Correction rapide du devoir 1

Exercice 1. On vérifie que pour toutes formules ¢ et 1, —¢ est équivalente (¢ | @) et A1
est équivalente (¢ | ¥) | (¢ | ¢). On conclut alors par induction sur les formules.

Exercice 2. (a) Utiliser la formule Yy (zy = yz).

(b) Supposons A inductif. Soit 7n > 0 minimal tel que m.1 = 0. Alors o 'application de
Z/mZ dans A qui a 7 associe i.1 est un morphisme d’anneau injectif. Pour la surjectivité
il suffit d’utiliser le fait que A est inductif avec la formule Ag<;<n(z = 7.1).

La réciproque est évidente : pour tout m > 0, Z/mZ est inductif.

(c) R n’est pas inductif : on utilise ici la formule Jy(z = y?) qui n’est satisfaite que par
les réels positifs.

(d) Z n’est pas inductif : on utilise ici la formule 3y3zFtTu(z = y? + 2% + 2 + u?).

(e) Soit K un corps algébriquement clos de caractéristique 0. Une partie D C K
définissable est finie ou cofinie : en effet une partie atomique de K correspond aux ra-
cines d’un polynome (éventuellement nul dans K[X]) et si D; et Dy sont deux parties
de K telles que chacune est finie ou cofinie alors c¢’est encore vraie pour le complémen-
taire de D, et pour I'union de D; et D, ; par élimination des quanteurs on en déduit
que c’est vraie pour toute partie définissable. Supposons que D satisfait 'hypothése
d’induction (0 € D et pour tout z € D, z +1 € D). Alors D est infini car K est de
caractéristique 0. Si D # K alors il existerait z ¢ D mais alors pour tout n, z—n.1 ¢ D
et D ne serait pas cofini.

Exercice 3. (a) Le premier axiome signifie qu’il existe un plus petit élément et que
tout élément différent de ce plus petit élément a un prédécesseur. Le second axiome
signifie que tout élément a un successeur. Ces deux axiomes sont évidemment satisfaits
par (N, <).

(b) (2N, <).
(c) (1,0) n’a pas de prédécesseur.

(d) Par compacité Th({(N, <),N) U{n < ¢ : n € N} ou ¢ est une nouvelle constante,
est consistant. Il existe donc a dans une extension élémentaire plus grand que tout
entier de N. Considérons le plus petit ensemble A contenant « clos par prédécesseur
et successeur. Alors (A, <) est isomorphe a (Z, <) : il suffit d’envoyer « sur 0 et par
induction d’envoyer le prédécesseur d’un élément sur le prédécesseur de I'image de cet
élément et de méme pour le successeur, ceci donne un plongement qui est surjectif car
tout élément de A a un prédécesseur.

(e) -i- Soit M = T. Pour tout a € M notons C, la plus petite partie close par prédé-
cesseur et successeur. Alors C, = C} définit une relation d’équivalence. La classe
Cy contenant le plus petit élément est isomorphe a (N, <) et les autres classes sont
toutes isomorphes a (Z, <). En notant X 1’ensemble des classes distinctes de Cy
et en munissant X de l'ordre C, < Cy si C, # Cy et a < b alors M est isomorphe
4 Mx en recollant les isomorphismes.

Remarquons que 'on a seulement utilisé ici que M était un ordre total vérifiant
les deux axiomes de (a).



_ii-

ij-

-iv-

On construit une chaine d’ordres totaux X = Xy C X; C Xs... tel que pour tout
1€ w, My, < Mx,, et tel qu’il existe a € X;;; strictement plus petit que tous
les éléments de X;, b € X, strictement plus grand que tous les éléments de X;
et pour tout x < y dans X; il existe ¢ € X;;; tel que x < ¢ < y. Pour cela,
on remarque que par compacité Th(Mx,, Mx,) U{n < a < (2,0) : n € Nz €
Xitu{(z,0) <b:2 € X;}U{(z,n) <cgy < (y,n) :n € Z,x < y € X} est
consistant.

Il existe donc M’ une extension élémentaire de M x, qui contient un élément plus
petit que tous les éléments de X; X Z, un élément plus grand que tous les éléments
de X; X Z, et pour tout z < y € X; un élement strictement compris entre {z} x Z
et {y} x Z. Cette structure est un ordre total vérifiant les deux axiomes de (a).
Donc comme dans (i), par un isomorphisme au dessus de M, on peut supposer
que M' = My, , pour un ordre total X;,; qui vérifie les bonnes propriétés.

On termine en posant Y = U;c, X;.

Si f est un isomorphisme partiel de (X, <) vers (Y, <) alors o, définit sur N U
domf X Z par of(n) =n et op(x,m) = (f(x), m) est également un isomorphisme
partiel de M x vers My. On vérifie alors que la famille des isomorphismes partiels
os pour f a domaine fini est un va-et-vient.

Ce déduit de i, ii et iii. En effet par i et ii, (N, <) a une extension élémentaire
isomorphe a un My, avec Y; dense sans extrémité. De méme par ii, My a une
extension élémentaire isomorphe a un My, avec Y, dense sans extrémité. Par iii,
Mx = (N, <).

On a déja remarqué que pour i, on a uniquement besoin des axiomes d’un ordre
total et des deux axiomes de (a). Donc T est axiomatisée par ces axiomes.

Remarque sur exo3 (e) Pour décrire les modéles de T' et donner une axiomatisation
de T, on peut plus simplement enrichir le langage L par une constante 0 et une fonction
S et considérer la théorie 7" dans ce langage axiomatisée par les axiomes d’ordres totaux,
les axiomes de (a), “0 est le plus petit élément” et S est la fonction successeur. On montre
alors que 7" élimine les quanteurs et on décrit facilement les modeéles de 7’. On en déduit
I’axiomatisation de 7" et une description de ses modéles.

Exercice 2.6 Un ouvert est réunion d’ouverts de la forme (¢). Si de plus il est fermé par
compacité il est réunion finie d’ouverts de cette forme qui est alors un ouvert de cette forme.

Exercice 2.22 Les deux théories sont k-catégoriques uniquement pour Kk = w.

Exercice 2.23 2. va-et-vient entre les modéles contenant une infinité d’éléments dans
aucun des P;.



