partitions. We want to show that 7 € Ad(7) and that V(7) = V.

Let p be a part of m. Let V}, be the set of vertices in V' whose corresponding atoms
in {a,...,a;} have their leaves in p. Observe that the sets V,, form a partition of
V' because atoms in {ay, ..., ax} have pairwise distinct vertices. Let v be a vertex in
S(p). This means that there exists 4,7 in p such that ¢ «+— j. As p is a part of a

join, there exists a chain

. . to . t1 . . te—1 . te . .
1= 1dg 0y > lg...0p_1 < Iy < Ggpq = J,
where each i, < 4,41 is an atom in {ay, ..., ax} with vertex in V.

In the rest of the proof, the symbol < stands for the partial order introduced in §4.
Let us prove by induction on the length ¢ of the chain that there exists 6, in V,, such
that 6, > to and 6, = t,.

If ¢ = 0, then one can take 6y = ?;. Assume that there exists 6, in V, such that

0y_1 = toand 0,_1 = t,_1. The path joining the leaf i, to the root contains the vertices
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te_1,t; and hence also by induction hypothesis the vertex ¢,_;. Either t, < 6,_;, and
one can take 0, = 6,1 or t, = 6y,_; and one can take 0, = t,. This concludes the
induction.

Therefore 6, € V), is such that i AL j. Hence 6y = v € V,, and so S(p) C V,. The
converse inclusion is clear.

Now let p and p’ be two different parts of 7. Then S(p) N S(p') =V, NV, is empty.
Hence 7 is T-admissible.

We have proved that 7 is T-admissible and that the vertices of 7 are exactly V. It

follows that 7 defines the join a; V...V ag in [0, T and the proposition is proved. m
Define another partition of A indexed by i € [n]:
B,={acA: X\0,a)=1i}.

Let m:0 =20 <2y <--- <z, =T be the fixed left-modular chain of [0, 7], i.e.

the unique increasing maximal chain for the fixed labeling.
Lemma 5.3 Leti € [n|. For each j € [i], let a; be an atom in B;. Then
xi:al\/a2\/...\/ai.

Proof. The proof is by induction on i. By Proposition 4.3, x1 = a; is the unique
atom in By. Assume that 2,1 =a; V... Va;_1. Thena; V... Va;_1 Va;is z,_1Va;
and has rank i by Proposition 5.2. Moreover we have that A(x;_1,7;_1 V a;) = i. By

uniqueness in Proposition 4.3, it follows that x; = z;_1 V q;. [ |
Lemma 5.4 Let A; be the levels with respect to m. Then for each i € [n],
A, =B;.
Proof. It suffices to prove that
{acA:a<z}={acA: X0 a) <[]}

If a < z;, then A\(0,a) is one of the vertices of z;, i.e. belongs to [i]. Conversely,
take any atom a with A(0,a) in [i]. Choose other atoms to have one atom in each B;
for j € [i]. Then, by Lemma 5.3, x; is the join of a and the other chosen atoms, so

a < x;. [ ]
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Proposition 5.5 The lattice [0, T) is an LL-lattice.

Proof. This lattice is supersolvable, so by Remark 4 the M-chain is a left-modular
chain. It remains to check the level condition. Take atoms ag, ay, ..., ax which belong
to pairwise different A;. By Lemma 5.4, these atoms belong to pairwise different B;.
Then by Proposition 5.2 the set of vertices of the join a; V...V a; does not contain

the vertex of the atom ag. This ensures the level condition. [

Now we are ready to state and prove the main result of this section, which was

already proved in [5, Theorem 4.6].

Theorem 5.6 The characteristic polynomial of [0,T] is
Xo,7(8) = H (t —e(v)),
veV(T)

where e(v) is the product of the number of left ancestor leaves of v by the number of

right ancestor leaves of v.

Proof. By Proposition 5.5, one can apply Theorem 5.1 to [0,7]. Let us count the
number of elements of A; for each 7. By Lemma 5.4, this is equal to the cardinality of
B;. Let v be the vertex of T" with index 7. It is easy to see that the number of atoms
in B; is the number of left ancestor leaves of v times the number of right ancestor

leaves of v. =

For example, the characteristic polynomial of the interval [0, T| where T is the tree
in Figure 6 is xp71(t) = (t — 1)%(t — 4)*(t — 10).
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