SUJET BLANC N°2

Durée: 5 heures.

Ce sujet est principalement un extrait du Concours Communs Polytechniques 2016 - Filière PSI et de la seconde épreuve du CAPES de 2017.

Notations

- $\mathbb R$ désigne l'ensemble des nombres réels et $\mathbb C$ l'ensemble des nombres complexes.
- Pour n un entier naturel non nul, $\mathcal{M}_n(\mathbb{R})$ [respectivement $\mathcal{M}_n(\mathbb{C})$] désigne l'espace vectoriel des matrices à n lignes et n colonnes à coefficients dans \mathbb{R} [respectivement dans \mathbb{C}].
- On note tM la transposée d'une matrice $M \in \mathcal{M}_n(\mathbb{C})$.
- I_n désigne la matrice identité de $\mathcal{M}_n(\mathbb{R})$ [respectivement $\mathcal{M}_n(\mathbb{C})$].
- Si $(A^{(k)})_{k\in\mathbb{N}}$ est une suite de matrices de $\mathcal{M}_n(\mathbb{R})$, on dit que cette suite converge vers une matrice $A \in \mathcal{M}_n(\mathbb{R})$ si, pour tout couple $(i,j) \in [1,n]^2$, la suite $(a_{ij}^{(k)})_{k\in\mathbb{N}}$ des coefficients d'indice (i,j) de $A^{(k)}$ converge vers le coefficient, noté a_{ij} , d'indice (i,j) de A.
- Soit $\left(X^{(k)}=(x_1^{(k)},\ldots,x_n^{(k)})\right)_{k\in\mathbb{N}}$ une suite de vecteurs de \mathbb{R}^n [respectivement de \mathbb{C}^n] et $X=(x_1,\ldots,x_n)$ un vecteur de \mathbb{R}^n [respectivement de \mathbb{C}^n]. On dit que la suite $\left(X^{(k)}\right)_{k\in\mathbb{N}}$ converge vers X si pour chaque $i\in\{1,\ldots,n\}$, la suite $(x_i^{(k)})_{k\in\mathbb{N}}$ converge vers x_i .
- Pour tout vecteur $X = (x_1, \dots, x_n) \in \mathbb{C}^n$, on note $||X||_{\infty} = \max\{|x_i|, 1 \le i \le n\}$.
- Pour tout vecteur ligne $X = (x_1 \cdots x_n)$ on note tX le vecteur colonne transposé $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ (et réciproquement).
- Pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on désigne par Sp(A) l'ensemble de toutes les valeurs propres complexes de A et on note $\rho(A)$ le rayon spectral de A défini par

$$\rho(A) = \max_{\lambda \in Sp(A)} |\lambda|.$$

PARTIE I : matrices stochastiques et densités de probabilité ——

A - Convergence. Soit $(X^{(k)})_{k\in\mathbb{N}}$ une suite de vecteurs lignes de \mathbb{R}^n convergeant vers un vecteur X, $(A^{(k)})_{k\in\mathbb{N}}$ et $(B^{(k)})_{k\in\mathbb{N}}$ deux suites de matrices de $\mathcal{M}_n(\mathbb{R})$ convergeant respectivement vers les matrices A et B.

Montrer que les suites $(X^{(k)}A^{(k)})_{k\in\mathbb{N}}$ et $(A^{(k)}B^{(k)})_{k\in\mathbb{N}}$ convergent respectivement vers XA et AB.

B - Définitions.

On dit qu'un vecteur ligne $X=(x_1 \cdots x_n) \in \mathbb{R}^n$ est une densité de probabilité si pour tout $i \in \{1,\ldots,n\}, \ x_i \geq 0$ et $x_1+\ldots+x_n=1$. On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice stochastique si chaque ligne de A est une densité de probabilité.

- **1 -** Soit $A \in \mathcal{M}_n(\mathbb{R})$, dont tous les coefficients sont positifs ou nuls. Montrer que A est une matrice stochastique si et seulement si 1 est valeur propre de A et $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ est un vecteur propre associé.
- **2 -** Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice stochastique et $X = (x_1 \cdots x_n) \in \mathbb{R}^n$ une densité de probabilité. Montrer que XA est une densité de probabilité.
- **3** Soient A et B deux matrices stochastiques de $\mathcal{M}_n(\mathbb{R})$.
 - (a) Montrer que AB est une matrice stochastique.
 - (b) Montrer que pour tout $\alpha \in [0,1]$, la matrice $\alpha A + (1-\alpha)B$ est également stochastique.
- **4 -** Soit $(X^{(k)})_{k\in\mathbb{N}}$ une suite de vecteurs de \mathbb{R}^n , convergeant vers un vecteur X. Montrer que, si pour tout $k\in\mathbb{N},\,X^{(k)}$ est une densité de probabilité, alors X est une densité de probabilité.
- 5 Soit $(A^{(k)})_{k\in\mathbb{N}}$ une suite de matrices de $\mathcal{M}_n(\mathbb{R})$, convergeant vers une matrice A. Montrer que, si pour tout $k\in\mathbb{N}$, $A^{(k)}$ est une matrice stochastique, alors A est une matrice stochastique.

PARTIE II : Spectre des matrices stochastiques

Dans cette partie, on fixe $n \geq 2$.

A - Questions de cours sur $\mathbb C$

- **1** Montrer que pour tous $z_1, z_2 \in \mathbb{C}$, on a $|z_1 + z_2| \le |z_1| + |z_2|$ et $|z_1 z_2| = |z_1| \cdot |z_2|$. Indication: on pourra utiliser le fait que pour tout $z \in \mathbb{C}$, on a $|z|^2 = z\bar{z}$.
- 2 Montrer que l'inégalité précédente est une égalité si et seulement si z_1 et z_2 ont même argument.
- **3** Montrer que pour tous $z_1,z_2\in\mathbb{C},$ on a $|z_1|-|z_2|\leq |z_1-z_2|$.
- **4** Soit $(X^{(k)})_{k\in\mathbb{N}}$ une suite de vecteurs de \mathbb{C}^n et X un vecteur de \mathbb{C}^n . Montrer que $(X^{(k)})_{k\in\mathbb{N}}$ converge vers X si et seulement si $||X^{(k)} X||_{\infty}$ tend vers 0 quand k tend vers l'infini.

B - Coefficients

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est strictement stochastique si elle est stochastique à coefficients strictement positifs.

1 - Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ une matrice stochastique [respectivement strictement stochastique]. Montrer que pour tous i,j compris entre 1 et n, on a :

$$0 \leq a_{ij} \leq 1 \quad [\text{respectivement } 0 < a_{ij} < 1] \,.$$

2 - Montrer que le produit de deux matrices strictement stochastiques est une matrice strictement stochastique.

C - Valeurs propres

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice stochastique.

1 - Montrer que

$$\forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{C}^n, \, ||AX||_{\infty} \le ||X||_{\infty}.$$

2 - En déduire que

$$\forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{C}^n, \, \forall p \in \mathbb{N}, \|A^p X\|_{\infty} \le \|X\|_{\infty}.$$

3 - Montrer que $\rho(A) = 1$.

D - Diagonale strictement dominante

Une matrice $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$ est dite à diagonale strictement dominante si et seulement si :

$$\forall i \in \{1, \dots, n\} , |a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|.$$

1 - Soit A une matrice quelconque dans $\mathcal{M}_n(\mathbb{C})$ et soit $\lambda \in \mathbb{C}$ une valeur propre de A. Montrer qu'il existe un indice $i \in \{1, 2, ..., n\}$ tel que :

$$|\lambda - a_{ii}| \le \sum_{j=1, j \ne i}^{n} |a_{ij}|.$$

Indication : en notant $X=\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$ un vecteur propre associé à λ , on pourra considérer un

indice i tel que $|x_i|$ soit maximal, et utiliser le fait que la i-ème coordonnée de AX vaut λx_i .

2 - Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{C})$ à diagonale strictement dominante est inversible. Indication : on pourra vérifier que 0 ne peut être valeur propre de A.

E - Valeur propre de module maximal

Soit $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ une matrice strictement stochastique.

1 - On désigne par $A_1=(a_{ij})_{1\leq i,j\leq n-1}\in \mathcal{M}_{n-1}(\mathbb{R})$ la matrice extraite de A en supprimant sa dernière ligne et sa dernière colonne, et on note $B=A_1-I_{n-1}=(b_{ij})_{1\leq i,j\leq n-1}$. Montrer que pour tout $i\in\{1,\ldots,n-1\}$, on a :

$$|b_{ii}| > \sum_{\substack{j \neq i \\ 1 \le j \le n-1}} b_{ij} .$$

- ${\bf 2}$ En déduire que B est à diagonale strictement dominante. Que peut-on déduire quant au rang de $A-I_n$?
- **3** Montrer que $ker(A I_n)$ est de dimension 1.
- **4** En utilisant la question **D-1** (et **A**), montrer que si λ est une valeur propre de A de module 1, alors $\lambda = 1$.
- 5 En déduire que

$$\forall \lambda \in Sp(A) \setminus \{1\}, |\lambda| < 1.$$

3

PARTIE III : Probabilité invariante

On considère quatre points dans le plan numérotés de 1 à 4. Une particule se déplace chaque seconde sur l'ensemble de ces points de la façon suivante : si elle se trouve au point i, elle reste au point i avec une probabilité égale à $\frac{1}{10}$ ou passe en un point $j \neq i$ de façon équiprobable.

A - Une suite de variables aléatoires

On note X_0 une variable aléatoire de loi P_0 donnant la position du point en l'instant n = 0, X_n la position du point à l'instant n et P_n la loi de X_n . On identifie la loi P_n au vecteur ligne ($\mathbb{P}(X_n = 1) \cdots \mathbb{P}(X_n = 4)$).

- **1** Montrer que pour tout $n \ge 0$, on a $P_n = P_0 Q^n$ avec $Q = \frac{1}{10} \begin{pmatrix} 1 & 3 & 3 & 3 \\ 3 & 1 & 3 & 3 \\ 3 & 3 & 1 & 3 \\ 3 & 3 & 3 & 1 \end{pmatrix}$
- 2 Montrer qu'il existe une unique densité de probabilité $\Pi = (p_1 \cdots p_4)$ telle que $\Pi = \Pi Q$. Indication : on pourra remarquer que le vecteur colonne ${}^t\Pi$ doit être un vecteur propre de ${}^tQ = Q$.

B - Rapidité de convergence

On considère l'espace euclidien \mathbb{R}^4 muni du produit scalaire et de la norme euclidienne usuels. On rappelle que toute matrice symétrique réelle est diagonalisable sur \mathbb{R} dans une base orthonormée.

- 1 Montrer sans calcul que Q est diagonalisable sur \mathbb{R} .
- **2** Déterminer le rang de la matrice $Q + \frac{2}{10}I_4$.
- 3 En déduire les valeurs propres et les sous-espaces propres de Q.
- 4 Montrer que Q est diagonalisable dans une base orthonormée de \mathbb{R}^4 ayant pour premier vecteur $2^t\Pi$. On notera P la matrice de passage correspondante.
- 5 Montrer que

$$Q = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{-2}{10} & 0 & 0 \\ 0 & 0 & \frac{-2}{10} & 0 \\ 0 & 0 & 0 & \frac{-2}{10} \end{pmatrix} t P.$$

- **6** En déduire que $(Q^p)_{p\in\mathbb{N}}$ converge vers une matrice R que l'on précisera en fonction de Π .
- $\textbf{7 Montrer que pour tout } p \in \mathbb{N}, \ Q^p R = \left(-\frac{2}{10}\right)^p P \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} {}^t\!P.$
- **8** En déduire qu'il existe $r \in]0,1[$ tel que pour toute norme $\|\cdot\|$ sur $\mathcal{M}_4(\mathbb{R})$, on ait

$$||Q^p - R|| = O(r^p).$$

9 - En utilisant les questions A-1 et B-6, montrer que $(P_n)_{n\in\mathbb{N}}$ admet une limite indépendante de la loi de X_0 et interpréter le résultat obtenu.

4

PARTIE IV : Puissances d'une matrice stochastique

Soit n un entier naturel non nul et $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ une matrice strictement stochastique. On note

$$m = \min_{1 \le i, j \le n} a_{ij} .$$

Pour tout entier naturel non nul p, on note $a_{ij}^{(p)}$ le coefficient d'indice (i,j) de A^p :

$$A^p = \left(a_{ij}^{(p)}\right)_{1 \le i, j \le n} .$$

Enfin, pour tout entier j compris entre 1 et n, on note :

$$m_j^{(p)} = \min_{1 \le k \le n} a_{kj}^{(p)}$$
 , $M_j^{(p)} = \max_{1 \le k \le n} a_{kj}^{(p)}$.

1 - Encadrement

Montrer que, pour tout entier naturel non nul p et tout entier j compris entre 1 et n, on a :

$$0 < m_i^{(p)} \le m_i^{(p+1)} \le M_i^{(p+1)} \le M_i^{(p)}$$
.

2 - Minoration

Montrer que, pour tout entier naturel non nul p et tout entier j compris entre 1 et n, on a :

$$m_j^{(p+1)} - m_j^{(p)} \ge m \left(M_j^{(p)} - m_j^{(p)} \right)$$
 et $M_j^{(p)} - M_j^{(p+1)} \ge m \left(M_j^{(p)} - m_j^{(p)} \right)$.

3 - Majoration

Montrer que, pour tout entier naturel non nul p et tout entier j compris entre 1 et n, on a :

$$M_j^{(p+1)} - m_j^{(p+1)} \le (1 - 2m) \left(M_j^{(p)} - m_j^{(p)} \right).$$

4 - Convergence de ces suites

En déduire que, pour tout entier j compris entre 1 et n, les suites $\left(m_j^{(p)}\right)_{p\in\mathbb{N}}$ et $\left(M_j^{(p)}\right)_{p\in\mathbb{N}}$ sont adjacentes.

5 - Conclusion

En déduire que la suite $(A^p)_{p\in\mathbb{N}}$ converge vers une matrice L stochastique dont toutes les lignes sont identiques.