Chapitre 2

Compacité, Théoréme de
Lowenheim-Skolem

Ce chapitre est consacré & un théoréme fondamental en théorie des modéles, le
théoréme de compacité et a ses premiéres conséquences. Commencgons par énoncer ce
théoréme qui sera démontré dans le paragraphe suivant (2.2).

2.1 Enoncés du théoréme de compacité

Théoréme 2.1 (Compacité). Soit 3 un ensemble d’énoncés tel que tout sous-ensemble
fini de X2 a un modéle. Alors 2 a un modéle.

Exercice 2.2. Montrer que I’énoncé suivant est équivalent au théoréme de compa-
cité : soient X un ensemble d’énoncés et ¢ une conséquence de ¥ (X F ¢) alors ¢ est
conséquence d’une partie finie de >.

Exercice 2.3.

1. Une théorie qui, pour tout entier n, a un modeéle de cardinalité plus grand que
n, a un modéle infini.

2. Il n’existe pas de théorie dans la langage L,,.q dont les modéles sont précisément
les ordres finis.

3. Il n’existe pas de théorie dans la langage L,,, dont les modéles sont précisément
les corps finis.

Le théoréeme de compacité s’exprime topologiquement de la fagon suivante : nous
munissons I’ensemble 7 des théories complétes dans le langage I d’une topologie. A
tout énoncé ¢, on associe ’ensemble (¢) des théories complétes contenant ¢. Alors les
(¢) forment une base d’ouverts pour une topologie, car si ¢; et ¢ sont deux énonceés,
(P1) N {p2) = (¢1 A ¢2). Muni de cette topologie, 7 est un espace séparé : si 77 et T
sont deux théories complétes distinctes alors il existe un énoncé ¢ € T tel que ¢ ¢ T.
Donc (¢) et (—¢) sont des voisinages disjoints respectivement de 7; et 7. Cet espace
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T est de plus totalement discontinu, c’est-a-dire il admet une base d’ouverts qui sont
fermés : le complémentaire de (¢) est (—¢). Par conséquent, toute partie connexe de 7°
est soit vide, soit réduite & un point.

Théoréme 2.4 (Compacité). L’espace T des théories complétes dans le langage L
est compact.

Exercice 2.5. Les deux énoncés ci-dessus du théoréme de compacité sont équivalents.

Exercice 2.6. Les ouverts-fermés de 7 sont les parties de la forme (¢) pour ¢ un
énoncé de 7.

Regardons maintenant un corollaire du théoréme de compacité en termes d’en-
sembles définissables.

Corollaire 2.7 (Compacité). Soit M une L-structure et (¢;(Z,m;))icr. Si pour toute
partie finie Iy de I, il existe a € M™ tel que pour tout i € Iy, M = ¢;(a,m;) alors
il existe une extension élémentaire N' de M et a € N" tel que pour tout i € I,
N = ¢i(a,m;).

En d’autres termes, si (D;)icr est une famille de parties de M™ définissables dans M
tel que toute intersection finie de parties de cette famille est non vide dans la structure
M alors cette famille a une intersection non vide dans une extension élémentaire de

M.

Démonstration. Soit ¢ un n-uple de nouvelle constante. Considérons I’ensemble d’énon-
cés
Y :=ThM, M)U{¢;(c,m;):i eI}

dans le langage L U {m : m € M} U {c}. Alors par hypothése, pour toute partie finie
de 3, il existe a € M™ telle (M, L,m,a : m € M) soit modéle de cette partie finie.
Donc par le théoréme de compacité X est consistant. Soit N/ un modéle de X alors
I'interprétation des constantes {m : m € M} forme une sous-structure élémentaire de
N7, la structure sur N réduite au langage L. Cette sous-structure est isomorphe a M
car NV = Th(M, M). Par un isomorphisme, on peut donc supposer que M est une
sous-structure élémentaire de N’ et I'interprétation a € N™ de ¢ dans NV implique que
pour tout ¢ € I, N' = ¢;(a, m;). O

Exemple 2.8.

1. Les entiers non-standards : il existe une extension élémentaire de la structure
(N, 0, 1,4, -) contenant un entier (non-standard) non nul qui est divisible par tous
les entiers standards non nuls (les entiers de N*).

2. Les réels non-standards : il existe une extension élémentaire R’ de la structure
(R,0,1,+, —,-, <) contenant un réel ¢ (non-standard) strictement positif qui est
infiniment petit, c’est-a-dire tel que pour tout réel r standard strictement posi-
tif (r e R, r > 0), 0 < ¢ < r. On a alors pour tout 7’ € R’ borné (tel qu’il existe
ro € R avec —rg < 1’ < rp), il existe un unique réel standard r € R infiniment
proche de r’. On appelle r la partie standard de 7’.
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2.2 Ultraproduits - Une démonstration du théoréme
de compacité

Définition 2.9. Soit I un ensemble non vide. Un ensemble F' de parties de I est un
filtre sur [ si:

~IeFetDh¢gF,

-si X, Y e Falors XNY € F,

-siXeFetXCVYalorsY € F.
Un ultrafiltre est un filtre maximal pour I’inclusion.

Exercice 2.10. Un filtre U sur I est un ultrafiltre ssi pour toute partie A de U, A ou
I — A est dans U.

Exercice 2.11. Tout filtre sur I est contenu dans un ultrafiltre. (On utilisera le lemme
de Zorn).

A T'aide d’un ultrafiltre, on peut construire de nouvelles structures a partir d’une
famille de structures donnée :

Définition 2.12. Soit (M,);c; une famille de L-structures et U un ultrafiltre sur I.
L’ultraproduit ], , M;/U est la structure M suivante :

1. le domaine de M est le produit des M; modulo la relation d’équivalence suivante :
(a;)ier ~ (b;)ier si et seulement si {i € [ :a;, =b;} € U.

Cette relation est de maniére évidente réflexive et symétrique. La transitivité
découle du fait que U est un filtre :ona {i € I : a; = ¢} D{i el :a =
b;} N{i €I:b;=c;}. On notera [a;);c; la classe modulo U de 'uple (a;)ic;-

2. pour toute constante ¢ € L, on pose ¢ c

i€l
3. pour toute fonction n-aire f de L, on pose

fM : ([a’zl]iéfv SRR [a’zn]iel) = [sz(a’zlv SRR a?)]ief-
4. pour toute relation n-aire R de L, on pose
RM = {([alier, - - -, [aMicr) € M™ : {i € I : (a},...,a}) € RM} € U}.

Exercice 2.13. Vérifier que les fonctions et relations sont biens définies, c’est-a-dire
qu’elle ne dépendent pas du choix des représentants. Noter de plus que la définition de
=M correspond & la vrai égalité sur M.

Théoréme 2.14 (Critére de Los). Soit U un ultrafiltre sur I et (M;);c; une famille
de L-structures. Si m = ([m}licr, ..., [mPicr) est un n-uple dans l'ultraproduit M :=
[Lic; Mi/U et ¢(z) est une formule, alors

M = ¢(m) si et seulement si {i € [ : M, = ¢(mj,...,m}")} € U.

En particulier si 0 est un énoncé alors M est modéle de cet énoncé si et seulement si
il existe X € U tel que pour tout i € X, M; est un modele de 6.
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Démonstration. On commence par vérifier par induction sur la construction des termes
que si t(Z) est un terme alors

M (m) = [t (my, omiier.

Par définition de I'ultraproduit, ¢’est évident si ¢(Z) est une constante ou une variable.
Soient t(Z), ..., tx(Z) des termes pour lesquels la propriété est vérifiée et f € L une
fonction k-aire. Par hypothése de récurrence, pour tout j € {1, ..., k},

tjvl (m) = [t;ul (mz1> R m?)]iélv
et par définition de I'ultraproduit,

(f(tr, st ))M(m) = AU (), ...t ()
= [, ), (o mE)) e
= [f(tla-"atn)Mi(mzla""mzn))]iel-

On vérifie maintenant le critére de Los par induction sur la construction des formules.
Par définition de l'ultraproduit et par ce qui précéde le critére est évident pour les
formules atomiques.

Supposons le critére vérifié pour deux formules ¢(7) et (). Alors M = (¢ A1) (m)
ssiX:={iel: M;Eo¢(ml,...m"}eUetY ={iel: M;Ev(m}, .. m"}elU.
Comme U est un filtre, X € U et Y € U est équivalent a X NY € U. Or XNY ={i €
I:M;E (pAY)(m}, ..., m")} € U, donc le critére est alors vérifié pour (¢ A 9).

On a aussi M = —¢(m) ssi X ¢ U. Comme U est un ultrafiltre X ¢ U ssi I\ X € U.
Or I\X ={i€l: M;E—-¢(m},..,m"}, donc le critére est également vérifié pour
—6.

Supposons maintenant le critére vérifié pour une formule ¢(y, z). Soit X := {i € I :
M; | Jyo(y,m},...,m™")}. Si M E Jyo(y, m) alors il existe [mf];c; € M tel que M =
d([mier, [Milicr, -, [MP)icr)- Par hypothése, Y :={i € [ : M; = ¢(m{,m},...m")} €
U.Donc X € Ucar X DY € U. Réciproquement, si X € U, choisissons pour tout
i€ I,m) e M, tel quesi M; = Jyo(y,m;,...,m?) alors M; = ¢(m, m}, ...,m?). Alors
{iel: M; Eo(m? m}, ....,m"} = X et donc, par hypotheése, M |= ¢([m]icr, [milicr, - [
Le critére est donc alors vérifier pour la formule Jy. O

?]iel)-

S

Démonstration du théoréme de compacité. Considérons ¥ un ensemble d’énoncé fi-
niment consistant et pour toute partie finie ¢ de X, soit M; un modéle de 7. Nous allons
montrer en utilisant le critére de L.os qu’un ultraproduit des M; est modéle de X..
Soit I I’ensemble des parties finies de X3, et pour tout i € I, soit I; :=={j € I : j D i}.
Alors F':={X C I:X D I; pour un i € I} est un filtre sur /. En effet : Iy =1 € F';
D¢ F;siXDLetY DIjalors XNY D ILyj;siXDILet X CYalorsY DI,
Soit U un ultrafiltre contenant F' et M 1'ultraproduit [[,., M;/U. Alors M est un
modéle de X : en effet pour § € X, M; = 6 pour tout i € I, donc par le critére de
Los M = 6. O
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2.3 Théoréme de ’extension élémentaire commune

Lemme 2.15. Si M et My sont deuxr L-structures élémentairement équivalentes,
elles ont une extension élémentaire “commune” : il existe une L-structure N telle que
M et My se plongent élémentairement dans N .

Démonstration. On peut supposer que M; N M, = (). Considérons ’ensemble d’énoncés
Y := Th(M;, M;)UTh(Ms, M5) dans le langage LU{my : my € M;}U{my : my € Ms}.
Remarquons que les modéles de X correspondent aux extensions élémentaires com-
munes & M; et M. Nous allons donc montrer que X est consistant. Par compacité, il
est suffisant de montrer que tout fragment fini de X est consistant. Un fragment fini de
¥ est équivalent a la conjonction d’un énoncé 0;(m,) de Th(M;, M;) et d’un énoncé
Os(ms) de Th(Ms, Msy). Alors My = 3769(Z) car My et My sont élémentairement
équivalente et My |= 05(ms). Soit m, € My, tel que My = 65(m)). Alors en interpré-
tant mg par mh dans My, on fait de (M, L, my, m}) un modéle de 0 (mq) Aby(ms). O

Théoréme 2.16. Si (M,);c; est une famille de L-structures élémentairement équiva-
lentes, ces structures ont une extension élémentaire “commune”.

Démonstration. Considérons ici ’ensemble d’énoncés ¥ := U;c; Th(M;, M;). En itérant
le lemme précédent, pour toute partie finie Iy de I, U;e;, Th(M;, M;) est consistant.
On déduit par compacité que X est consistant. O

2.4 Théoréme de Lowenheim-Skolem - Théories x-caté-
goriques

Lemme 2.17 (L6wenheim-Skolem ascendant). Si M est une L-structure infinie
alors pour tout cardinal k > max{|L|,| M|}, il existe une extension élémentaire N' = M
de cardinal k.

Démonstration. Montrons d’abord qu’il existe une extension élémentaire Ny de M de
cardinal supérieur ou égal & . Pour cela considérons (¢;);c, des nouveaux symboles de
constantes et ’ensemble d’énoncés

Y :=ThM,M)U{c; #c¢j:i# j}.

Chaque fragment fini de > ne mentionne qu’un nombre fini de constantes, qui peuvent
étre interprétés par des éléments distincts de M car M est infini. Donc X est finiment
consistant et donc consistant par compacité. Un modéle NVj de X est alors une extension
élémentaire de M de cardinal supérieur ou égal & . Par Lowenheim-Skolem descendant,
il existe une sous-structure élémentaire N de N contenant M et de cardinal x, qui est
alors une extension élémentaire de M. O

Proposition 2.18. 1. La théorie des corps algébriqguement clos de caractéristique p
fizé (p > 0) est compléte.
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2. Soit ¢ un énoncé dans le langage des anneauz. Alors ¢ est vrai dans tout corps
algébriquement clos de caractéristique nulle si et seulement si ¢ est vrai dans tout
corps algébriqguement clos de caractéristique p > 0, pour tout p premier sauf un
nombre fini.

Démonstration. 1. Soient k; et ky deux corps algébriquement clos de méme carac-
téristique. Considérons K; et K, des extensions élémentaires non dénombrables
respectivement de ky et ko ; Alors K et Ky sont deux corps algébriquement clos
de méme caractéristique et de degré de transcendance infini. Par 1.9, ils se corres-
pondent par va-et-vient et donc sont élémentairement équivalents. Par conséquent
kq et ko sont élémentairement équivalents.

2. Soit ¢ un énoncé et CAC, la théorie des corps algébriquement clos de carac-
téristique 0. Considérons ¥ = CAC, U {¢}. Si ¢ est vrai dans tout corps al-
gébriquement clos de caractéristique assez grande alors chaque partie finie de
> a un modéle, car elle ne peut contenir qu'un nombre fini d’axiomes du type
14...4+1 # 0. Par compacité, > a un modéle qui est donc un corps algébriquement
clos de caractéristique 0 et donc ¢ est vraie dans tous les corps algébriquement
clos de caractéristique nulle.

Réciproquement, si ¢ est conséquence de CAC, alors par compacité, il est consé-

quence d’une partie finie de CACy et on conclut facilement.
O

Convention. Le cardinal d’une théorie 7' dans un langage L, notée |T'| est par
convention le cardinal de l’ensemble des formules du langage L, c’est-a-dire |T'| :=
max{w, |L|}. En particulier on dit que 7" est dénombrable si |L| < w.

Théoréme 2.19 (Théoréme de Léwenheim-Skolem). Si T est une théorie qui a
un modéle infini alors pour tout cardinal k > |T|, T a un modéle de cardinal k.

Démonstration. Par Lowenheim-Skolem ascendant et descendant, il existe une struc-
ture N de cardinal k élémentairement équivalente a M. O

Définition. Une théorie T est r-catégorique si 7" a un unique modéle & isomorphisme
prés de cardinal k.

Proposition 2.20. Une théorie T' qui n’a que des modeles infinis et qui est k-catégorique
pour un cardinal k > |T| est compléte.

Démonstration. Soit M le modéle de T' de cardinal k. Toujours par Léwenheim-Skolem
ascendant et descendant, tout modéle de T" est élémentairement équivalent & une struc-
ture de cardinal x, donc & M. O

Exemple 2.21. — La théorie des ensembles infinis est totalement catégorique
(c.a.d. k-catégorique pour tout cardinal infini).
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— La théorie des ordres totaux denses sans extrémité est w-catégorique (voir exo
1.25). Par contre cette théorie n’est pas x-catégorique pour tout cardinal x > w.
Considérons par exemple un ordre [ total dense sans extrémité de cardinal <
tel que pour chaque point de cet ordre, il y a x points plus grand. Prolongeons
cet ordre par l’ensemble des rationnels. Alors les ordres I et I — Q ne sont
évidemment pas isomorphes.

— Soit p > 0. La théorie des corps algébriquement clos de caractéristique p est
catégorique en tout cardinal infini non-dénombrable. En effet si K; et K, sont
deux corps algébriquement clos de caractéristique p et de cardinal x > w, ils
sont tous deux de degré de transcendance x et donc isomorphes. Par contre cette
théorie n’est pas w-catégorique : la cloture algébrique du corps premier et le corps
algébriquement clos de degré de transcendance 1 ne sont pas isomorphes.

— La théorie des groupes abéliens divisibles sans torsion non triviaux est également
catégorique en tout cardinal infini non-dénombrable. En effet tout groupe abélien
divisible sans torsion peut étre regardé comme un (Q-espace vectoriel et un groupe
abélien divisible sans torsion de cardinal x > w aura pour dimension x comme
Q-espace vectoriel. Par contre cette théorie n’est pas w-catégorique.

Exercice 2.22. Déterminer les cardinaux x pour lesquels la théorie de la relation
d’équivalence & une infinité de classes toutes infinies est x-catégorique. Méme question
pour la théorie de la relation d’équivalence & deux classes infinies.

Exercice 2.23. Soit L = {P, : i € w} ou les P; sont des relations unaires. Soit 7" la
théorie dans le langage L qui dit que les P; sont deux & deux disjoints et que chaque
P; est infini.

1. Vérifier que 1" n’est catégorique en aucun cardinal .

2. Montrer que 7' est compléte.

Pour terminer ce chapitre nous allons énoncer le théoréme de Morley qui est le point
de départ de la théorie de la stabilité (“seconde naissance de la théorie des modéles”).
La démonstration de ce théoréme ne sera pas faite dans ce cours, mais on étudiera les
notions de rang de Morley et d’ensembles fortement minimaux qui sont utilisés dans
celle-ci :

Fait 2.24 (Théoréme de Morley 1965). Une théorie dénombrable qui est caté-
gorique en un cardinal infini non-dénombrable est catégorique en tout cardinal infini
non-dénombrable.



