Correction rapide du devoir 2

Exercice 3.2. Soit p € S(Th(M)). Alors p = tp(a) pour a € N Th(M). Par le
théoréme de I'extension élémentaire commune, on peut supposer que N est une extension
élémentaire de M. Si o est une partie finie de p alors comme N = Ay, ¢(@), M | 3T Agpe,
¢(Z) et donc o est réalisé dans M.

Exercice 3.16. On définit par récurrence sur & la famille (m;);c,. Supposons que ’on
a (mg,...,mi_1) dans M tel que (myg,...,mg_1) et (ng,...,ng_1) ont méme type. Alors il
existe un automorphisme o d’une extension élémentaire de N qui envoie (ng,...,nk_1) sur
(mog, ..., mg_1). Par w-saturation le type de o(ng) sur (my, ..., mx_1) est réalisé dans M. Soit
my une de ses réalisations dans M. Alors (mg, ..., mg_1,myg) et (ng,...,ng_1,n%) ont méme

type.

Exercice 3.21. Soit n un entier. Pour ¢(Z) une formule, on note 32"Z¢(z) la formule
EI.’Z’l...ffn((/\i¢jj3i 7é jj) A (/\z(ls(jz)))

et 37"Z¢(z) la formule
Iz (z) A I Z2P(Z).

(a) On peut exprimer par ’énoncé suivant le fait d’avoir exactement k classes a n éléments :
32 (37"yE(y, ).

(b) Si M ades classes finies arbitrairement grandes alors pour tout n, M & 32"z(32"yE(y, 1)).
Par compacité il existe donc une extension élémentaire ' de M contenant une infinité
de classes infinies. Soient (n;;)(ij)cw? une famille d’éléments distincts de N telle que
N = E(n;j,ny j) ssi i = i'. En utilisant I’exercice 3.16, par w-saturation il existe une
telle famille dans M.

(c) Soit M un modéle w-saturé de 7. Il y a deux cas :

ler cas : M a des classes finies arbitrairement grandes. Alors Th(M) est axiomatisée
par ’ensemble des axiomes qui pour chaque entier n détermine le nombre de classes
a n éléments (fini ou infini). En effet si N est un autre modeéle w-saturé de T ayant
pour chaque entier n le méme nombre de classes a n éléments alors d’apreés la question
qui précéde M et N ont toutes deux une infinité de classes infinies et il est facile de
montrer qu’elles se correspondent par va-et-vient. Les théories complétes correspondant
a ce premier cas sont en bijection avec les fonctions f : N* — NU{oo} tel qu’il n’existe
pas d’entier n a partir duquel f est nul. Il y a en particulier 2¥ théories complétes dans
ce premier cas.

2éme cas : Il existe m tel que toute les classes finies ont au plus m éléments. Dans ce
cas on peut exprimer combien il y a de classes infinies (c’est-a-dire a strictement plus
de m éléments). La théorie Th(M) est alors axiomatisée par ’ensemble des axiomes
qui pour chaque entier n détermine le nombre de classes a n éléments (fini ou infini) et
qui détermine le nombre de classes infinies. Les théories complétes correspondant a ce
second cas sont en bijection avec les fonctions g : N* U{oo} — NU {oo} tel qu’il existe
m vérifiant g(n) = 0 pour tout entier n > m et tel que Y\ 00} 9(i) = 00. Dans ce
second cas il n’y a que w théories complétes.



(d) Une théorie du premier cas n’est pas w-catégorique : elle a w modeéles dénombrables
& isomorphisme prés : un modéle dénombrable & j classes infinies pour chaque j €
N U {oo}. Une théorie du second cas est w-catégorique : le nombre de classes pour
chaque i € N* U {oo} étant déterminé.

(e) Les seuls théories k-catégoriques (pour k > w) sont celles du second cas qui vérifient

ou bien g(o0) = 0 et g(n) est fini pour tout entier n sauf un, ou bien g(oo) =1 et g(n)
est fini pour tout entier n.

Exercice 3.33. 1 < 3 et 1 = 2 sont faciles. Pour (non 1) = (non 2), on utilise un
argument de compacité.

Exercice 3.35. Le point le moins évident est de montrer que acl(acl(A)) C acl(A). Soit
a € acl(acl(A)). Alors il existe une formule ¢(z, b) algébrique, satisfaite par a et & paramétres
b € acl(A). Il existe donc un entier n tel que M = 3<"z¢(z,b). Comme b est algébrique sur
A, il existe ¥(7) € L(A) algébrique satisfaite par b. Alors la formule de L(A),

6(x) = 3g(¥(7) A 3="2e(z,9)) A d(z, 7))
est satisfaite par a et est algébrique. Donc a € acl(A).

Exercice 3.36. Soit p un n-type sur A algébrique et soit ¢ € p algébrique. Toute
réalisation de p satisfait ¢. Comme ¢ est algébrique, il existe un nombre fini m de n-uples
satisfaisant ¢ mais ayant un type sur A distinct de p. Chacun de ces uples satisfait une
formule 1; € L(A) qui n’est pas dans p. Alors la formule ¢ A =11 A ... A =)y, isole p.

Exercice 4.4 On peut énumérer les classes définies par les F; de la maniére suivante :
M = Cp'unique classe définie par Ey, pour tout 7 > 0, on note Cj,_; pour j;...J; suites finies
de 0 et 1, les classes définies par E; de telle facon que Cj,._j;,_, = Cj,. j;i_,0 U Cj;..ji_11- Soit
pour tout j;...J;, un représentant a;, .. ; de la classe Cj, ;. L'’ensemble A de ces représentants
est dénombrable mais il y a 2 types sur A : en effet par compacité, pour toute suite (j;)icw
de O et 1, {E(z,aj. ;)¢ € w} est consistant.

Afin de montrer que M est k-stable pour tout x > 2“ on peut vérifier facilement
que Th(M) élimine les quanteurs et en déduire que pour tout ensemble de paramétres A,
151(A)] < max{2¢, [A]}.

Exercice 4.13

1. Soit n > 0. Soit M = (M, Ey, ..., E,, 1) ot les F; sont des relations d’équivalences sur M
telles que Ej est I’égalité, pour chaque ¢, E; C E;;; et toute classe définie par F;; est
composée d’une infinité de classes définies par F;, et E,_; a une infinité de classes. On
vérifie facilement par induction que pour chaque a € M, et chaque i, RM(E;(z, a)) > i.
D’ot RM(M) > n. On vérifie aussi facilement que Th(M) élimine les quanteurs. En
remarquant que toute partie définissable de M est combinaison booléenne de classes
d’équivalences on en déduit que RM(E;(x,a)) =i et RM(M) = n.

2. Soit N = (N,P,,E" : n > 0,5 € {0,..,n — 1}) ou les P; sont des parties disjointes
de N et ou pour chaque n, les E sont des relations d’équivalence sur P, vérifiant les
propriétés du 1. On vérifie alors que RM(P,) = n. Donc RM(/N) > w. En utilisant
I’élimination des quanteurs, on vérifie que RM(N) = w.



Exercice 4.19 RM(D) > « + 1. 1l existe donc dans une extension élémentaire N une
famille infinie (D));c,, de parties de D définissables et deux a deux disjointes telle que pour
tout 7 € w, RM(D}) > «a. Alors D est défini par une formule ¢(z,a) ou a € M et pour
i € w, D} est défini par une formule ¢;(z,a;) ou a, € N. Alors par 'exo 3.16, il existe des
a; € M tel que pour tout k € w, ay...a;, et @;...a;, ont méme type sur a. Les D; définis par
les formules ¢;(Z, @;) répondent & la question.

Exercice 4.23 Soit ¢ € L(A). Soit

S = {(7) € L(4) : RM(¢ A (~0))) < RM(¢)}.

On vérifie facilement par compacité que ¥ est consistant et on remarque que tout type sur
A qui contient ¥ a méme rang que ¢. D’oul

RM(¢) = max{RM(p) : p € S(A), ¢ € p}.

On peut de plus remarquer que si ¢ ne se découpe pas en deux formules de L(A) de méme
rang que ¢ alors X est en fait un type complet et donc ¢ ne contient qu’'un seul type complet
de méme rang. On en déduit que

dM(g) = > {dM(p) : p € S(A), ¢ € p, RM(p) = RM(¢)}.

Exercice 4.25 < Par le lemme 4.24, RM(q) > o+ 1. Donc RM(p) > RM(q) > a + 1.
= Soit N une extension élémentaire w-saturée. Soit

Y ={yY(Z) € L(N) : il existe ¢ € p;RM(¢ A (—9)) < RM(p)}.

De méme que dans ’exercice précédent X est consistant. Soit ¢ un type sur N contenant X,
alors ¢ contient p et a méme rang que celui-ci. Si § € g alors € est donc de rang supérieur
a a+ 1. Comme N est w-saturée, cette formule se découpe en plusieurs formules de rang
supérieur & a et contient donc un type de rang supérieur a « distinct de q. Le type ¢ est
donc point d’accumulation de types dans S, (V) de rang supérieur ou égal a «.

Exercice 4.30 Utiliser 4.24 et 4.23 pour les deux premiers points. Utiliser de plus 4.19
pour le dernier point.

Exercice 4.37 Cohérence : si {a1, ...,a,} |, B alors évidemment a |, B. Réciproque-
ment Supposons J/CB et EL_’ C {ai,...,a,}. Pour tout be B, a J/CE, donc par symeétrie
b | o 0 et par caractére fini b | o a' et donc @ | Cb. Par conséquent par le caractére fini
a | ,B.Dou{ay...;an} |, B- La monotonie, transitivité et symétrie se vérifie facilement.

Exercice 1 (Conditions de chaines dans les groupes stables).

(a) Sinon pour (¢;)icw €t (d;);cw des nouvelles constantes, I’ensemble d’énoncés

est finiment consistant. Donc Th(M) a la propriété de ordre et est donc instable.



(b)  -i- Soit ¢(x, ) une formule telle que pour tout i, H; est définie par ¢(x, b;) pour un
paramétre b;. Par stabilité il existe un entier n tel qu’il n’existe pas a1, ..., Gny1
et 71,....,in41 tel que @(ag,b;;) si et seulement si k& < j. Soient iy, ..., 49,41 alors
I'intersection des groupes H; , H;,,..., H;, ., est égale a I'intersection de n d’entre
eux. Sinon soit hy € N H;, \ Hy, pour tout k£ € {1,...,n + 1}. On définit alors
a1 = e, ay = hy, ...,any1 = hy...hy. Alors @(ay, b;;) si et seulement si k& < j.

On déduit de cela que toute intersection finie de sous-groupes H; est égale & 'in-
tersection de n d’entre eux. Les intersections finies de H; sont donc uniformément
définissables par la formule ¢(z,71) A ... A ¢(x, §n)-

-ii- Par (a) et (b) il n’y a pas de chaines infinies d’intersections finies de H;, donc
I'intersection des H; correspond & une des intersections finies de H;, c’est-a-dire
a n d’entre-eux ('entier n étant identique & celui du -i-).

-iii- C(A) = NeeaC({a}). Les C({a}) sont uniformément définissable donc d’aprés
-ii-, il existe n et ay,...,a, € A tel que C(A) = C({ay,...,a,}). Par conséquent
C(A) est définissable. (Notons que n est indépendant de A, il ne dépend que de
la formule zy = yx (voir -i-).)
(c) -i- facile.
-ii- Attention : il manque une hypothése dans la question; on suppose H
définissable. Comme H est définissable les a H sont uniformément définissables.

Donc I est égal a4 une intersection finie de aH et comme H est d’indice fini,
aussi.

-iii- Comme K est un corps et par -ii- H # {0}, H = K.
(d) -i- On a f(m) € acl({m} U A), donc RM(f(m)/A) < RM(mf(m)/A) = RM(m/A).
-ii- Soit B D A tel que D est définissable a paramétre dans B. Alors f(D) est aussi
définissable & paramétres dans B. De plus comme f est bijective, f ! est aussi
définissable & paramétres dans A. Donc en appliquant -i- dans une extension

élémentaire N de M réalisant les types de rang maximaux dans D et dans f(D),
on a

RM (D) = max{RM(m/A) : m € DV} = max{RM(f(m)/A) : m € DN} = RM(f(D)).

(e) G est w-stable donc totalement transcendant.

-i- Pour tout h € H, par (d) , RM(hK) = RM(K). Donc si K est d’indice infini
dans H, RM(H) > RM(K). Sinon RM(H) = RM(K) et dM(H) = dM(h K) +
.+ dM(h,K) ou (hi,..., h,) est une famille de représentant des classes & gauche
de H/K. Toujours par (d), il est facile de vérifier que dM(hK) = dM(K), donc
dM(H) = dM(K)[H : K| pour tout h € H.

-ii- S’il y avait une suite infinie strictement décroissante de sous-groupes définissables
de G comme le degré de Morley est a valeur dans N, par -i- il y aurait une
suite strictement décroissante de sous-groupes définissables (H;);c, de G tel que
H; est d’indice infini dans H;. Par -i-, (RM(H;));c. serait une suite strictement
décroissante d’ordinaux.

-iii- Par -ii- une intersection de sous-groupes définissables est égale a une sous-intersection
finie car toute sous-intersection finie est définissable, et est donc définissable.



(f)

_i-

_ii-

ij-

(n!Z) ez est une suite strictement décroissantes de sous-groupe définissable donc Z
n’est pas w-stable. (Notons que cette famille n’est pas uniformément définissable ;
(Z,+) est en fait stable).

Soit o € F et a € G/D. Ou bien il existe entier n > 0 tel que na € domo. Dans ce
cas supposons n minimal et posons b = na. Alors il existe a' € G tel que p(a’) = a
et na’ = o(b) car D est divisible. On peut alors prolonger ¢ en envoyant a sur
a’. Ou bien pour tout n > 0, na ¢ domo. Alors on prolonge ¢ en envoyant a sur
n’importe quel o' vérifiant p(a’) = a.

En utilisant le lemme de Zorn, il existe un élément maximal dans F et cet élément
est alors un isomorphisme s de G/D vers G tel que po s = idg/p.

On vérifie facilement que I’application qui a (d,a) € D x G/D associe d+s(a) € G
est un isomorphisme.

On considére la suite décroissante (n!G),e,. Par (e)-ii-, cette suite est constante
a partir d’'un certain n. Par conséquent mG est divisible pour m = n!. Donc
G = mG & G/mG. De plus tout élément de G/mG est d’ordre au plus m, donc
G/mG est d’exposant borné par m.



