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Abstract

Some posets of binary leaf-labeled trees are shown to be supersolvable lat-

tices and explicit EL-labelings are given. Their characteristic polynomials are

computed, recovering their known factorization in a different way.

1 Introduction

The aim of this article is to study some posets on forests of binary leaf-labeled trees.

These posets first appeared as an essential ingredient in the combinatorial description

of the coproduct in the Hopf operad introduced by the second author in [4]. They have

since been shown in [5] to have some nice properties, mainly that the characteristic

polynomials of all intervals factorize completely with positive integer roots. By a

theorem of Stanley [8], this factorization property is true in general for the so-called

semimodular supersolvable lattices. Since these intervals are not semimodular in

general, one can not use this theorem to recover the result of [5]. For a class of lattices,

called LL-lattices, containing the semimodular-supersolvable ones, a theorem due to

Blass and Sagan [3] generalizes Stanley’s theorem.

The first main theorem of our article states that these intervals are indeed lattices,

which was not known before. The proof uses a new description of the intervals

using admissible partitions. Our second main result is the fact that these lattices

are supersolvable. We prove it by giving explicit Sn EL-labelings and using the

recent criterion of McNamara [6]. As a third result, we show that these intervals
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are LL-lattices and, using the theorem of Blass and Sagan mentioned above, we give

a different proof of the factorization of characteristic polynomials and the explicit

description of roots which were found in [5].

2 Notation, definitions and preliminaries

In this section we give some definitions, notation and results that will be used in the

rest of this work. Let N := {1, 2, 3, . . .} and Z the set of integers. For every n ∈ N,

let [n] := {1, 2, . . . , n}. The cardinality of a finite set A is denoted by |A|.

2.1 Posets

We follow Chapter 3 of [9] for any undefined notation and terminology concerning

posets. In all the paper we consider only finite posets. Given a finite poset (P,≤)

and x, y ∈ P with x ≤ y we let [x, y] := {z ∈ P : x ≤ z ≤ y} and call this an

interval of P . We denote by Int(P ) the set of all intervals of P . We say that y covers

x, denoted x ⊳ y, if |[x, y]| = 2. A poset is said to be bounded if it has one minimal

and one maximal element, denoted by 0̂ and 1̂ respectively. The Möbius function of

P , µ : Int(P )→ Z, is defined recursively by

µ(x, y) :=

{

1 if x = y,

−
∑

x≤z<y µ(x, z) if x 6= y.

If x, y ∈ P are such that {z ∈ P : z ≥ x, z ≥ y} has a minimum element then we

call it the join of x and y, denoted by x ∨ y. Similarly, we define the meet of x and

y if {z ∈ P : z ≤ x, z ≤ y} has a maximum element, denoted by x ∧ y. A lattice

is a poset L for which every pair of elements has a meet and a join. A well-known

criterion is the following (see e.g. [9, Proposition 3.3.1]).

Proposition 2.1 If P is a finite poset with 1̂ such that every pair of elements has a

meet then P is a lattice.

A lattice L that satisfies the following condition

if x and y both cover x ∧ y, then x ∨ y covers both x and y, (1)
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is said to be semimodular. The set of atoms of a finite lattice L, i.e. the elements a

covering 0̂, is denoted by A(L).

2.2 Edge-labelings

If x, y ∈ P , with x ≤ y, a chain from x to y of length k is a (k+1)-tuple (x0, x1, . . . , xk)

such that x = x0 < x1 < . . . < xk = y. A chain x0 ⊳ x1 ⊳ . . . ⊳ xk is said to be

saturated. A poset P with a 0̂ is said to be graded if, for any x ∈ P , all saturated

chains from 0̂ to x have the same length, called the rank of x and denoted by rk(x).

We denote by M(P ) the set of all maximal chains of P .

A function λ : {(x, y) ∈ P 2 : x ⊳ y} → N is an edge-labeling of P . For any

saturated chain m : x = x0 ⊳ x1 ⊳ . . . ⊳ xk = y of the interval [x, y] we set

λ(m) = (λ(x0, x1), λ(x1, x2), . . . , λ(xk−1, xk)).

The chain m is said to be increasing if λ(x0, x1) ≤ λ(x1, x2) ≤ · · · ≤ λ(xk−1, xk).

Let ≤L be the lexicographic order on finite integer sequences, i.e. (a1, . . . , ak) <L

(b1, . . . , bk) if and only if ai < bi where i = min{j ∈ [k] : aj 6= bj}.

An edge-labeling of P is said to be an EL-labeling if the following two conditions

are satisfied:

i) Every interval [x, y] has exactly one increasing saturated chain m.

ii) Any other saturated chain m′ from x to y satisfies λ(m) <L λ(m′).

A graded poset is said to be edge-wise lexicographically shellable or EL-shellable,

if it has an EL-labeling. EL-shellable posets were first introduced by Björner [1].

Several connections with shellable, Cohen-Macaulay complexes and Cohen-Macaulay

posets can be found in the survey paper [2]. In particular EL-shellable posets are

Cohen-Macaulay [1].

A particular class of EL-labelings has an interesting property.

An EL-labeling λ is said an Sn EL-labeling if, for any maximal chain m : 0̂ =

x0 ⊳ x1 ⊳ · · ·⊳ xn = 1̂ of P , the label λ(m) is a permutation of [n]. If a poset P has

an Sn EL-labeling, then it is said to be Sn EL-shellable.
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Following [8], we introduce the following definition. A finite lattice L is said

to be supersolvable if it contains a maximal chain, called an M-chain of L, which

together with any other chain in L generates a distributive sublattice. Examples of

supersolvable lattices include modular lattices, the partition lattice Πn and the lattice

of subgroups of a finite supersolvable group.

McNamara [6, Theorem 1] has recently shown that supersolvable lattices are com-

pletely characterized by Sn EL-shellability.

Theorem 2.2 A finite graded lattice of rank n is supersolvable if and only if it is Sn

EL-shellable.

2.3 Poset of forests

A tree is a leaf-labeled rooted binary tree and a forest is a set of such trees. Vertices

are either inner vertices (valence 3) or leaves and roots (valence 1). By convention,

edges are oriented towards the root. Leaves are bijectively labeled by a finite set.

Trees and forests are pictured with their roots down and their leaves up, by choosing

an arbitrary plane embedding. A leaf is an ancestor leaf of a vertex if there is a path

from the leaf to the root going through the vertex. For a forest F , we denote by

V(F ) the set of its inner vertices and by L(F ) the set of leaves. By a forest F on I,

we mean a forest with leaf set L(F ) = I. If F1, F2, . . . , Fk are forests on I1, I2, . . . , Ik,

let F1 ⊔ F2 ⊔ · · · ⊔ Fk be their disjoint union. The number of trees in a forest F on

I is the difference between the cardinal of I and the cardinal of V(F ). By a subtree

Tv we mean the union of all paths starting from any vertex v and going up to the

leaves. Note that any subtree Tv can be further divided in two parts denoted by T L
v

and TR
v as shown in Figure 1. If the symbols L and R are taken to mean left and

right, then this notation of course depends on the choice of a plane embedding. In

fact, the words “left” and “right” and symbols L and R will always be used just as

a convenient set of cardinality 2.

Two ancestor leaves of an inner vertex v are said to be on the same side of v if

the paths from these leaves to the root enter v by the same edge.

Following [5] and using a simple reformulation, we introduce a partial order on

the set of forests on I denoted by For(I).
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Figure 1: The subtree Tv, and its parts T R
v and TL

v .
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Figure 2: F ≤ G.

Definition Let F and G be forests on the label set I. Then F ≤ G if there is an

injective map ϕ from the set of inner vertices V(F ) to the set of inner vertices V(G)

such that :

(D1) For each inner vertex v of F , the set of ancestor leaves of v in F is contained,

as a subset of I, in the set of ancestor leaves of ϕ(v) in G.

(D2) For each inner vertex v of F , two ancestors leaves of v in F are on the same

side of v in F if and only if they are on the same side of ϕ(v).

Let us remark that such a map ϕ is unique when it exists. Indeed the image of

an inner vertex v is determined by its set of ancestor leaves S as the highest possible

inner vertex of G whose set of ancestor leaves contains S.

One can depict such a map ϕ by a drawing of F inside G where the image ϕ(v)

of an inner vertex v of F is joined in G with the leaves of G which were the ancestor

leaves of v in F .

The following proposition can be found in [5, Proposition 3.1].

Proposition 2.3 The poset For(I) is graded by the number of inner vertices.
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Figure 3: F and H are not comparable.

It was proved in [5] that the maximal elements of the poset For(I) are the trees.

The forest without inner vertices is the unique minimal element and is denoted by 0̂.

For any J ⊆ I, we denote by |J the forest such that V(|J) = ∅ and L(|J) = J . Note

that 0̂ = |I .

3 Intervals are lattices

In this section we fix a finite set of leaves I of cardinality n+1 and consider a tree T

on I. We study the interval [0̂, T ] that is a graded bounded subposet of For(I). Our

main goal is to show that [0̂, T ] is a lattice.

Any two distinct leaves i, j ∈ I determine an inner vertex v(i,j) ∈ V(T ), as the

intersection of the two paths starting from these leaves and going down to the root.

Sometimes we will write i
v
←→ j instead of v = v(i,j). For any J ⊆ I, let

S(J) := {v ∈ V(T ) : v = v(i,j) for some distinct i, j ∈ J}.

Remark 1 For any subset J ⊆ I, it is easy to see that |S(J)| = |J | − 1.

Lemma 3.1 For any J ⊆ I, there exists a unique tree TJ on J such that

TJ ⊔ |I\J ≤ T.

Proof. We define TJ to be the union of all the paths starting from the leaves in J

and going down to the root. It is easy to check that all conditions in the definition

of the partial order of forests are satisfied.

Remark 2 Let J1 ⊆ J2 be two subsets of I. Then TJ1
⊔ |I\J1

≤ TJ2
⊔ |I\J2
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The following definition is crucial in the rest of this paper.

Let π = (π1, . . . , πk) be a partition of I. We say that π is T -admissible if and

only if S(πi) ∩ S(πj) = ∅ for all i 6= j ∈ [k]. We denote the set of all T -admissible

partitions of I by Ad(T ).

For example, let T = F ′′ be the tree in Figure 3 on the set I = {a, b, c, d}. Then

{{a, b}, {c, d}} ∈ Ad(T ), but {{a, c}, {b, d}} is not a T -admissible partition of I, as

in fact S({a, c}) = S({b, d}) = v(a,c).

It is easy to see that Ad(T ) is a poset by refinement order ≤r, i.e. (π1, . . . , πn) ≤r

(τ1, . . . , τm) if and only if each block πi is contained in some block τj .

For example {{a}, {b, c}, {d}} ≤r {{a}, {b, c, d}}.

Let F ∈ [0̂, T ], F = T1 ⊔ . . . ⊔ Tk, we define

Π(F ) := (π1, . . . , πk),

where πi := L(Ti) for all i ∈ [k]. It follows from the definition of the partial order on

forests that Π(F ) is a T -admissible partition.

Proposition 3.2 The map Π : ([0̂, T ],≤) −→ (Ad(T ),≤r) is an isomorphism of

posets.

Proof. First we prove that Π is a bijection. For every π = (π1, . . . , πk) ∈ Ad(T ), let

Γ(π) := Tπ1
⊔ . . . ⊔ Tπk

, (2)

where each tree Tπi
is defined by Lemma 3.1.

It is clear that Π◦Γ = Id. By the uniqueness in Lemma 3.1, it follows that Γ◦Π = Id,

and so Γ is the inverse of Π.

Now let F, G ∈ [0̂, T ] with F ≤ G. Then, by definition of ≤, for all TF ∈ F there

exists a TG ∈ G such that L(TF ) ⊆ L(TG). It follows that Π(F ) ≤r Π(G). Conversely,

if π ≤r π′, then, by Remark 2, we have Γ(π) ≤ Γ(π′). This concludes the proof.

From now on, forests in [0̂, T ] and T -admissible partitions are identified via the bi-

jection Π.

We are ready to state and prove the main theorem of this section.
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Theorem 3.3 For each tree T on the set I, the interval [0̂, T ] is a lattice.

Proof. As the interval has a 1̂, by Proposition 2.1 it suffices to prove that each

F, G ∈ [0̂, T ] have a meet. Let Π(F ) = π = (π1, . . . , πn) and Π(G) = τ = (τ1, . . . , τm).

We show that the meet of π and τ as partitions, defined by

π ∧ τ := (π1 ∩ τ1) ∪ (π1 ∩ τ2) ∪ . . . ∪ (πn ∩ τ1) ∪ . . . ∪ (πn ∩ τm),

is also in Ad(T ). For every (i, j) 6= (i′, j′) ∈ [n]× [m] we have that

S(πi ∩ τj) ∩ S(πi′ ∩ τj′) ⊆ S(πi) ∩ S(τj) ∩ S(πi′) ∩ S(τj′) = ∅.

In fact, since π and τ are in Ad(T ), either S(πi) ∩ S(πi′) or S(τj) ∩ S(τj′) is empty.

It is immediate to see that π ∧ τ is the meet also in Ad(T ); hence Ad(T ) is a lattice

and we are done.

4 Sn EL-labelings on [0̂, T ]

In this section we introduce an edge-labeling on the poset [0̂, T ] and prove that it is

an Sn EL-labeling. By Theorem 2.2 it follows that the lattice [0̂, T ] is supersolvable.

A partial order � is defined on the vertex set V(T ) in the following way.

Definition A vertex v is smaller than a vertex v′, denoted by v � v′, if v′ is on the

path between the root and v. Any total order extending this partial order on V(T )

is called a nice total order, still denoted by �.

Using a nice total order, one can label the inner vertices by integer numbers from

1 to n. From now on, inner vertices and labels are identified in this way using a fixed

nice total order. Note that the bottom vertex is the maximum element for the order

�. An example is drawn in Figure 4.

Now we introduce an edge-labeling as follows. First remark that for all F ≤ G ∈

[0̂, T ], one has V(F ) ⊆ V(G) ⊆ V(T ) by definition of the ordering. Moreover if F ⊳G,

by Proposition 2.3, there exists a unique v ∈ V(G) such that V(G) = V(F ) ∪ {v}.
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Figure 4: Example of nice total order on V(T ).

Definition Let F ⊳ G ∈ [0̂, T ]. If

V(G) = V(F ) ∪ {v},

then we define λ(F, G) to be the label of v.

An example of this edge-labeling is shown in Figure 5. The proof of the following

Lemma is immediate.

Lemma 4.1 The label of a maximal chain of [F, G] is a permutation of the set V(G)\

V(F ).

Lemma 4.2 For each F ∈ [0̂, T ] \ {T}, there exists a unique G ∈ [0̂, T ] covering F

such that

λ(F, G) = min(V(T ) \ V(F )). (3)

Proof. Let Π(F ) = π and let v0 := min(V(T ) \ V(F )). Consider the two subtrees

starting from v0, as explained in §2.3, denoted T L
v0

and TR
v0

. We show that L(T R
v0

) is

contained in one part of π.

Each w ∈ V(T R
v0

) is such that w ≺ v0. It follows that w ∈ V(F ) by minimality of v0.

Let i 6= j ∈ L(T R
v0

). Then there is v ∈ V(T R
v0

) ⊆ V(F ) such that i
v
←→ j. Hence i, j

are in the same part of π. Therefore L(T R
v0

) is contained in only one part of π denoted

by πR. The same result is true for T L
v0

, and we denote the corresponding part by πL.

As v0 6∈ V(F ), the parts πL and πR are distinct. We define a new partition

π′ := (πL ⊔ πR, π1, . . . , πk),
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where πj are the remaining parts of π. From now on, we denote πL ⊔ πR by πLR.

To show that π′ ∈ Ad(T ), it suffices to prove that

S(πLR) ∩ S(πj) = ∅, for all j ∈ [k]. (4)

We have that S(πLR) ⊇ S(πL) ∪ S(πR) ∪ {v0}. On the other hand, by Remark 1, we

have that |S(πL)|+ |S(πR)|+ 1 = |S(πLR)|, and so we have an equality.

Now, for any j ∈ [k], the vertex v0 is not in S(πj), because all the ancestor leaves

of v0 are in πL or in πR; hence condition (4) is verified. Now, it is clear that G :=

Γ(πLR, π1, . . . , πk), where Γ is defined in (2), is the unique forest covering F satisfying

(3).

The preceding Lemma can be extended as follows.

Proposition 4.3 For all F, H ∈ [0̂, T ] with F < H, there exists a unique G ∈ [0̂, T ]

covering F such that

λ(F, G) = min(V(H) \ V(F )).

Proof. If H = T then the result is given by Lemma 4.2. Otherwise let H =

H1 ⊔ H2 ⊔ . . . ⊔ Hk, where Hj is a tree for all j ∈ [k]. Since F ≤ H , we have

F = F1 ⊔ F2 ⊔ . . . ⊔ Fk where Fj is a forest and Fj ≤ Hj for all j ∈ [k]. It was

observed in [5, Proposition 2.1] that the interval [F, H ] is isomorphic to
∏k

j=1[Fj, Hj].

Let v1 := min(V(H) \ V(F )). We have V(H) = V(H1) ∪ V(H2) ∪ . . . ∪ V(Hk) and,

after re-ordering, we can assume that v1 ∈ V(H1). Then, by Lemma 4.2 applied to

[F1, H1], there exists a unique G1 ∈ [F1, H1] covering F1 such that λ(F1, G1) = v1.

Define G = G1⊔F2⊔ . . .⊔Fk in [F, H ]. Then G is the unique forest of [F, H ], covering

F , such that λ(F, G) = v1. This concludes the proof.

Theorem 4.4 The lattice [0̂, T ] is EL-shellable.

Proof. By Lemma 4.1, for any interval [F, G] of [0̂, T ], the unique possible increasing

label for a saturated chain from F to G is given by the unique increasing permutation

of the elements of V(G) \ V(F ).

Then Proposition 4.3 implies that there exists an unique chain m from F to G with
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Figure 5: S3 EL-labeling of the interval [0̂, T ].

this label. The other maximal chains of [F, G] are labeled by different permutations,

which are lexicographically greater than the increasing one.

Hence the edge-labeling λ is an EL-labeling.

Corollary 4.5 The lattice [0̂, T ] is supersolvable.

Proof. By Theorem 4.4, λ is an EL-labeling and by Lemma 4.1, λ(m) is a permu-

tation of [n] for each maximal chain m. Hence λ is an Sn EL-labeling and the result

follows from Theorem 2.2.

Remark 3 Note that [0̂, T ] is not semimodular in general. For example, the atoms

{{j, k}, {i}, {l}} and {{i, l}, {j}, {k}} in Figure 5 do not satisfy the condition (1).

5 Characteristic polynomials

In this section, we recover the results of [5] concerning the characteristic polynomials

of the intervals [0̂, T ]. Note that, by Remark 3, the well-known theorem of Stanley
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[8, Theorem 4.1] (see also [7, Theorem 6.2]) on the factorization of the characteristic

polynomials of semimodular supersolvable lattices, does not apply. We use instead a

stronger theorem due to Blass and Sagan [3].

5.1 LL-lattices

Recall that the characteristic polynomial of a graded finite lattice L of rank n is

χL(t) =
∑

y∈L

µ(0̂, y)tn−rk(y),

where µ is the Möbius function of L and rk(y) is the rank of y.

Following [3], we define an element x of a lattice L to be left-modular if, for all

y ≤ z,

y ∨ (x ∧ z) = (y ∨ x) ∧ z.

A maximal chain m ∈ M(L) is said to be left-modular if all its elements are left-

modular.

Remark 4 From [8, Proposition 2.2], it follows that if L is a supersolvable lattice

then its M-chain is left-modular.

Any maximal chain m : 0̂ = x0 ⊳ x1 ⊳ · · ·⊳ xn = 1̂ defines a partition of the set

of atoms A into subsets called levels indexed by i ∈ [n]:

Ai = {a ∈ A : a ≤ xi and a 6≤ xi−1}.

The partial order ⊏m on A induced by the maximal chain m is defined by

a ⊏m b if and only if a ∈ Ai and b ∈ Aj with i < j.

Then the level condition with respect to m is:

if a0 ⊏m a1 ⊏m a2 ⊏m · · · ⊏m ak, then a0 6≤
k

∨

i=1

ai.

A lattice L having a maximal chain m that is left-modular and satisfies the level

condition is called an LL-lattice.

The following theorem is due to Blass and Sagan [3, Theorem 6.5].
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Theorem 5.1 Let P be an LL-lattice of rank n. Let Ai be the levels with respect to

the left-modular chain of P . Then

χP (t) =

n
∏

i=1

(t− |Ai|).

5.2 Factorization of characteristic polynomials

A tree T with n inner vertices and leaf set I is fixed. A nice total order on V(T ) is

chosen, defining an edge-labeling as in §4.

The set A of atoms of [0̂, T ] is the set of pairs (i, j) of distinct elements of I. To

each atom (i, j) is associated an inner vertex v(i,j) of T as defined in §3. The covering

edge 0̂⊳(i, j) is labeled by the integer in [n] corresponding to v(i,j) in the chosen total

order on V(T ).

Proposition 5.2 Let a1, a2, . . . , ak ∈ A associated with pairwise distinct vertices

v1, v2, . . . , vk in V(T ). Then V(a1 ∨ a2 ∨ . . . ∨ ak) = {v1, v2, . . . , vk}.

Proof. Let V = {v1, v2, . . . , vk}. Let π(1), π(2), . . . , π(k) be the partitions of I as-

sociated to a1, a2, . . . , ak. Let π be the join π(1) ∨ π(2) ∨ . . . ∨ π(k) in the lattice of

partitions. We want to show that π ∈ Ad(T ) and that V(π) = V .

Let p be a part of π. Let Vp be the set of vertices in V whose corresponding atoms

in {a1, . . . , ak} have their leaves in p. Observe that the sets Vp form a partition of

V because atoms in {a1, . . . , ak} have pairwise distinct vertices. Let v be a vertex in

S(p). This means that there exists i, j in p such that i
v
←→ j. As p is a part of a

join, there exists a chain

i = i0
t0←→ i1

t1←→ i2 . . . iℓ−1
tℓ−1

←→ iℓ
tℓ←→ iℓ+1 = j,

where each ir
tr←→ ir+1 is an atom in {a1, . . . , ak} with vertex in Vp.

In the rest of the proof, the symbol � stands for the partial order introduced in §4.

Let us prove by induction on the length ℓ of the chain that there exists θℓ in Vp such

that θℓ � t0 and θℓ � tℓ.

If ℓ = 0, then one can take θ0 = t0. Assume that there exists θℓ−1 in Vp such that

θℓ−1 � t0 and θℓ−1 � tℓ−1. The path joining the leaf iℓ to the root contains the vertices
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tℓ−1,tℓ and hence also by induction hypothesis the vertex θℓ−1. Either tℓ � θℓ−1, and

one can take θℓ = θℓ−1 or tℓ � θℓ−1 and one can take θℓ = tℓ. This concludes the

induction.

Therefore θℓ ∈ Vp is such that i
θℓ←→ j. Hence θℓ = v ∈ Vp and so S(p) ⊆ Vp. The

converse inclusion is clear.

Now let p and p′ be two different parts of π. Then S(p) ∩ S(p′) = Vp ∩ Vp′ is empty.

Hence π is T -admissible.

We have proved that π is T -admissible and that the vertices of π are exactly V . It

follows that π defines the join a1 ∨ . . . ∨ ak in [0̂, T ] and the proposition is proved.

Define another partition of A indexed by i ∈ [n]:

Bi = {a ∈ A : λ(0̂, a) = i}.

Let m : 0̂ = x0 ⊳ x1 ⊳ · · ·⊳ xn = T be the fixed left-modular chain of [0̂, T ], i.e.

the unique increasing maximal chain for the fixed labeling.

Lemma 5.3 Let i ∈ [n]. For each j ∈ [i], let aj be an atom in Bj. Then

xi = a1 ∨ a2 ∨ . . . ∨ ai.

Proof. The proof is by induction on i. By Proposition 4.3, x1 = a1 is the unique

atom in B1. Assume that xi−1 = a1 ∨ . . .∨ ai−1. Then a1 ∨ . . .∨ ai−1 ∨ ai is xi−1 ∨ ai

and has rank i by Proposition 5.2. Moreover we have that λ(xi−1, xi−1 ∨ ai) = i. By

uniqueness in Proposition 4.3, it follows that xi = xi−1 ∨ ai.

Lemma 5.4 Let Ai be the levels with respect to m. Then for each i ∈ [n],

Ai = Bi.

Proof. It suffices to prove that

{a ∈ A : a ≤ xi} = {a ∈ A : λ(0̂, a) ∈ [i]}.

If a ≤ xi, then λ(0̂, a) is one of the vertices of xi, i.e. belongs to [i]. Conversely,

take any atom a with λ(0̂, a) in [i]. Choose other atoms to have one atom in each Bj

for j ∈ [i]. Then, by Lemma 5.3, xi is the join of a and the other chosen atoms, so

a ≤ xi.
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Proposition 5.5 The lattice [0̂, T ] is an LL-lattice.

Proof. This lattice is supersolvable, so by Remark 4 the M-chain is a left-modular

chain. It remains to check the level condition. Take atoms a0, a1, . . . , ak which belong

to pairwise different Ai. By Lemma 5.4, these atoms belong to pairwise different Bi.

Then by Proposition 5.2 the set of vertices of the join a1 ∨ . . . ∨ ak does not contain

the vertex of the atom a0. This ensures the level condition.

Now we are ready to state and prove the main result of this section, which was

already proved in [5, Theorem 4.6].

Theorem 5.6 The characteristic polynomial of [0̂, T ] is

χ[0̂,T ](t) =
∏

v∈V(T )

(t− e(v)),

where e(v) is the product of the number of left ancestor leaves of v by the number of

right ancestor leaves of v.

Proof. By Proposition 5.5, one can apply Theorem 5.1 to [0̂, T ]. Let us count the

number of elements of Ai for each i. By Lemma 5.4, this is equal to the cardinality of

Bi. Let v be the vertex of T with index i. It is easy to see that the number of atoms

in Bi is the number of left ancestor leaves of v times the number of right ancestor

leaves of v.

For example, the characteristic polynomial of the interval [0̂, T ] where T is the tree

in Figure 6 is χ[0̂,T ](t) = (t− 1)3(t− 4)2(t− 10).
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