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Abstract

We find a minimal generating set for the defining ideal of the schematic intersection of the set of diago-
nal matrices with the closure of the conjugacy class of a nilpotent matrix indexed by a hook partition. The
structure of this ideal allows us to compute its minimal free resolution and give an explicit description of
the graded Betti numbers, and study its Hilbert series and regularity.

1 Introduction

A nilpotent matrix of sizen, over a fieldk of characteristic0, can be labelled with a partition ofn, say
λ = (λ1, λ2, . . . , λ`), where theλi are the sizes of its Jordan blocks; letOλ denote the conjugacy class of
such a matrix. The problem of finding a generating set for the defining ideal of the Zariski closure ofOλ

was suggested by De Concini and Procesi [DP], and many authors since then conjectured or proved various
generating sets (Eisenbud and Saltman [ES], Tanisaki [T], and Weyman [W]).

The schematic intersection ofOλ′ (whereλ′ denotes the conjugate ofλ), with the set of all diagonal
matrices, whose defining ideal we denote byIλ, has also been studied by the authors mentioned above.
In this case, however, the generating set is simpler to understand. De Concini and Procesi [DP] produced
a generating set forIλ, and proved that the quotient of the polynomial ringR = k[x1, . . . , xn] by Iλ, is
isomorphic to the cohomology ring of a certain subvariety of the flag variety. Moreover, as a representation
of the symmetric groupSn, R/Iλ is isomorphic to the induction of the trivial representation of the Young
subgroupSλ1 × · · · ×Sλ`

.
Garsia and Procesi [GP] studied the graded character of this representation, and showed that it could be

expressed in terms of Kostka-Foulkes polynomials, leading the way to more investigations in this subject by
Aval and Bergeron [AB], Bergeron and Garsia [BG], among others. These investigations, were facilitated
by Tanisaki’s work [T], where a simpler generating set forIλ, in terms of elementary partially symmetric
functions, is defined.

In this paper we study the idealsIλ, which we call De Concini-Procesi ideals. We reduce Tanisaki’s
generating set in the case whenλ is a hook partition, and obtain a minimal generating set. This reduced gen-
erating set allows us to compute the bigraded Poincaré series associated to such an ideal (i.e. the generating
function encoding the ranks of the free modules appearing in a minimal free resolution of the ideal), by using
only relatively basic algebraic techniques. We also give a description of the Hilbert series ofR/Iλ. We end
the paper with a couple of combinatorial results. We compute the generating function of the single Poincaré
series, and a combinatorial recurrence for the bigraded one.

This paper is organized as follows. In Section 2 contains a review of resolutions, Cohen-Macaulay rings,
and the other commutative algebra tools that we use in the paper. Section 3, we give the basic definitions of
partitions and the language used in the paper. We then introduce De Concini-Procesi ideals, and compute a
new generating set for them in the case of hooks; we show later in Section 5 that this generating set is minimal.
In Section 4 we study the resolutions of such ideals, and conclude with the formula of the corresponding
bigraded Poincaré series. Finally, in Section 5 we compute the regularity and we give an explicit formula for
the Hilbert series of the moduleR/Iλ.
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Weyman and Shimozono have brought to our attention that a resolution forIλ can be obtained also with
a different technique, namely by using Lascoux resolution and the Koszul complex. Some details on this
construction can be found in [W].
Acknowledgments:All the test examples that supported this research were run using the computer algebra
program Macaulay2 [GS]. We would like to thanks François Bergeron, Emmanuel Briand, Tony Geramita
and the referee for useful comments, and Mark Shimozono and Jerzy Weyman for telling us about resolutions
of nilpotent closures, and many helpful remarks and suggestions.

2 Commutative algebra tools

Let R = k[x1, . . . , xn] be a polynomial ring over a fieldk of characteristic 0, with the standard grading
deg xi = 1, for all i. Let m = (x1, . . . , xn) be the (irrelevant) homogeneous maximal ideal ofR. We are
interested in the quotientS = R/I whereI is an ideal ofR generated by homogeneous polynomials.

Definition 2.1 (Minimal free resolution). A free resolutionof R/I is an exact complexF

0 −→ · · · δi+1−→ Fi
δi−→ Fi−1

δi−1−→ · · · δ2−→ F1
δ1−→ R

δ0−→ R/I −→ 0.

of freeR-modulesFi (F0 = R). The resolution isminimal if δi(Fi) ⊆ mFi−1 for i > 0.

If eachFi is a free module of rankβi, theβi are called theBetti numbersof R/I; these are independent
of which minimal resolution one considers.

In the case whereI is a homogeneous ideal, and thereforeR/I is graded, we define thegraded Betti
numbersof R/I. This is done by making the mapsδi homogeneous, so that they take a degreej element of
Fi to a degreej element ofFi−1. To serve this purpose the degree of each generator ofFi is adjusted. So we
can write the free moduleFi = Rβi asRβi =

⊕
j R(−j)βi,j where for a given integera, R(a) is the same

asR but with a new grading:R(a)d = Ra+d. So the resolution shown in above becomes

0 −→
⊕

j

R(−j)βm,j
δm−→

⊕
j

R(−j)βm−1,j
δm−1−→ · · · δ2−→

⊕
j

R(−j)β1,j
δ1−→ R

δ0−→ R/I −→ 0. (1)

This is called thegraded minimal free resolutionof R/I, and theβi,j are thegraded Betti numbersof R/I.

Clearly,
∑

j

βi,j = βi.

Definition 2.2 (Bigraded Poincaŕe series). The bigraded Poincaŕe seriesof an idealI is the generating
function for the graded Betti numbers ofI:

PR/I(q, t) =
∑
i,j

βi,jq
itj .

Definition 2.3 (Linear resolution). The graded resolution described in (1) is alinear resolution, if for some
u, βi,j = 0 unlessj = u + i− 1.

Discussion 2.4 (Resolutions using mapping cones).The mapping cone technique provides a way to build
a free resolution of an ideal by adding generators one at a time. A resolution obtained using mapping cones
is not in general minimal. However, we will be focusing only on the special case of multiplication by a
nonzerodivisor, in which case we obtain a minimal free resolution.

Suppose thatI is an ideal in the polynomial ringR, ande ∈ m is a nonzerodivisor inR/I (i.e. e is a
regular element modI). The goal is to build a minimal free resolution ofR/(I +(e)) starting from a minimal
free resolution ofR/I. Consider the short exact sequence

0 −→ R/(I : (e)) .e−→ R/I −→ R/(I + (e)) −→ 0
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whereI : (e) is the quotient ideal consisting of all elementsx ∈ R such thatxe ∈ I. Sincee is a nonzerodi-
visor inR/I, we haveI : (e) = I, and so our short exact sequence turns into

0 −→ R/I
.e−→ R/I −→ R/(I + (e)) −→ 0.

Suppose we have a minimal free resolution ofR/I

0 −→ · · · δi+1−→ Ai
δi−→ Ai−1

δi−1−→ · · · δ2−→ A1
δ1−→ R

δ0−→ R/I −→ 0. (2)

Then we can obtain the following minimal free resolution ofR/(I + (e))

0 −→ · · · di+1−→ Fi
di−→ Fi−1

di−1−→ · · · d2−→ F1
d1−→ R

d0−→ R/(I + (e)) −→ 0 (3)

where for eachi > 0, as a freeR-module

Fi = Ai ⊕Ai−1 anddi(x, y) = (ey + δi(x),−δi−1(y)).

We now focus on the grading of eachFi. Suppose that the elemente ∈ R is homogeneous of degreem,
and for eachi, each of the free modulesAi in (2) are of the form

Ai =
⊕

j

R(−j)βi,j

where theβi,j are the graded Betti numbers. We would like to compute the graded Betti numbers ofR/(I +
(e)). Below we give an explicit description of the grading for eachFi; the gist of the argument, which can
be found in Schenck’s book [Sc], is that we need to twist the graded resolution ofR/I in (2) bym to obtain
a resolution ofR/(I : (e)) that make the maps that produce the mapping cone resolution homogeneous. So
eachAi−1-component ofFi is a twist ofAi−1 appearing in (2).

Lemma 2.5. Consider the minimal free resolutions (2) ofR/I, and (3) ofR/(I + (e)) obtained by mapping
cones. For eachi > 0 we have

Fi =
⊕

j

R(−j)βi,j ⊕
⊕

j

R(−j −m)βi−1,j .

Proof. In the case wherei = 1, we have the homogeneous mapd1 : A1 ⊕ R −→ R whered1(x, y) =
ey + δ1(x). In particular, ifx ∈ A1 is a homogeneous element of degreet, thend1(x, 0) = δ1(x) is also a
degreet homogeneous element ofR. If y ∈ R is a homogeneous element of degreet, thend1(0, y) = ey has
degreet + m. In order to maked1 a homogeneous (degree 0) map, we shift the grading of the componentR
of Fi by m, so that

F1 =
⊕

j

R(−j)β1,j ⊕R(−m).

The same argument applies, by induction, to each stepi of the resolution.

Corollary 2.6. Let I be an ideal of the polynomial ringR ande ∈ m be a homogeneous element of degree
m which is a nonzerodivisor inR/I. Then

PR/(I+(e))(q, t) = (1 + qtm)PR/I(q, t).

Proof. By Lemma 2.5, if for a fixedi, Ai =
bi⊕

j=0

R(−j)βi,j then

Fi =
bi⊕

j=0

R(−j)βi,j ⊕
bi−1⊕
j=0

R(−j −m)βi−1,j .
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So we have

PR/(I+(e))(q, t) = 1 +
∑
i≥1

 bi∑
j=0

βi,jt
j +

bi−1∑
j=0

βi−1,jt
j+m

 qi

=
∑
i≥0

bi∑
j=0

βi,jt
jqi + tm

∑
i≥0

bi∑
j=0

βi,jt
jqi+1

= (1 + qtm)
∑
i≥0

bi∑
j=0

βi,jt
jqi = (1 + qtm)PR/I(q, t).

Recall that a(square-free) monomial idealis an ideal generated by (square-free) monomials in the vari-
ablesx1, . . . , xn. If I andJ are two ideals ofR, theirquotientis the ideal defined as

I : J = {x ∈ R | xJ ⊆ I}.

Definition 2.7 (linear quotients). If I ⊂ k[x1, . . . , xn] is a monomial ideal andG(I) is its unique minimal
set of monomial generators, thenI is said to havelinear quotientsif there is an orderingM1, . . . ,Mm on the
elements ofG(I) such that for everyi = 2, . . . ,m, the quotient ideal

(M1, . . . ,Mi−1) : Mi

is generated by a subset of the variablesx1, . . . , xn.

Lemma 2.8. Let I be an ideal in the polynomial ringR = k[x1, . . . , xn] generated by all square-free
monomials of a fixed degreem. Then

1. I has linear quotients;

2. R/I has a linear resolution;

3. R/I is Cohen-Macaulay.

Proof. Statements (1) and (3) follow from [HH]. Statement (2) is true because of the Eagon-Reiner [ER]
criterion for Cohen-Macaulayness of square-free monomial ideals, and the fact that the Alexander dual ofI
is also generated by all square-free monomials of a fixed degree.

3 De Concini-Procesi Ideals

We now introduce a family of ideals{Iλ}λ of the polynomial ringR = k[x1, . . . , xn] indexed by partitions
λ of n. These ideals were first introduced by De Concini-Procesi in [DP]. They showed that for any partition
λ of n, R/Iλ is the coordinate ring of the diagonal matrices which are in the closure of the conjugacy class
of a nilpotent matrix of Jordan block structure given by the partitionλ′, the conjugate ofλ. We start with
some definitions and notation about partitions, that will be used in the rest of this paper.

We letN+ = {1, 2, . . .}, andN = N+ ∪ {0}. The cardinality of a setS is denoted by|S|. We define a
partitionof n ∈ N to be a finite sequenceλ = (λ1, . . . , λk) ∈ Nk, such that

∑k
i=1 λi = n andλ1 ≥ . . . ≥ λk.

If λ is a partition ofn we writeλ ` n. The nonzero termsλi are calledpartsof λ. The number of parts ofλ
is called thelengthof λ, denoted bỳ (λ).

The Young diagramof a partition(λ1, . . . , λk) ` n, is the diagram withλi squares in theith-row. We
use the symbolλ for both a partition and its associated Young diagram. For example, the diagram ofλ =
(5, 4, 2, 1) is illustrated in Figure 1.

For a partitionλ = (λ1, . . . , λk) denote theconjugatepartitionλ′ := (λ′1, . . . , λ
′
h), where for eachi ≥ 1,

λ′i is the number of parts ofλ that are bigger than or equal toi. The diagram ofλ′ is obtained by flipping the
diagram ofλ across the diagonal.
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Figure 1: The partitionλ = (5, 4, 2, 1)

A partition is said to be ahook if it is of the form λ = (a, 1b), with a, b ∈ N. It will often be useful to
denote hook partitions using a different notation. The hookλ = (a + 1, 1b) in Frobenius’s notation[M, page
3] will be denoted byλ = (a | b). Note that its conjugate isλ′ = (b | a).

From now on, we shall assume that a partition ofn hasn terms. So we will add enough zero terms
to any partition until we have the right number of terms. Letλ = (λ1, . . . , λn) be a partition ofn, and
λ′ = (λ′1 . . . , λ′n) its conjugate partition. For any1 ≤ k ≤ n, we define

δk(λ) := λ′n + λ′n−1 + . . . + λ′n−k+1.

Recall that for any1 ≤ r ≤ n, theelementary symmetric polynomial[M] is defined by

er(x1, . . . , xn) :=
∑

1≤i1<...<ir≤n

xi1xi2 · · ·xir
.

Given a subsetS ⊆ {x1, . . . , xn}, let er(S) be therth elementary symmetric polynomial in the variables in
S. Clearly, everyer(S) is a homogeneous polynomial inR of degreer.

We are now ready to introduce the ideals originally defined by De Concini and Procesi [DP]. We use a
different and simpler set of generators with respect to the original one, which was defined by Tanisaki [T].

Definition 3.1 (De Concini-Procesi ideal).We letCλ denote the collection of partial elementary symmetric
polynomials

Cλ = {er(S) | S ⊆ {x1, . . . , xn}, |S| = k ≥ 1, k ≥ r > k − δk(λ)}. (4)

TheDe Concini-Procesi idealIλ is the homogeneous ideal generated by the elements ofCλ, in symbols,

Iλ := (Cλ).

Example 3.2. Let λ = (3, 1, 0, 0) ` 4 andλ′ = (2, 1, 1, 0). Then(δ1(λ), . . . , δ4(λ)) = (0, 1, 2, 4). Hence
(1− δ1(λ), . . . , 4− δ4(λ)) = (1, 1, 1, 0), and the collectionCλ consists of the following elements. Fork = 1
there is no admissibleer(S). Fork = 2 we get the set of monomials:

x1x2, x1x3, x1x4, x2x3, x2x4, x3x4.

Fork = 3, we get

x1x2 + x1x3 + x2x3, x1x2 + x1x4 + x2x4, x1x3 + x1x4 + x3x4, x2x3 + x2x4 + x3x4

x1x2x3, x1x2x4, x1x3x4, x2x3x4.

Finally for k = 4, we get the complete set of the elementary symmetric functionser(x1, x2, x3, x4), for
1 ≤ r ≤ 4.

Remark 3.3. Note thatδn(λ) = n, for any partitionλ of n. Hence when we setk = n in (4), we obtain
thatIλ contains the ideal generated by the elementary symmetric polynomials in all the variables. It is well
known thate1(x1, . . . , xn), . . . , en(x1, . . . , xn) are algebraically independent (this is due to Gauss; see [M]),
and hence they form a regular sequence overR. ThereforeR/Iλ is an Artinian ring.

When the indexing partitionλ is a hook, the idealIλ can be split in two parts. We have the following
result.
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Proposition 3.4 (A reduced generating set for hook partitions).Let λ = (a | b) ` n be a hook. Then the
ideal associated toλ in the polynomial ringk[x1, . . . , xn] is

Iλ = Mb+1 + Eb,

where

Mb+1 = (xi1 · · ·xib+1 | 1 ≤ i1 < . . . < ib+1 ≤ n) (5)

is the ideal generated by all square-free monomials inx1, . . . , xn of degreeb + 1, and

Eb = (ei(x1, . . . , xn) | 1 ≤ i ≤ b) (6)

is the ideal generated by all elementary symmetric polynomials of degree≤ b in the variablesx1, . . . , xn.

Proof. The partitionλ = (a | b) is of sizen = a + b + 1. We can write

λ′ = (b | a) = (b + 1, 1, . . . , 1︸ ︷︷ ︸
a

, 0, . . . , 0︸ ︷︷ ︸
b

).

Then we have
(δ1(λ), δ2(λ), . . . , δn(λ)) = (0, . . . , 0︸ ︷︷ ︸

b

, 1, 2, . . . , a, n),

and so
(1− δ1(λ), 2− δ2(λ), . . . , n− δn(λ)) = (1, 2, 3, . . . , b, b, . . . , b︸ ︷︷ ︸

a

, 0).

The definition ofCλ in (4) implies that nok, with 1 ≤ k ≤ b, contributes a generator to the idealIλ.
The first index making a nontrivial contribution to the setCλ is k = b + 1, which adds toCλ all eb+1(S),

with |S| = b+1, or in other words all the square-free monomials of degreeb+1 in the variablesx1, . . . , xn.
We denote byMb+1 the ideal generated by these square-free monomials.

Now all the indicesk, with b+2 ≤ k ≤ n− 1 add toCλ elements of the former(S), with k ≥ r ≥ b+1,
and|S| = k. Each sucher(S) is a homogeneous polynomial of degreer, which we can write as the sum of
square-free monomials of degreer. Sincer ≥ b + 1, and all square-free monomials of degreeb + 1 or more
are already inIλ, sucher(S) do not contribute any new generators toIλ.

Finally, for k = n we obtain all the elementary symmetric polynomials in all the variables. For the same
reasons as above, the only new contributions are

e1(x1, . . . , xn), e2(x1, . . . , xn), . . . , eb(x1, . . . , xn).

We denote the ideal generated by these elementary symmetric polynomials byEb. We conclude thatIλ =
Mb+1 + Eb.

Example 3.5. Let λ = (2 | 1) ` 4. It follows from the computations in Example 3.2, that the idealIλ splits
into two parts

Iλ = (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4) + (x1 + x2 + x3 + x4).

The first part is generated by all monomials of degree 2 in the variablesx1, x2, x3, x4, and the second is
generated bye1(x1, x2, x3, x4), the elementary symmetric polynomial of degree 1.

For hooks, the reduced generating set described in Proposition 3.4 is much smaller than that described in
Definition 3.1 (it is in fact minimal), and hence simpler to understand. In the rest of the paper, we use this
presentation ofIλ to describe the Betti numbers and other numerical information of the algebraR/Iλ.
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4 Bigraded Poincaŕe series of De Concini-Procesi ideals of hooks

In this section we study the minimal free resolutions of the De Concini-Procesi idealIλ of a hookλ = (a | b).
We have seen thatIλ is the sum of two ideals

Iλ = Mb+1 + Eb

whereMb+1 is generated by monomials, andEb is generated by elementary symmetric functions. Below we
show how we can recover the resolution ofIλ using the resolutions of each one of the summands.

SinceMb+1 is generated by all square-free monomials ofR = k[x1, . . . , xn] that have degreeb + 1,
by Lemma 2.8,Mb+1 is a Cohen-Macaulay ideal with linear resolutions and linear quotients. On the other
hand, it is easy to see that all the minimal primes ofMb+1 have uniform heightn− b. This is because every
generator ofMb+1 is a product of exactlyb + 1 variables in the set{x1, . . . , xn}, and so a minimal subset
of {x1, . . . , xn} that shares at least one variable with each one of these generators must haven− b elements.
Such an ideal will have height equal ton− b, and so it follows thatdim R/Mb+1 = b.

We have thus shown that

Corollary 4.1. For a hookλ = (a | b), the idealMb+1 of R has linear quotients, linear resolution, and
R/Mb+1 is Cohen-Macaulay of (Krull) dimensionb.

Remark 4.2. Let G(Mb+1) denote the minimal monomial generating set forMb+1. We can arrange the
elements ofG(Mb+1) in descending lexicographic order asM1, . . . ,Mm. Take such a monomialMi =
xj1 · · ·xjb+1 , written so thatj1 < j2 < . . . < jb+1. Since(M1, . . . ,Mi−1) is a monomial ideal, andMi is
also a monomial, the quotient ideal(M1, . . . ,Mi−1) : Mi is generated by monomials. Observe that

1. If s < jt for somejt ∈ {j1, . . . , jb+1} ands 6∈ {j1, . . . , jb+1}, thenxs ∈ (M1, . . . ,Mi−1) : Mi.

This is because the monomialxsMi

xjt
is a degreeb + 1 monomial that is lexicographically larger than

Mi, that is,xsMi

xjt
∈ {M1, . . . ,Mi−1}.

2. If u is a monomial in(M1, . . . ,Mi−1) : Mi, thenMl | uMi for somel < i. SinceMl >lex Mi, there
existsxs, such thatxs | Ml, xs - Mi ands < jt for somejt ∈ {j1, . . . , jb+1}.

It follows thatxs | u, and(M1, . . . ,Mi−1) : Mi is generated by the set of variablesxs, with s < jb+1

ands /∈ {j1, . . . , jb+1} as described in part 1. This proves thatMb+1 has linear quotients.

Next, we focus on the idealEb, which is generated by the firstb elementary symmetric functions. As
observed in Remark 3.3,Iλ contains the regular sequencee1(x1, . . . , xn), . . . , en(x1, . . . , xn), and hence
R/Iλ is of (Krull) dimension 0.

Proposition 4.3. For a hookλ = (a | b), the set of generators

e1(x1, . . . , xn), . . . , eb(x1, . . . , xn)

of Eb form a regular sequence over the quotient ringR/Mb+1.

Proof. Let S = R/Mb+1. We know by Corollary 4.1 thatS is a Cohen-Macaulay ring, anddim S = b. To
show thate1(x1, . . . , xn), . . . , eb(x1, . . . , xn) forms a regular sequence inS, by Theorem 2.1.2 of [BH], it
is enough to show thatdim S/Eb = 0. Now, S/Eb = R/Iλ, and the latter is an Artinian ring, and hence of
dimension 0.

We are now ready to state our central claim.

Theorem 4.4 (Main theorem). Let λ = (a | b) be a hook. Then the bigraded Poincaré series for the ideal
Iλ is the following

PR/Iλ
(q, t) =

b∏
k=1

(1 + qtk) ·
(
1 + qtb+1

a∑
i=0

(
b + i

b

)
(1 + q t)i

)
. (7)
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Proof. As usual, letIλ = Mb+1 + Eb.

Step 1.The idealMb+1 has linear quotients (Corollary 4.1). It follows from Corollary 1.6 of [HT] that the
bigraded Poincaré series ofMb+1 is the following:

PR/Mb+1(q, t) = 1 +
∑

M∈G(Mb+1)

(1 + qt)|set(M)|qtdeg(M) (8)

where, if we arrange the elements ofG(Mb+1) in descending lexicographic order asM1, . . . ,Mm,
then fori = 1, . . . ,m

set(Mi) = {j ∈ {1, . . . , n} | xj ∈ (M1, . . . ,Mi−1) : Mi}.

As the degree of each of the monomials generatingMb+1 is b + 1, Equation (8) turns into

PR/Mb+1(q, t) = 1 + qtb+1
∑

M∈G(Mb+1)

(1 + qt)|set(M)|. (9)

If Mi = xi1 · · ·xib+1 , by Remark 4.2

set(Mi) = {u ≤ ib+1 | xu - Mi},

so
|set(Mi)| = ib+1 − (b + 1). (10)

We have shown that, ifM is any degreeb + 1 square-free monomial with highest indexu (that is,
xu | M andxv - M for v > u), then|set(M)| = u− (b+1). So to compute the sum in (9), all we have
to do is count the number of square-free degreeb + 1 monomials with highest indexu, for any given
u. This number is clearly

(
u−1

b

)
. So for a giveni, the number of degreeb + 1 square-free monomials

M with |set(M)| = i is exactly
(
b+i
b

)
.

Therefore,PR/Mb+1(q, t) is equal to

1 + qtb+1
n−b−1∑

i=0

(
b + i

b

)
(1 + qt)i = 1 + qtb+1

a∑
i=0

(
b + i

b

)
(1 + qt)i (11)

since by Equation (10),i can reach at mostn− b− 1, which by definition is equal toa.

Step 2.SinceEb is generated by a regular sequence overR/Mb+1 (Proposition 4.3), we can use a map-
ping cone construction to find its minimal graded resolution (see Discussion 2.4). We do this by
adding the generators ofEb, one at a time, toMb+1, and applying Corollary 2.6. As the genera-
torse1(x1, . . . , xn), . . . , eb(x1, . . . , xn) of Eb have degrees1, . . . , b, respectively, each time we add a
ei(x1, . . . , xn), the Poincaŕe series gets multiplied by a factor of(1 + qti), and hence from (11) we
obtain thatPR/Iλ

(q, t) equals

b∏
k=1

(1 + qtk) · PR/Mb+1(q, t) =
b∏

k=1

(1 + qtk) ·
(
1 + qtb+1

a∑
i=0

(
b + i

b

)
(1 + q t)i

)
.
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5 Some consequences of the Main Theorem

We study some of the consequences of our main theorem. We prove that our new generating set is indeed
minimal.

Corollary 5.1 (The set of generators ofIλ is minimal). Let λ = (a | b) be a hook. The generating set for
Iλ described in Proposition 3.4 is minimal.

Proof. The cardinality of the generating set ofIλ described in Proposition 3.4 is
(

n
b+1

)
+ b. On the other

hand, the minimal number of generators ofIλ is the first Betti numberβ1 of R/Iλ, which is the coefficient
of q in the Poincaŕe seriesPR/Iλ

(q, 1). It is easy to see by Theorem 4.4 that this coefficient is

b + 1 +
a∑

i=1

(
b + i

b

)
.

So all we have to show is that
(

n
b+1

)
+ b = b + 1 +

∑a
i=1

(
b+i
b

)
which is equivalent to showing that(

n

b + 1

)
=

n−b−1∑
i=0

(
b + i

b

)
.

This last equation follows easily from induction onn.

Regularity of Hooks

Definition 5.2 (Castelnuovo-Mumford regularity). Let I be an ideal of aR = k[x1, . . . , xn]. TheCastelnuovo-
Mumford regularityor simply regularity of R/I, denoted byreg(R/I) is defined as the maximum value of
of j − i where the graded Betti numberβi,j 6= 0 in a minimal free resolution ofR/I.

Corollary 5.3 (Regularity of hooks). Letλ = (a | b) be a hook. Thenreg(R/I) = b(b + 1)/2.

Proof. The graded Betti numbersβi,j appear as the coefficients of the Poincaré series

PR/Iλ
(q, t) =

b∏
k=1

(1 + qtk)︸ ︷︷ ︸
Factor 1

·
(
1 + qtb+1

a∑
i=0

(
b + i

b

)
(1 + q t)i

)
︸ ︷︷ ︸

Factor 2

.

So the question is to find the termqitj in this polynomial, where the coefficientβi,j is nonzero andj − i is
maximum. The terms with nonzero coefficients in each factor are of the following forms:

Factor 1: qmtb1+...+bm where1 ≤ b1 < . . . < bm ≤ b, 0 ≤ m ≤ b,
Factor 2: qe+1te+b+1 where0 ≤ e ≤ a.

To show thatreg(R/I) =
b(b + 1)

2
, we need to show that this bound is achieved by the possible choices

of j − i, and is the maximum possible bound. Consider the terms in Factor 1. We have

b1 + . . . + bm −m ≤
(
(b− (m− 1)) + (b− (m− 2)) + . . . + b

)
−m

=
(
(1 + 2 + . . . + b)− (1 + 2 + . . . + (b−m))

)
−m ≤ b(b + 1)

2
− b.

Similarly, for terms in Factor 2, sinceb ≥ 0, we havee + b + 1 − (e + 1) = b. Hence, for the product of a
term in Factor 1 and a term in Factor 2 we have

b1 + . . . + bm + e + b + 1− (m + e + 1) ≤ b(b + 1)
2

.

The bound is achieved ifm = b, so thatb1 = 1, . . . , bm = b, and for anye, so that we have the term with
nonzero coefficient

qe+b+1t(1+...+b)+e+b+1 = qe+b+1t
b(b+1)

2 +e+b+1

which clearly has the property thatj − i =
b(b + 1)

2
, as desired.
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Remark 5.4 (Hooks are level algebras).We note that for a hookλ = (a | b), R/Iλ is a level algebra.
Indeed, sinceR/Iλ is Artinian, its projective dimension isn (or observe that the highest power ofq appearing
in Equation (7) isn), which is the same as the height of the idealIλ. Moreover, the coefficient ofqn in this
equation is (

b + a

b

)
tn+

b(b+1)
2 .

This implies thatR/Iλ is level of type
(
b+a

b

)
with socle degreeb(b+1)

2 (see, for example, [GL, Definition 0.2]).
The regularity that we find above is therefore the expected value.

The Hilbert series of hooks

We finish this section with the computation of the Hilbert series ofR/Iλ whenλ is a hook partition, namely,
the series

hR/Iλ
(q) =

∞∑
s=0

dim k(R/Iλ)sq
s,

where as usualdim k means dimension as a vector space overk. This has been done in the general case of a
partitionλ = (λ1, . . . , λn) of n by Garsia and Procesi. In [GP], they provide an explicit basis forR/Iλ as a
Q-module, from which it follows thatdimk(R/Iλ) =

(
n

λ1,...,λn

)
. and

hR/Iλ
(q) =

∑
µ`n

fµ Kµλ(1/q) qn(λ). (12)

Here, fµ andn(λ) are two well-known parameters associated with partitions ([M]), andKµλ(q) are the
Kostka-Foulkes polynomials we referred to in the introduction ([LS]). The computation ofKµλ(q) is some-
what complicated. This motivates us to use the results of this paper to give a new description of the Hilbert
series in the case of hooks.

Let λ = (a | b) be a hook partition ofn, and consider the idealIλ = Mb+1 + Eb. SinceR/Mb+1 is
a Cohen-Macaulay ring (Corollary 4.1), and the generatorse1(x1, . . . , xn), . . . , eb(x1, . . . , xn) of Eb form a
regular sequence overR/Mb+1 (Proposition 4.3), it follows that (see [V] Theorem 4.2.5)

hR/Iλ
(q) =

b∏
i=1

(1− qi)hR/Mb+1(q). (13)

So we focus on findinghR/Mb+1(q). Recall thatMb+1 is generated by all square-free monomials of
degreeb+1 with variables in{x1, . . . , xn}. So each graded piece(R/Mb+1)s is generated by all monomials
of degrees, involving c of the n variables withc ≤ b. There are

(
n
c

)
ways of choosingc variables from

{x1, . . . , xn}. Choose such a monomial, without loss of generality,xa1
1 . . . xac

c . We need to choose the
positive integersa1, . . . , ac such thata1 + . . . + ac = s. There are

(
s−1
c−1

)
ways of doing that. So we have

hR/Mb+1(q) = 1 +
∞∑

s=1

b∑
c=1

(
n

c

)(
s− 1
c− 1

)
qs.

Therefore, by Equation (13) we obtain thathR/Iλ
(q) equals(

1 +
∞∑

s=1

b∑
c=1

(
n

c

)(
s− 1
c− 1

)
qs

)
b∏

i=1

(1− qi) =

(
1 +

b∑
c=1

(
n

c

) ∞∑
s=1

(
s− 1
c− 1

)
qs

)
b∏

i=1

(1− qi).

On the other hand, it is well known that
∑∞

j=0

(
i+j

i

)
qj = 1

(1−q)i+1 , ( see ([Wi, page 53, 2.5.7]) ). Hence, we
get

∞∑
s=1

(
s− 1
c− 1

)
qs =

qc

(1− q)c
.
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We conclude that

hR/Iλ
(q) =

b∏
i=1

(1− qi) ·

(
1 +

b∑
c=1

(
n

c

)
qc

(1− q)c

)

=
b∏

i=1

(
1− qi

1− q

)
·

b∑
c=0

(
n

c

)
qc(1− q)b−c = [b]q!

b∑
c=0

(
n

c

)
qc(1− q)b−c,

where[b]q! := [1]q [2]q · · · [b]q with [b]q := 1 + q + . . . + qb−1. We have shown that following proposition
holds:

Proposition 5.5. Letλ = (a | b) be a hook partition ofn. Then

hR/Iλ
(q) = [b]q!

b∑
c=0

(
n

c

)
qc(1− q)b−c. (14)

Note that if we setq = 1 in (14), we find thatdim k(R/Iλ) = n!
(a+1)! = n!

λ1!
as expected.

Remark 5.6. The formula for Proposition 5.5 has the following nice alternative form, which was suggested
by Mark Shimozono.

hR/Iλ
(q) = [b]q!

b∑
i=0

qi

(
i + a

a

)
.

6 Combinatorial Remarks

As noticed in the introduction, the quotientR/Iλ has been extensively studied in algebraic combinatorics [AB,
BG, GP]. Its combinatorial nature arises also in the two following observations on the Poincaré series. We
think that they might be useful, in order to understand the behavior of the Poincaré series in the case whenλ
is an arbitrary partition.

Remark 6.1 (Recursive nature of the Poincaŕe series).From Theorem 4.4 it can be seen that the Poincaré
series ofIλ can be computed recursively. We start with the one-column partition(0 | b). In this case the ideal
Iλ is generated by the firstb + 1 elementary symmetric functions in the variablesx1, . . . , xb+1; the quotient
R/Iλ is known as the coinvariant algebra of the symmetric group, and asSb-representation is isomorphic to
the regular representation (see e.g. [Hu]). The graded Poincaré series in this case is

◦
◦
◦

P(0|b)(q, t) =
b+1∏
k=1

(1 + qtk). (15)

Using Equation (7), by subtractingP(a−1|b)(q, t) from P(a|b)(q, t), we get

P(a|b)(q, t) = P(a−1|b)(q, t) +
b∏

k=1

(1 + qtk) · qtb+1

(
b + a

a

)
(1 + qt)a. (16)

This recursion allows us to compute the graded Poincaré polynomial of(a | b), starting from (15), by adding
one cell at a time to the first row of the one-column partition(0 | b). For example,

◦
◦
◦

•

P(1|b)(q, t) =
(
1 + qtb+1 + qtb+1(b + 1)(1 + qt)

) b∏
k=1

(1 + qtk).
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Question 6.2. It would be nice to understand what would happen if we added a box not only in the first row,
but also in other rows and columns. This would allow the computation of the Poincaré series for any partition.

The second relation we show concerns the single-graded Poincaré series. We compute first its generating
function. For simplicity, for any hookλ = (a | b) we denote byP (a | b) the single-graded Poincaré series
PR/I(a|b)(q, 1).

Lemma 6.3 (The generating function of the Poincaŕe series).The generating function of the single-graded
Poincaŕe series is given by

P =
∑

a,b≥0

P (a | b)uavb =
1

1− u

[ 1
1− (1 + q)v

+
q

1− (1 + q)(u + v)

]
. (17)

Proof. Sett = 1 in Eq. (7). Then,

P (a | b) = (1 + q)b + q
a∑

i=0

(
b + i

b

)
(1 + q)b+i.

We compute the generating functions of the two summands separately. It is clear that∑
a,b≥0

(1 + q)buavb =
1

1− u

1
1− (1 + q)v

.

On the other hand,

∑
a,b≥0

a∑
i=0

(
b + i

b

)
(1 + q)b+iuavb =

∑
i,a,b≥0

a≥i

(
b + i

b

)
(1 + q)b+iuavb =

∑
i,b≥0

(
b + i

b

)
(1 + q)b+ivb ui

1− u

=
1

1− u

∑
i,b≥0

(
b + i

b

)
(1 + q)b+ivbui =

1
1− u

1
1− (1 + q)(u + v)

.

We have obtained formula (17).

Now it is straightforward to check that the following equation holds

P = (1− u)
∂P
∂u

− (1− u)
∂P
∂v

+
(1 + q)

(1− (1 + q)v)2
. (18)

By extracting the coefficients ofuavb in both sides of (18) we obtain the following relation

P (a + 1 | b)− P (a | b) =
(

1 + b

1 + a

)(
P (a | b + 1)− P (a− 1 | b + 1)

)
,

which holds for alla > 0, andb ≥ 0.
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