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Abstract

We find a minimal generating set for the defining ideal of the schematic intersection of the set of diago-
nal matrices with the closure of the conjugacy class of a nilpotent matrix indexed by a hook partition. The
structure of this ideal allows us to compute its minimal free resolution and give an explicit description of
the graded Betti numbers, and study its Hilbert series and regularity.

1 Introduction

A nilpotent matrix of sizen, over a fieldk of characteristid®, can be labelled with a partition of, say

A = (A1, M2, ..., \r), where the)\; are the sizes of its Jordan blocks; @f denote the conjugacy class of

such a matrix. The problem of finding a generating set for the defining ideal of the Zariski closiise of

was suggested by De Concini and Procesi [DP], and many authors since then conjectured or proved various
generating sets (Eisenbud and Saltman [ES], Tanisaki [T], and Weyman [W]).

The schematic intersection @y, (where )\’ denotes the conjugate of, with the set of all diagonal
matrices, whose defining ideal we denoteBy has also been studied by the authors mentioned above.

In this case, however, the generating set is simpler to understand. De Concini and Procesi [DP] produced
a generating set faf,, and proved that the quotient of the polynomial riRg= k[z1,...,x,] by Z,, is
isomorphic to the cohomology ring of a certain subvariety of the flag variety. Moreover, as a representation
of the symmetric groui®,,, R/Z) is isomorphic to the induction of the trivial representation of the Young
subgroupSy, x -+ x Gy,.

Garsia and Procesi [GP] studied the graded character of this representation, and showed that it could be
expressed in terms of Kostka-Foulkes polynomials, leading the way to more investigations in this subject by
Aval and Bergeron [AB], Bergeron and Garsia [BG], among others. These investigations, were facilitated
by Tanisaki's work [T], where a simpler generating setIqr in terms of elementary partially symmetric
functions, is defined.

In this paper we study the ideals,, which we call De Concini-Procesi ideals. We reduce Tanisaki's
generating set in the case wheis a hook partition, and obtain a minimal generating set. This reduced gen-
erating set allows us to compute the bigraded Pomearies associated to such an ideal (i.e. the generating
function encoding the ranks of the free modules appearing in a minimal free resolution of the ideal), by using
only relatively basic algebraic techniques. We also give a description of the Hilbert seR¢g of We end
the paper with a couple of combinatorial results. We compute the generating function of the single&oincar
series, and a combinatorial recurrence for the bigraded one.

This paper is organized as follows. In Section 2 contains a review of resolutions, Cohen-Macaulay rings,
and the other commutative algebra tools that we use in the paper. Section 3, we give the basic definitions of
partitions and the language used in the paper. We then introduce De Concini-Procesi ideals, and compute a
new generating set for them in the case of hooks; we show later in Section 5 that this generating set is minimal.
In Section 4 we study the resolutions of such ideals, and conclude with the formula of the corresponding
bigraded Poincé&rseries. Finally, in Section 5 we compute the regularity and we give an explicit formula for
the Hilbert series of the modulg/Z,.
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Weyman and Shimozono have brought to our attention that a resolutidy fzan be obtained also with
a different technique, namely by using Lascoux resolution and the Koszul complex. Some details on this
construction can be found in [W].
AcknowledgmentsAll the test examples that supported this research were run using the computer algebra
program Macaulay?2 [GS]. We would like to thanks Francgois Bergeron, Emmanuel Briand, Tony Geramita
and the referee for useful comments, and Mark Shimozono and Jerzy Weyman for telling us about resolutions
of nilpotent closures, and many helpful remarks and suggestions.

2 Commutative algebra tools

Let R = k[z1,...,z,] be a polynomial ring over a fieléd of characteristic 0, with the standard grading
degz; = 1, for all i. Letm = (x4,...,xz,) be the (irrelevant) homogeneous maximal ideaRofWe are
interested in the quotiert = R/I wherel is an ideal ofR generated by homogeneous polynomials.

Definition 2.1 (Minimal free resolution). A free resolutiorof R/I is an exact complek
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of free R-modulesF; (Fy = R). The resolution isninimalif §,(F;) C mF;_4 fori > 0.

If each F; is a free module of rank;, the 8; are called théetti numbersf R/I; these are independent
of which minimal resolution one considers.

In the case wheré is a homogeneous ideal, and therefétgl is graded, we define thgraded Betti
numbersof R/I. This is done by making the mapshomogeneous, so that they take a degrelement of
F; to a degreg element ofF;_,. To serve this purpose the degree of each generatly isfadjusted. So we
can write the free modulé; = R’ asR’ = @, R(—j)"# where for a given integer, R(a) is the same
asR but with a new gradingR(a)q = Ra+4. SO the resolution shown in above becomes

0 @R(ij)ﬁm,j Om, @R(ij)ﬁntfl,j i N @R(fj)ﬁl,j DL RS R/ —0. (1)
J J J

This is called thegraded minimal free resolutioof R/1, and theg; ; are thegraded Betti numbersf R/1.
CIearIy,Zﬂm = b.
g

Definition 2.2 (Bigraded Poincaie series). The bigraded Poincag seriesof an ideall is the generating
function for the graded Betti numbers &f

Pryr(q,t) =Y Biq't-
(2]

Definition 2.3 (Linear resolution). The graded resolution described in (1) isreear resolution if for some
u, B;; =0unlessj = u+14— 1.

Discussion 2.4 (Resolutions using mapping conesyhe mapping cone technique provides a way to build
a free resolution of an ideal by adding generators one at a time. A resolution obtained using mapping cones
is not in general minimal. However, we will be focusing only on the special case of multiplication by a
nonzerodivisor, in which case we obtain a minimal free resolution.

Suppose thaf is an ideal in the polynomial rin@®, ande € m is a nonzerodivisor irR/I (i.e. e is a
regular element mod)). The goal is to build a minimal free resolutionBf (I + (e)) starting from a minimal
free resolution of?/I. Consider the short exact sequence

0— R/(I:(e)) -5 R/T— R/(I+(e)) —0



wherel : (e) is the quotient ideal consisting of all elements R such thatce € I. Sincee is a nonzerodi-
visorinR/I, we havel : (e) = I, and so our short exact sequence turns into

0— R/I -5 R/I — R/(I + (e)) — 0.
Suppose we have a minimal free resolutiomgff

1+1
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Then we can obtain the following minimal free resolutionR®f(I + (e))

Tp fp My B R B R (e) — 0 3)
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where for each > 0, as a freeR-module
F;=A; ® Aj_1 andd;(z,y) = (ey + 0i(x), —6i—1(y)).

We now focus on the grading of eaéh. Suppose that the element R is homogeneous of degree,
and for eachi, each of the free modules$; in (2) are of the form

A; _@R )i

where theg; ; are the graded Betti numbers. We would like to compute the graded Betti numbef$iof-

(e)). Below we give an explicit description of the grading for ed¢hthe gist of the argument, which can

be found in Schenck’s book [Sc], is that we need to twist the graded resoluti®ploh (2) by m to obtain

a resolution ofR/(I : (e)) that make the maps that produce the mapping cone resolution homogeneous. So
eachA;_;-component off; is a twist of A;_; appearing in (2).

Lemma 2.5. Consider the minimal free resolutions (2)Bf I, and (3) ofR/(I + (e)) obtained by mapping
cones. For eachi > 0 we have

F, = EBR 577@@3 —j—m

Proof. In the case wheré = 1, we have the homogeneous mé&p: A; ® R — R whered;(z,y) =

ey + 61(x). In particular, ifz € A, is a homogeneous element of degtethend; (z,0) = 0, (z) is also a
degreet homogeneous element &f If y € R is a homogeneous element of degtethend; (0, y) = ey has
degreet + m. In order to makel; a homogeneous (degree 0) map, we shift the grading of the compBnent

of F; by m, so that
@R )i @ R(—m).

The same argument applies, by inductlon, to eachistéphe resolution. O

Corollary 2.6. LetI be an ideal of the polynomial ringg ande € m be a homogeneous element of degree
m which is a nonzerodivisor ii®/I. Then

Prir+e)(a,t) = (1 +qt"™)Pr;1(g,t).

b;
Proof. By Lemma 2.5, if for a fixed, A4; = @5 R(—j)" then
7=0

bi
Fi =P R(- BLJ@QBR —j—m

j=0



So we have

b; bi—1
Prii+en(@:t) =1+ (Z Bigth +> ﬁi—l,jt]+m) q
5=0

i>1 \ j=0

b; b;
=D Bt g+t > Bitlg

i>0 j=0 i>0 j=0
b;

=(1+qt™)> > Biit’q' = (14 qt™)Prsi(q,t).
i>0 j=0
O

Recall that gsquare-free) monomial ide@ an ideal generated by (square-free) monomials in the vari-
ableszy,...,z,. If I andJ are two ideals of?, their quotientis the ideal defined as

I:J={z€R|zJ I}

Definition 2.7 (linear quotients). If I C k[x1,...,x,] is @ monomial ideal and/(I) is its uniqgue minimal
set of monomial generators, théis said to havdinear quotientdf there is an orderind/, . .., M,, on the
elements of5(I) such that for every = 2, ..., m, the quotient ideal

(]V-[lv RS Mi—l) : Mz
is generated by a subset of the variahles. . . | z.,.

Lemma 2.8. Let I be an ideal in the polynomial rind? = k[x4,...,z,] generated by all square-free
monomials of a fixed degree. Then

1. I has linear quotients;
2. R/I has a linear resolution;
3. R/I is Cohen-Macaulay.

Proof. Statements (1) and (3) follow from [HH]. Statement (2) is true because of the Eagon-Reiner [ER]
criterion for Cohen-Macaulayness of square-free monomial ideals, and the fact that the Alexanderdual of
is also generated by all square-free monomials of a fixed degree. O

3 De Concini-Procesi Ideals

We now introduce a family of ideal§Z, }, of the polynomial ringR = k[z1, ..., z,] indexed by partitions

A of n. These ideals were first introduced by De Concini-Procesi in [DP]. They showed that for any partition
Aof n, R/T, is the coordinate ring of the diagonal matrices which are in the closure of the conjugacy class
of a nilpotent matrix of Jordan block structure given by the partitionthe conjugate of. We start with

some definitions and notation about partitions, that will be used in the rest of this paper.

We letNt = {1,2,...}, andN = N* U {0}. The cardinality of a se$ is denoted byS|. We define a
partition of n € Nto be afinite sequence= (\i, ..., \;) € N¥, such thaﬁjf’:1 A =nandA; > ... > .

If \is a partition ofn. we write A\ - n. The nonzero terms; are callecpartsof A. The number of parts of
is called thdengthof A, denoted by/()\).

The Young diagranof a partition(A, ..., Ax) F n, is the diagram with\; squares in thé'"-row. We
use the symboh for both a partition and its associated Young diagram. For example, the diagrars-of
(5,4,2,1) is illustrated in Figure 1.

For a partition\ = (A, ..., ;) denote theonjugatepartition\’ := (A}, ..., A}, ), where for each > 1,
A} is the number of parts of that are bigger than or equalz0The diagram of\’ is obtained by flipping the
diagram of\ across the diagonal.



Figure 1: The partitio\ = (5,4,2, 1)

A partition is said to be &ookif it is of the form XA = (a, 1°), with a,b € N. It will often be useful to
denote hook partitions using a different notation. The hdek (a + 1, 1%) in Frobenius’s notatioriM, page
3] will be denoted by = (a | b). Note that its conjugate i¥' = (b | a).

From now on, we shall assume that a partitionnofiasn terms. So we will add enough zero terms
to any partition until we have the right number of terms. Det= ()\,...,\,) be a partition ofn, and
A = (N ..., \) its conjugate partition. For any< k < n, we define

SN = AL+ A+ N

Recall that for anyl < r < n, theelementary symmetric polynom[d] is defined by

er(T1,y ..., &y) = Z Xy Ty " T,

1<ii<...<ir<n

Given a subse$ C {z1,...,7,}, lete.(S) be thert® elementary symmetric polynomial in the variables in
S. Clearly, evene,.(.S) is a homogeneous polynomial R of degreer.

We are now ready to introduce the ideals originally defined by De Concini and Procesi [DP]. We use a
different and simpler set of generators with respect to the original one, which was defined by Tanisaki [T].

Definition 3.1 (De Concini-Procesi ideal).We letC, denote the collection of partial elementary symmetric
polynomials

Cr={e.(S)|SC{x1,...,an}, |S|=k>1, k>r>k—0,(N)}. 4
TheDe Concini-Procesi idedl, is the homogeneous ideal generated by the elemeidts, @i symbols,
I)\ = (C)\)

Example 3.2. Let A = (3,1,0
(1—=01(A),...,4—084(N)) = (
F

0) F4and)\ = (2,1,1,0). Then(é;1(A),...,d4(N)) = (0,1,2,4). Hence
) 1
there is no admissible.(S).

1,1,1,0), and the collectioi®,, consists of the following elements. For= 1
ork = 2 we get the set of monomials:

T1X2, T1T3, T1T4, T2T3, T2X4, T3T4.
Fork = 3, we get
T1T2 + T1X3 + TaX3, T1T2 + T1T4 + T2y, T1T3 + T1T4 + T3Ty4, T2T3 + T2Tq + T3T4

T1T2X3, T1X2T4, LT1T3T4, T2L3T4-

Finally for & = 4, we get the complete set of the elementary symmetric funcép(s,, z2, 3, z4), for
1<r<4.

Remark 3.3. Note thatd,,(\) = n, for any partition\ of n. Hence when we sdt = n in (4), we obtain
thatZ, contains the ideal generated by the elementary symmetric polynomials in all the variables. It is well
known thate; (z1,...,2,),...,es(x1,...,2,) are algebraically independent (this is due to Gauss; see [M]),
and hence they form a regular sequence @uefhereforeR/Z, is an Artinian ring.

When the indexing partition\ is a hook, the ideal, can be split in two parts. We have the following
result.



Proposition 3.4 (A reduced generating set for hook partitions).Let A = (a | b) F n be a hook. Then the
ideal associated ta in the polynomial ringc[z1, . . ., z,] IS

Iy = Mpi1 + &,
where
M1 = (w4, -y, [1 <01 <o <lpgr <) (5)
is the ideal generated by all square-free monomials4in. . . , z,, of degreeb + 1, and
E = (ei(x1,...,2n) | 1 < i < b) (6)
is the ideal generated by all elementary symmetric polynomials of degieia the variablesey, . . ., z,,.

Proof. The partition\ = (a | b) is of sizen = a + b + 1. We can write

N=(0B|a)=(0b+1,1,...,1,0,...,0).
N——

Then we have

and so

(1= 61(A),2 = 0a(N), ... ,n—6,(N) = (1,2,3,....,b,b,....b,0).
——

a

The definition ofC, in (4) implies that ndt, with 1 < k < b, contributes a generator to the id&al

The first index making a nontrivial contribution to the 8gtis k = b + 1, which adds t&,, all e;1(5),
with |S| = b+ 1, or in other words all the square-free monomials of degreé in the variables:y, ..., z,,.

We denote byM,, ; the ideal generated by these square-free monomials.

Now all the indicesk, withb+2 < k < n —1 add toC, elements of the form,.(S), withk > r > b+ 1,
and|S| = k. Each sucle,.(S) is a homogeneous polynomial of degreevhich we can write as the sum of
square-free monomials of degreeSincer > b + 1, and all square-free monomials of degbee 1 or more
are already irT,, suche,.(S) do not contribute any new generatorsZiq

Finally, for £ = n we obtain all the elementary symmetric polynomials in all the variables. For the same
reasons as above, the only new contributions are

(1, )y ea(T1, oy Tn)y ey ep(XT1, e Ty).

We denote the ideal generated by these elementary symmetric polynomigjs We conclude thaf, =
M1+ & O

Example 3.5. Let A = (2| 1) F 4. It follows from the computations in Example 3.2, that the idBabplits
into two parts
Iy = (122, 0123, 104, T2X3, ToTg, T3T4) + (21 + T2 + T3 + T4).

The first part is generated by all monomials of degree 2 in the variahles,, 23, x4, and the second is
generated by, (21, 2, z3, 24), the elementary symmetric polynomial of degree 1.

For hooks, the reduced generating set described in Proposition 3.4 is much smaller than that described in
Definition 3.1 (it is in fact minimal), and hence simpler to understand. In the rest of the paper, we use this
presentation of, to describe the Betti numbers and other numerical information of the ald&tira



4 Bigraded Poinca series of De Concini-Procesi ideals of hooks

In this section we study the minimal free resolutions of the De Concini-Procesiigeala hook\ = (a | ).
We have seen that, is the sum of two ideals

In=Mp1+&

where M, is generated by monomials, aéglis generated by elementary symmetric functions. Below we
show how we can recover the resolutioriZgfusing the resolutions of each one of the summands.

Since M, is generated by all square-free monomialsfot= k[z1,...,x,] that have degreg + 1,
by Lemma 2.8, M, is a Cohen-Macaulay ideal with linear resolutions and linear quotients. On the other
hand, it is easy to see that all the minimal primes\ef, ; have uniform height — b. This is because every
generator ofM,,; is a product of exactly + 1 variables in the sefz1, ..., z,}, and so a minimal subset
of {z1,...,z,} that shares at least one variable with each one of these generators musthaetements.
Such an ideal will have height equalto- b, and so it follows thatlim R/ M1 = b.

We have thus shown that

Corollary 4.1. For a hookA = (a|b), the idealM;;1 of R has linear quotients, linear resolution, and
R/ My is Cohen-Macaulay of (Krull) dimensidn

Remark 4.2. Let G(M,41) denote the minimal monomial generating set faf;, ;. We can arrange the

elements ofG(My41) in descending lexicographic order a4, ..., M,,. Take such a monomidl/; =
xj, - T4, WHtten so that; < j2 < ... < jpy1. Since(My, ..., M;_;) is a monomial ideal, and/; is
also a monomial, the quotient idg@di/y, ..., M;_1) : M; is generated by monomials. Observe that

1. If s < j, for somej; € {j1,...,Jp+1} @nds & {j1,...,jv+1}, thenzs € (My,...,M;—1) : M;.
This is because the monomié@% is a degreé + 1 monomial that is lexicographically larger than
M;, that |S,T;7I\/I7 S {Ml, ey Mi—l}-
Jt

2. If wis a monomial iMy, ..., M;_1) : M;, thenM,; | uM; for somel < i. SinceM; >,.,. M;, there
existsz,, such thate, | M;, x5 1 M; ands < j, for somej; € {j1, ..., jo+1}-

It follows thatx | u, and(M;, ..., M;_1) : M; is generated by the set of variables with s < jy;1
ands ¢ {j1,...,Js+1} as described in part 1. This proves the, ., has linear quotients.

Next, we focus on the idedl,, which is generated by the firstelementary symmetric functions. As
observed in Remark 3.3, contains the regular sequenegx1,...,2,),--.,en(21,...,2,), and hence
R/T) is of (Krull) dimension O.

Proposition 4.3. For a hook\ = (a | b), the set of generators
e1(z1, .., xn)y .o ep(Tr, .., 20)
of &, form a regular sequence over the quotient riRgM ;.

Proof. Let S = R/ My+1. We know by Corollary 4.1 thaf is a Cohen-Macaulay ring, antim S = b. To

show thate; (z1,...,2,),...,ep(z1,...,2z,) forms a regular sequence f) by Theorem 2.1.2 of [BH], it
is enough to show thatim S/&, = 0. Now, S/&, = R/Z), and the latter is an Artinian ring, and hence of
dimension 0. O

We are now ready to state our central claim.

Theorem 4.4 (Main theorem). Let A = (a|b) be a hook. Then the bigraded Poinéaseries for the ideal
7, is the following

b a .
Priz,(q.t) = [ (1 +qt*) - (1 +qt"t > (b Z Z) (1+ qt)i). 7)
k=1

=0



Proof. As usual, letZy = My, 1 + &.

Step 1.The idealM,; has linear quotients (Corollary 4.1). It follows from Corollary 1.6 of [HT] that the
bigraded Poincé#rseries ofM,;, is the following:

Prjppn (@) =14 D (14 gt)l>tlggaesD ®)
]V[EG(Mh+1)
where, if we arrange the elements@{M,1) in descending lexicographic order a4, ..., M,,,

thenfori=1,....m

set( )—{]6{1 TL} |.’Ej€(M1,...,M7;,1)ZMi}.
As the degree of each of the monomials generatifig, ; is b + 1, Equation (8) turns into

Prjmy, (0:8) =14+t Y (T4 g1l 9)
MeG(Mpi)

If M; = ;, - 2;,,,, by Remark 4.2
set(M;) = {u <ipy1 | 2y f Mi},

so
set(M;)] = ipy1 — (b+ 1). (10)

We have shown that, iV is any degreé + 1 square-free monomial with highest index(that is,
x, | M andz,, + M for v > u), then|set(M)| = u— (b+1). So to compute the sum in (9), all we have
to do is count the number of square-free dedreael monomials with highest index, for any given

u. This number is Clearly(“‘l) So for a given;, the number of degrefe+ 1 square-free monomials

M with [set(M)| = i is exactly("}").
Therefore,Pr, ., (¢, 1) is equal to

n—b—1

T (b“> 1+qt)i1+qt”“2(bzl><1+qwi (11)

=0 =0
since by Equation (10),can reach at most — b — 1, which by definition is equal ta.

Step 2.Since&, is generated by a regular sequence oigr\,; (Proposition 4.3), we can use a map-
ping cone construction to find its minimal graded resolution (see Discussion 2.4). We do this by
adding the generators &}, one at a time, toM;.;, and applying Corollary 2.6. As the genera-
torsey(z1,...,x,),...,ep(x1,...,2,) Of & have degrees, . .., b, respectively, each time we add a
ei(ry,...,2,), the Poincae series gets multiplied by a factor of + ¢t'), and hence from (11) we
obtain thatPy 7, (¢, t) equals

b b a .

b+ i
H (1+qt*) - Prjam,.. (¢, H (1+ qt*)- (1+qtb+12( b >(1+qt) )
k=1 -



5 Some consequences of the Main Theorem
We study some of the consequences of our main theorem. We prove that our new generating set is indeed
minimal.

Corollary 5.1 (The set of generators ofZ is minimal). LetA = (a|b) be a hook. The generating set for
T, described in Proposition 3.4 is minimal.

Proof. The cardinality of the generating set ®f described in Proposition 3.4 (%L) + b. On the other
hand, the minimal number of generatorsigfis the first Betti numbep; of R/Z), which is the coefficient
of ¢ in the Poincak seriesPr /7, (¢, 1). Itis easy to see by Theorem 4.4 that this coefficient is

b“*Z(bZZ)
=1

So all we have to showis th§t”" ) +b=b+ 1+ 3¢, (*;*) which is equivalent to showing that

n—b—1 .
n b+
i) -5 ()
This last equation follows easily from induction en O

Regularity of Hooks

Definition 5.2 (Castelnuovo-Mumford regularity). LetI be anideal of & = k[z1, ..., z,]. TheCastelnuovo-
Mumford regularityor simply regularity of R/, denoted byreg(R/I) is defined as the maximum value of
of j — i where the graded Betti numbgy ; # 0 in a minimal free resolution aR?/1.

Corollary 5.3 (Regularity of hooks). Let\ = (a | b) be a hook. Thereg(R/I) = b(b+ 1)/2.
Proof. The graded Betti numbeys; ; appear as the coefficients of the Poirécaeries

b

Prz,(g,t) = [J(1+at*) - (1 +qt"t! za: (bzl) (1+ qt)i> :
=0

k=1

Factor 1 Factor 2

So the question is to find the tergi¥’ in this polynomial, where the coefficiep ; is nonzero ang — i is
maximum. The terms with nonzero coefficients in each factor are of the following forms:

Factor 1: ¢™tb1t+bm  wherel <b; <...<b, <b, 0<m<b,
Factor 2: g¢°tltet®+tl  where0 < e < a.

b(b+1)

To show thateg(R/I) = , we need to show that this bound is achieved by the possible choices
of j — 4, and is the maximum possible bound. Consider the terms in Factor 1. We have

bi+...+bp—m < ((b—(m—l))—i—(b—(m—?))—i—...—i—b)—m

:((1+2+...+b)7(1+2+...+(b7m)))fm

- b(b+1)
- 2
Similarly, for terms in Factor 2, sinde> 0, we havee + b + 1 — (e + 1) = b. Hence, for the product of a
term in Factor 1 and a term in Factor 2 we have

—b.

bi+...+bpt+et+tb+l—(m+e+1)<

b(b+ 1)
-

The bound is achievedifi = b, so thath; = 1,...,b,, = b, and for anye, so that we have the term with

nonzero coefficient
etbt1y(14.. +b)+etb+1

b(b+1)
2

b1, M0 et bt

q =4q

, as desired. O

which clearly has the property that- i =



Remark 5.4 (Hooks are level algebras).We note that for a hook = (a|b), R/Z) is a level algebra.
Indeed, sinc&k/Z, is Artinian, its projective dimension is (or observe that the highest powergaddppearing
in Equation (7) isn), which is the same as the height of the idéal Moreover, the coefficient af” in this

equation is
b+a LGS
b .

This implies thatk? /7, is level of type(bﬂ;“) with socle degreé(";’—l) (see, for example, [GL, Definition 0.2]).
The regularity that we find above is therefore the expected value.

The Hilbert series of hooks

We finish this section with the computation of the Hilbert serieR@T, when is a hook partition, namely,
the series

hr/z,(q Zdlm k(R/Tx)sq°,
s=0
where as usualim ; means dimension as a vector space @verhis has been done in the general case of a
partition A = (A1, ..., A,) of n by Garsia and Procesi. In [GP], they provide an explicit basidfE, as a
Q-module, from which it follows thaflim (R/Z») = (,, " , ). and

,,,,,

heyz () = Y f* Ku(1/q) ¢° (12)

pkEn

Here, f# andn(\) are two well-known parameters associated with partitions ([M]), &Aid(q) are the
Kostka-Foulkes polynomials we referred to in the introduction ([LS]). The computatidf),@fq) is some-
what complicated. This motivates us to use the results of this paper to give a new description of the Hilbert
series in the case of hooks.

Let A = (a|b) be a hook partition ofi, and consider the idedly, = My;1 + &. SinceR/ My, is
a Cohen-Macaulay ring (Corollary 4.1), and the generatofs,, ..., xy),...,ey(z1,. .., x,) Of & form a
regular sequence ovét/ M, 1 (Proposition 4.3), it follows that (see [V] Theorem 4.2.5)

b
hr/z,(q) = H(1 — @R myss () (13)

i=1

So we focus on finding z, 4, ., (¢). Recall thatM, is generated by all square-free monomials of
degreeé+1 with variables in{z1, ..., x, }. So each graded pie¢&/M;1); is generated by all monomials
of degrees, involving ¢ of the n variables withc < b. There are(Z) ways of choosing: variables from
{z1,...,2,}. Choose such a monomial, without loss of generaliff, ... 2%. We need to choose the
positive integers, . .., a. such thats; + ... + a. = s. There are(zj) ways of doing that. So we have

SO )i (-EOEC s

i=1

On the other hand, it is well known that>” , (“*7)¢’ = = (see ([Wi, page 53, 2.5.7]) ). Hence, we

get
i (s — 1>qs e
—\c—1 (1—q)
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We conclude that

b . b n c
hayz,(a) = [ [0 =) <1 t2 (c) e qV)

i=1 c=1
b 1 q b n b
_ c b c __ b—c
- (=5) S (oot w2 (Deo-om
where[b],! := [1], (2], - -+ [b]; with [b], := 14 ¢+ ...+ ¢"~ 1. We have shown that following proposition
holds:
Proposition 5.5. Let A\ = (a | b) be a hook partition ofi. Then
b
n —c
hryz, () = [blg! > (C>qc(1 —q)' e (14)
c=0
Note that if we sef = 1 in (14), we find thatlim ,(R/Z)) = (aﬂ), = An—l', as expected.

Remark 5.6. The formula for Proposition 5.5 has the following nice alternative form, which was suggested
by Mark Shimozono.

hr/z, (@) = 'Z <z+a>

6 Combinatorial Remarks

As noticed in the introduction, the quotieR{Z, has been extensively studied in algebraic combinatorics [AB,
BG, GP]. Its combinatorial nature arises also in the two following observations on the Roseras. We
think that they might be useful, in order to understand the behavior of the Peiseaes in the case when

is an arbitrary partition.

Remark 6.1 (Recursive nature of the Poinca& series).From Theorem 4.4 it can be seen that the Poiacar
series ofZ can be computed recursively. We start with the one-column partitior). In this case the ideal
T, is generated by the first+ 1 elementary symmetric functions in the variahlgs. . . , x;,1; the quotient
R/Z) is known as the coinvariant algebra of the symmetric group, aagpresentation is isomorphic to
the regular representation (see e.g. [Hu]). The graded Péisesies in this case is

- b1

B

B Popy(g:t) = JJ (1 + ¢t*). (15)
] k=1

Using Equation (7), by subtracting, ) (¢, t) from Py (q,t), we get

b
b+a a
Plan)(q,t) = Pa—1p)(q, 1) H (1+qt*) tbﬂ( a )(1+qt) : (16)

This recursion allows us to compute the graded Poipatynomial of(a | b), starting from (15), by adding
one cell at a time to the first row of the one-column partition ). For example,

b
B Pap)(a:t) = (1 + gt gt 0+ 1) (1 + gt ) [T+ ath.
k=1

11



Question 6.2. It would be nice to understand what would happen if we added a box not only in the first row,
but also in other rows and columns. This would allow the computation of the Péiseges for any partition.

The second relation we show concerns the single-graded Peiseaes. We compute first its generating
function. For simplicity, for any hook = (a | b) we denote byP(a | b) the single-graded Poindaseries

PR/I(a‘b) (q7 ]-)

Lemma 6.3 (The generating function of the Poincag series).The generating function of the single-graded
Poincare series is given by

_ 1 1 q
P= 2 Plalbjus’ = lfu{lf(lJrq)v—F17(1+Q)(u+v)] (17)

a,b>0

Proof. Sett = 1in Eq. (7). Then,

Paly =+ a3 ("7 )ara

We compute the generating functions of the two summands separately. It is clear that

1 1
1+ q) u’ = .
a;O( @) l—u 1—(14+q

On the other hand,

2 i <b —g 1) Attt = 3 (b —;)_ Z) 1+ )" u? =Y (b Z Z) (1+ q)b+ivb%

a,b>0 i=0 i,a,b>0 i,6>0
aZz
1 b+i i b 1 1
—_ 1 “+7 b 1 — )
1—UZ< S R e (ke
We have obtained formula (17). O

Now it is straightforward to check that the following equation holds

oP oP (1+4q)
=(1—u)— — (1 - _— 18
Pl ) T A At oo 5
By extracting the coefficients af*v® in both sides of (18) we obtain the following relation
1+
which holds for alla > 0, andb > 0.
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