Chapitre 4

Théories totalement transcendantes

Dans ce chapitre les théories seront par hypothése complétes.

4.1 Stabilité et propriété de ordre

Remarquons qu’une théorie T a au plus 2m@{UALTI types au-dessus d’un ensemble
de paramétres A (i.e. A est une partie d’'un modéle de T'). Certaines théories n’ont pas
plus de types au-dessus de A que max{|A|,|T|} :

Définition 4.1. Une théorie (compléte) T" est dite xk-stable pour un cardinal ~ infini
si pour tout modéle M de T et tout ensemble de paramétres A C M, |A| < k implique
|S1(A)| < k. Une théorie (compléte) T est dite stable si elle est x-stable pour un &,
instable sinon. Une structure est dite x-stable (stable) si sa théorie I’est.

Exercice 4.2. Une théorie T est k-stable si et seulement si pour tout ensemble de
paramétres A, |A| < k implique |S(A4)| < k.

Remarque. Une théorie T dénombrable et w-stable est menue (c’est-a-dire S(T') est
dénombrable).

Exemple 4.3.
— La théorie des corps algébriquement clos de caractéristique fixée est x-stable pour
tout cardinal infini.
— La théorie des K-espaces vectoriels infinis est x-stable pour tout cardinal infini
k> |K]|.

Exercice 4.4. Soit M = (M, E; : i € w) tel que chaque FE; est une relation d’équiva-
lence sur M, Ej est la relation d’équivalence triviale réduite & une seule classe et pour
chaque i € w, E;1 C E; et toute classe définie par F; est exactement I'union de deux
classes définies par F; ;. Montrer que M est stable mais n’est pas w-stable.

Enoncons des résultats de théorie des modéles pour illustrer la stabilité :
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Fait 4.5. — Un groupe abélien est stable. Il est w-stable si et seulement si il est
somme directe d’un groupe divisible avec un groupe d’exposant borné.

— Une théorie dénombrable k-catégorique en un cardinal infini non dénombrable
est w-stable. (Ce résultat correspond & une étape de la preuve du théoréme de
Morley.)

— Un corps infini w-stable est algébriquement clos.

Par contre les ordres totaux infinis sont instables :

Définition 4.6. Soit 7' une théorie. Une formule ¢(z, %) a la propriété de ’ordre

dans T s’il existe deux suites (@;)ic. €t (b;)ic dans un modéle M de T telles que
M E ¢(a;, b;) si et seulement si i < j.

La théorie T" a la propriété de ’ordre s’il existe une formule qui a la propriété de
I’ordre dans 7.

Exercice 4.7. Une théorie T' a la propriété de I'ordre si et seulement s’il existe une
formule ¥ (Z1, Z5) ou Z; et Z» sont des uples de méme longueur n et un modéle M telle
que v ordonne totalement un ensemble infini de M™.

Proposition 4.8. Une théorie qui a la propriété de l’ordre est instable.

Démonstration. Soit T une théorie qui a la propriété de ’ordre. Vérifions que 71" n’est
pas w-stable. Soit ¢(7,y) une formule qui a la propriété de l'ordre. Soient (¢;)icr et
(d;)jeq des nouvelles constantes. Alors par compacité,

TU{(eid;) i < jhU{~g(c,d;) i > j}

est consistant. Il existe donc un modéle M de T contenant deux familles (a@;);cr et
(b));eq tel que M = ¢(a;, b;) si et seulement si i < j. Posons B := {b; : j € Q} alors
pour tout i # ', tp(a;/B) # tp(ay/B) donc |S(B)| > 2“.

Pour vérifier que 1" n’est pas k-stable pour un cardinal infini ¥ quelconque, on
considére un ordre total I contenant une partie dense J tel que |J| < x < |I] (il faut
montrer l'existence d’un tel ordre) et on remplace R et Q respectivement par I et
J. O

Remarque 4.9. La réciproque est vraie : la propriété de 'ordre caractérise les théories
instables.

4.2 Rang de Morley

Différentes notions de rangs ou dimensions sont définies en stabilité. Pour les théo-
ries w-stables on peut définir le rang de Morley qui généralise la dimension de Zariski
sur les ensembles constructibles dans un corps algébriquement clos.
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Définition 4.10. Soit M une L-structure et D une partie de M™ définissable dans
M. On définit RM(D) > « pour un ordinal @ par I'induction suivante :
~ RM(D) > 0si D £,
~ RM(D) > a + 1 pour un ordinal « §'il existe une extension élémentaire N > M
et une famille infinie (D;);c,, de parties disjointes de N™ définissables dans N
telle que pour tout i € w, D; C D (dans N') et RM(D;) > a.

— RM(D) > « pour « un ordinal limite si RM(D) > [ pour tout ordinal 5 < a.
On dit que D # () est rangé (par le rang de Morley) si pour un ordinal a, RM(D) > «
est vrai mais RM(D) > a+ 1 est faux. Dans ce cas on pose RM(D) = « et dans le cas
contraire RM(D) = oo. Par convention on pose RM(()) = —1.

Remarque.
— Le rang de Morley est stable par isomorphisme.
— Le rang de Morley est stable par extension élémentaire : que ’on regarde D dans
M ou dans n’importe quelle extension élémentaire de M le rang de Morley reste
inchangé. (On utilise ici le théoréme de I'extension élémentaire commune.)

Exercice 4.11. Soient D; et Dy deux parties non vides de M™ définissables dans M.
— Si Dy C Dy alors RM(D;) < RM(Ds).
- RM(Dl U DQ) == maX{RM(Dl), RM(DQ)}
— RM(D;) = 0 si et seulement si D; est finie et non vide.

Exemple 4.12. Soit M = (M, F) ou E est une relation d’équivalence sur M composée
uniquement de classes finies et pour chaque entier n > 0 d’une et une seule classe a
n éléments. Chacune de ses classes finies sont de rang 0, mais M est de rang 2. En
effet il existe une extension élémentaire on il y a une infinité de classes infinies (une
telle extension est une extension w-saturée), donc RM(M) > 2. Il reste & montrer que
RM(M) < 2 (exercice).

Exercice 4.13. 1. Pour chaque entier n > 0, donner un exemple de structure M

de rang de Morley n (RM(M) = n).
2. Donner un exemple de structure de rang de Morley w.

Définition 4.14. Soient M une L-structure et ¢(z,m) une formule a paramétres
m € M. On définit alors la rang de Morley de ¢(z,m) dans M, noté RM(¢(z,m)),
comme le rang de Morley de ’ensemble défini par ¢(z,m) dans M.

Exercice 4.15. Traduire la définition du rang de Morley en termes de formules.

Proposition 4.16. Soient My et My deux L-structures, m, et mo deur k-uples
respectivement dans My et My ayant méme type, et ¢(z,y) une formule de L ou

J = (W1, yx). Alors RM(6(2,m1)) = RM(6(Z, my)).

Démonstration. Par le théoréme de 'extension élémentaire commune et du fait que
le rang est stable par isomorphisme et extension élémentaire, on peut supposer que
M = My = M. Alors il existe un automorphisme d’une extension élémentaire de M
qui envoie m; sur my. On en déduit que RM(¢p(z,my)) = RM(¢(z, ms)). O
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Corollaire 4.17. Supposons le langage L fizé. Il existe un ordinal o tel que pour tout
ensemble définissable D dans une L-structure, si RM(D) > « alors RM(D) = oc.

Démonstration. Il n’y a pas plus de rangs de Morley possibles que de types d’uples sur
le vide (au plus 2m2{«/E1}) | Les rangs possibles forment donc un ensemble. O

Proposition 4.18. Si T est une théorie w-stable alors tout ensemble définissable dans
un modele de T est rangé par le rang de Morley.

Démonstration. Supposons que D est un ensemble définissable de rang infini. Alors par
ce qui préceéde il existe (dans une extension élémentaire) une partition de D en deux
ensembles définissables Dy et D; de rangs infinis. Par induction, on montre qu’il existe
une famille d’ensembles définissables de rangs tous infinis (D;) indéxée par les suites
finies de {0, 1} telle que pour tout s, Dy = D, oUD, ;. Soit A un ensemble de para-
meétres dénombrables telle chaque D, peut étre définie par une formule a paramétres
dans A. Alors il y a au moins 2“ types sur A. O

Lemme 4.19. Soit M une L-structure w-saturée et D une partie de M™ définissable
dans M. Alors le rang de Morley de D est déterminé en utilisant uniquement les
ensembles définissables sur M : si RM(D) > a+ 1 pour un ordinal « alors il existe une
famille infinie (D;);c,, de parties de D définissables dans M, deuz a deux disjointes
et de rangs supérieurs ou égals a .

Démonstration. Supposons que RM(D) > « + 1. Alors il existe A une extension élé-
mentaire de M et une famille infinie (D));c,, de parties de D définissables dans N, deux
a deux disjointes et de rangs supérieurs & «. Soient a € M et a, € N des paramétres
permettant de définir D et les D). Par w-saturation, il existe des a; € M tels que la
suite des a; a méme type sur a que la suite des a; (voir exo 3.20). Ces paramétres a;
permettent alors de définir une famille (D;) satisfaisant la consclusion. O

Proposition 4.20. Soit D une partie M™ définissables dans M tel que RM(D) = o <
oo alors il existe d < w tel que dans toute extension élémentaire de M il y a au plus d
parties de D deux a deuz disjointes et de rang égal a .

Démonstration. Supposons qu’il n’existe pas de tel d. Plagons nous dans une extension
élémentaire A w-saturée. Alors pour tout d > 0 il existe dans A" une partition D¢, ..., D¢
de D ot les D¢ sont des ensembles définissables dans N de rang a. Pour tout j €
{1,...,d+ 1}, il existe i € {1,...,d} tel que RM(D{ N D) = o car RM(D{) =
max{RM(D{NDJ™), .., RM(D4NDJ*")}. Par récurrence sur d, on peut donc supposer
que pour tout j € {1,...,d + 1}, D;”l est inclus dans un D¢. Cette suite de partitions
se voit alors comme un arbre infini & branchement fini (les points étant ’ensemble des
DY et les arétes les (D¢, D{*") pour D{ contenant strictement D). Par le lemme de
Konig (tout arbre infini & branchements finis a une branche infinie), on en déduit qu’il
existe une suite décroissante infinie (D;);c., de parties de D telle que RM(D;\ D;11) = «
pour chaque i € w. Alors RM(D) > a + 1. O
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Définition 4.21. Soit D un ensemble définissable dans une structure M. Le degré de
Morley, dénoté dM (D), est I’élément d € NU {oco} maximal tel que 1'on peut diviser D
en d parties de méme rang dans une extension élémentaire de M. Si ¢(Z,m) est une
formule de L(M) alors on définit le degré de Morley de ¢ dans M noté dM(¢(z,my))
comme la degré de Morley de I’ensemble défini par ¢(z,m) dans M.

Remarque 4.22. Soit M une L-structure w-saturée et D une partie de M" définissable
dans M de rang « et de degré d. Alors il existe une partition de D par d parties
définissable dans M de rang « (et de degré 1).

Définition 4.23. Soit A un ensemble de paramétres dans une structure M.
1. Sip e S(A), on pose RM(p) = min{RM(¢) : ¢ € p} et dM(p) = min{dM(¢) :
¢ € p et RM(¢) = p}.
2. Pour @ un uple de M, on pose RM(a/A) = RM(tp(a/A)) et dM(a, A) = dM(tp(a/A)).

Remarque. Soient A C B C M et p € S(A). Si ¢ est une extension de p dans S(B)
(¢ € S(B) et ¢ D p) alors RM(q) < RM(p).

Notation. On note D C, E pour deux parties de M"™ définissable dans une structure
M si RM(D\ FE) < a.

Lemme 4.24. Soient p € S, (A) et ¢ € p tel que RM(p) = RM(¢) = a < oo et
dM(p) = dM(¢) alors
p=A{veL(4): ¢ Cav}

et p est isolé des types de rang suprérieur ou égal G o dans S, (A) par ¢.

Démonstration. Soit ¢ € p. Alors ¢ A ¢ est de rang a. D’ot dM(p) < dM(¢ A ¢) <
dM(¢) < dM(p). Il y a donc égalité et le rang de ¢ A =) est nécessairement plus petit
que «. Réciproquement, si ¢ C,, 1 alors p A=) ¢ p car RM(pA—)) < o et donc ¢ € p.

Soit g € (¢p) C S,(A) tel que ¢ # p. Alors il existe ¥ € p tel que ¥ ¢ ¢q. Mais alors
RM(q) < a car RM(opA # ) < av et oA # ¢ € g. O

Proposition 4.25. Soit A un ensemble de paramétres dans une structure M et ¢(z) €
L(A) tel que M |=3zp(z). Alors

RM(¢) = max{RM(p) : p € S(A), ¢ € p},

dM(¢) =Y {dM(p) : p € S(A), ¢ € p, RM(p) = RM(¢)}.

Démonstration. Exercice. (Indication : si RM(¢(Z)) = o < oo, considérer I’ensemble
des formules {¢(z) € L(A) : ¢ C, ¥}.) O

Définition 4.26. Une théorie (compléte) est dite totalement transcendante si tous
ses 1-types sont rangés par le rang de Morley. Une structure est dite totalement
transcendante si sa théorie I'est.
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Le théoréeme suivant montre que les notions de w-stabilité et de totale transcendance
se confondent dans le cas d’un langage dénombrable.

Théoréme 4.27. Soit T' une théorie.
1. Si T est totalement transcendante alors T' est k-stable pour tout cardinal k > |T|.

2. 51T est dénombrable alors T est totalement transcendante si et seulement si T
est w-stable. En particulier une théorie w-stable dénombrable est k-stable pour
tout cardinal K infini.

3. SiT est totalement transcendante alors tout ensemble définissable est rangé par
le rang de Morley.

Démonstration. Le 2 se déduit du 1 en utilisant 4.18.

Montrons 1. Supposons 7' totalement transcendante. Soit A un ensemble de para-
métres dans M = 1. Alors pour tout type p dans S1(A) il existe une formule ¢, € p de
méme rang et méme degré. Par 4.24 si p # ¢, ¢, # ¢4, donc |S1(A)| < max{|A|, |T|}.

Montrons 3. Si T" est dénombrable alors T" est w-stable (1) et on conclut par 4.18.
Sans cette hypothése, on considére un ensemble définissable D non rangé dans un
modéle w-saturé M de T' (D C M"™). Comme dans la preuve de 4.18, on obtient alors
un arbre d’ensembles définissables qu’on peut de plus supposer définis par des formules
a paramétres dans M. Cet arbre étant dénombrable, il existe une partie dénombrable
Lo de L permettant de le définir. Soit M, la restriction de la structure M au langage
Ly. Alors M, n’est pas w-stable et la théorie de M, qui est dénombrable, n’est pas
totalement transcendante. Donc RM(M) = oo dans M,. Il existe donc un arbre de
parties de M définissables dans M, car M, est w-saturée. (Exercice : vérifier que M
w-saturée implique que M, 'est également.) Cet arbre est donc définissable dans M
et RM(M) = oo dans M. O

Il est parfois plus simple d’utiliser la description des 1-types d’une structure pour
déterminer son rang. Dans ce cas on utilise la caractérisation suivante.

Lemme 4.28. Soient M une structure, A C M et p € S(A). Alors RM(p) > o+ 1
si et seulement si p a une extension ¢ € S(B) (A C B C N = M) qui est point
d’accumulation de types dans S(B) de rang supérieur ou égal d o.

Démonstration. Un type de rang « est isolé des types de rang supérieur ou égal a a.
Il ne peut donc pas étre point d’accumulation de tels types. Par conséquent, si p a une
extension ¢ qui est point d’accumulation de tels types, alors ¢ est de rang strictement
supérieur « et donc p également.

Réciproquement, supposons que RM(p) > a + 1. Soit N une extension élémentaire
w-saturée de M. Soit

Y ={y(x) € L(N) : il existe ¢ € p; RM(¢ A (—¢)) < RM(p)}.

On montre facilement par compacité que X est consistant. Soit ¢ un type sur N conte-
nant Y., alors ¢ contient p et a méme rang que celui-ci. (Remarquons que ’on montre
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ici qu’'un type a toujours une extension de méme rang.) Soit § € ¢. Alors 0 est de
rang supérieur & « + 1. Comme N est w-saturée, cette formule se découpe en plusieurs
formules de rang supérieur a « et contient donc un type de rang supérieur a « distinct
de g. Le type ¢ est donc point d’accumulation de types dans S(N) de rang supérieur
ou égal a . O

Remarque. Si M est w-saturée et p € S(M) alors RM(p) > a + 1 si et seulement si
p est point d’accumulation de types de S(M) de rang supérieur ou égal a «. Dans ce
cas le rang de Morley sur S, (M) correspond au rang de Cantor-Bendixon sur 'espace
topologique S, (M).

Lemme 4.29. Soient M une structure, A C M, a et b deuz uples de M.
1. RM(a/A) < RM(ab/A).
2. Sibeacl(AU{a}) alors RM(a/A) = RM(ab/A).

Démonstration. 1. Exercice.

2. Montrons par induction sur a que pour tout a, b, A, si b € acl(A U {a}) alors
RM(ab/A) > « implique RM(a/A) > a. C'est évident pour o = 0. Supposons le
résultat vrai pour « et considérons b € acl(AU{a}) tel que RM(ab/A) > a+1. Il existe
une extension ¢ € S(B) du type de ab sur A qui est point d’accumulation de types de
rang supérieur ou égal & a. Soit @b’ une réalisation de q. Alors ' € acl(A U {a@'}) C
acl(BU{a'}).

Nous allons montrer que le type de a’ sur B est également point d’accumulation de
types de rang supérieur ou égal a a.

Considérons pour cela une formule ¢(z,y) € L(B) telle que ¢(a’,y) isole le type
de b sur B U {a'}. La formule ¢(a’,7) est algébrique. Il y a donc au plus n uples 7
satisfaisant ¢(a’, y) pour un entier n. Soit

6z, ) = 67, 5) A I="26(, 2).

Soit ¢(z) € tp(a’/B). Alors il existe aib; tel que |= ¥(a1) A 0(ay, by), tp(aiby/B) #
tp(a't'/B) et RM(a1b1/B) > a. Par hypothése d’induction RM(a,/B) > « car by €
acl(Bay ). De plus tp(a;/B) # tp(a’/B) car tp(ai1b1/B) # tp(a’'t'/B) et ¢(a’,y) isole le

type de V' sur B U {a'}. O

4.3 Types définissables

Lemme 4.30. Soient M une structure w-saturée totalement transcendante et N une
extension élémentaire de M. Si D est une partie non vide de N™ définissable dans N
qui est contenu dans un ensemble définissable sur M de méme rang, alors D N M" est
non vide.

Démonstration. Soit E ’ensemble définissable sur M contenant D et de méme rang.
Nous montrons le résultat par induction sur le rang « et degré d de E.
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Si o = 0 alors E est fini et donc contenu dans M".

Si d > 1. Par la remarque 4.22, on peut décomposer F en d parties définissables
Ey, ..., Egsur M de degré 1 et de rang . Alors au moins pour un i, DN E; est de rang
a et on applique I'hypothése d’induction sur D N F; C E;.

Sia > 0etd=1alors F\ D est de rang § < «. En utilisant le lemme 4.19,
E contient une infinité de parties disjointes F; définissables dans M telles que § <
RM(E;) < a. Il existe 7 tel que RM((E'\ D) N E;) < (. Alors D N E; est de méme rang
que E; et on applique I'hypothése d’induction avec D N E; C E;. O

Proposition 4.31. Soient M une structure totalement transcendante et D une partie
définissable de M™ a paramétre dans A de rang de Morley . Alors pour toute formule

(b('rla vy Ty Y1 00y yk);

{be M*: D c, ¢(z,b)}
est définissable a parametres dans A.

Démonstration. On peut supposer M w-saturée (en passant & une extension élémen-
taire) et D de degré de Morley 1.

Montrons tout d’abord qu’il existe une partie finie X de D N M™ telle que pour
toute extension élémentaire A de M et tout b € N¥,

X C ¢(M™,b) implique D C, ¢(z,b). (1)

Construisons pour cela par induction une suite (Nj,a;, b;) telle que pour tout i, 7,
M < N; < Nipa, D ¢, o(Z,b;), a; € ¢(M™,b;) si et seulement si i < j. Supposons
Ny, ag, by, ..., Ni_1,a;_1,b;_1 construits. Comme D est de degré de Morley 1, D ¢,
(T, bo) U...Ud(T, bi_1). Soit E := D\ ¢(,b)U...Ud(Z,b;_1). Alors E est un ensemble
définissable dans V;_; contenu dans D et de méme rang. Par le lemme 4.30, ENM™ # ().
Soit donc a; € Mn, tel que a; € D \ gb(Mn,Bo) U...U ¢(Mn,6i_1). Si {(7,0, ...,(zi} vérifie
(1) on arréte, sinon il existe b; dans une extension élémentaire A; de N;_;, tel que
{ag,...,a;} C ¢(M™,b;) mais D ¢, ¢(z,b;). La construction s’arréte nécessairement,
sinon la formule ¢ aurait la propriété de 'ordre dans 1’extension élémentaire UN;.
Remarquons que pour chaque ¢ dans une extension élémentaire N' de M, tel que
D C, ¢(Z,¢), on peut choisir Xz inclu dans ¢(M", ¢) satisfaisant (1). Soit I I’ensemble
des parties finies X; (c’est un ensemble de parties de M) et notons pour tout X € I,
¥x(y) la formule X C ¢(M™, y). Alors on vérifie facilement que D C, ¢(Z,y) est
définie par la disjonction infinie Vx¢1x (7). De méme D C, —¢(Z,y) est définie par
une disjonction infinie Vxcp9 (7). Comme D est de degré 1, pour toute b dans une
extension élémentaire de M, ou bien D C, ¢(z,b) ou bien D C, —¢(Z,b). Donc
I’ensemble des énoncés {—ux(y) : X € I} U {(y) : X € I'} est inconsistant.
Par compacité, il existe donc une partie finie Iy de I tel que la disjonction infinie
Vxerbx () est équivalente & la disjonction finie Ve ¢x (). Par conséquent {b €
M* : D C, ¢(z,b)} est définissable par la formule Vxcj,¢x (7). Cet ensemble est de
plus définissable & paramétres dans A car invariant par automorphismes fixant A point
par point (voir proposition 3.14). O
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Théoréme 4.32. Soient M une structure totalement transcendante et A C M. Alors
tout type p(z) de S(A) est définissable sur A : c’est-a-dire, pour toute formule ¢(Z, 1)
sans parameétres, il existe une formule d,¢(y) @ paramétres dans A tel que pour tout
ac A, ¢(x,a) €p siet seulement si M |= d,p(a).

Démonstration. Soit ¢, € p de méme rang o et méme degré que p. Alors par le lemme
4.24, pour toute formule ¢(Z,y) et tout a € A, ¢(Z,a) € p si et seulement si ¢, C,
¢(z,a) ce qui est définissable sur A d’aprés la proposition précédente. O

4.4 Déviation, indépendance

Définition 4.33. Soient A C B deux ensembles de paramétres dans une structure
totalement transcendante. Soient p € S,(A) et ¢ € S,(B) une extension de p. Si
RM(q) < RM(p) on dit que ¢ est une extension déviante de p et que ¢ dévie sur
A. Si RM(p) = RM(gq) on dit que g est une extension non déviante de p et que ¢
ne dévie pas sur A.

Proposition 4.34. Soient M une structure totalement transcendante et A C B C M
et p € S,(A).
— 1l existe au moins une extension non déviante de p dans S, (B).
— Il'y a au plus AM(p) extensions non déviantes de p dans S, (B).
- Si M est w-saturée il y a exactement dM(p) extensions non déviantes de p dans
Sn(M) qui sont chacune de degré 1.

Démonstration. Exercice. (Indication : utiliser une formule ¢, isolant p des types de
rang supérieur ou égal au rang de p.) O

Proposition 4.35. Soient M totalement transcendante et p un type dans S(M). Alors
p est stationnaire : c.a.d. dM(p) = 1 ou encore pour toute extension élémentaire N
de M et tout M C B C N, p a une unique extension non déviante q dans S, (B). De
plus ¢ .= {¢(z,b) : b€ B, N |=d,¢(b)}. On dit que q est ’héritier de p sur B.

Démonstration. Notons o = RM(p). Soit ¢, € p de méme rang et méme degré que p.
Montrons que ¢, est de degré 1. Soit N une extension élémentaire w-saturée de M.
Pour montrer que ¢, est de degré 1 il suffit de montrer que ¢, ne peut se découper dans
N en deux parties disjointes de rang « : c’est-a-dire de vérifier que pour tout ¢(z,7y)
et tout n € N, on a ¢,(Z) C, ¢(Z,n) ou ¢,(Z) C, —¢(Z,n). La formule d,p(y) définit
I'ensemble {n € N : ¢,(T) Co ¢(z,7)} (*). On a M = Vy(dyo(y) <= — d,—d(y)) -
en effet pour tout m € M, M |= d,¢p(m) ssi ¢(z,m) € p ssi (T, m) ¢ p ssi M =
= d,—¢(m). (Remarque : ce résultat n’est pas vrai en général; on utilise ici que p est
un type sur un modéle). D’ou N |= Vi(d,¢(y) <= — d,—d(7)) et en utilisant (*) on
conclut que ¢, est de degré 1.

Soient M C B C N et g 'unique extension non déviante de p. Alors ¢ est de méme
rang que ¢, et aussi de degré 1. Par conséquent (lemme 4.24), ¢ := {¢(Z,b) : ¢, Cq
#(z,b)} et on conclut par (*). O
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Définition 4.36. Soient M une structure totalement transcendante, a € M, A C M
et B C M. On dit que @ est indépendant de B au-dessus de A (dénoté a | AB) si
tp(a/B U A) ne dévie pas sur A.

Théoréme 4.37. Soient N une structure totalement transcendante, a,b € N et A, B,
C des ensembles de paramétres dans N. L’indépendance vérifie les propriétés suivantes :
1. Monotonie : sia | ,BetCC Balorsa | ,C.
2. Transitivité : a | , BUC si et seulement sia | ,Beta |
3. Symétrie : Sia J/Ab alors b L, a

4. Caractére fini : a | , B si et seulement si a J/AZ_)O pour tout by C B.
5. Caractére local : I existe By C B fini tel que a LBO B.

AUB

Démonstration. 1 : RM(a/A) = RM(a/BU A) < RM(a/C U A) < RM(a/A).

2: RM(a/BUCUA) <RM(a/BUA) < RM(a/A). Donc RM(a/BUC U A) =
RM(a/A) si et seulement si RM(a/BUA) = RM(a/A) et RM(a/BUCUA) = RM(a/BU
A).

3 : Montrons tout d’abord la symétrie si A = M ou M est une sous-structure
élémentaire w-saturée de N. Soit o = RM(a/M) et 3 = RM(b/M). Soient ¢(z) €
tp(a/M) et ¥ (y) € tp(b/M) de rangs « et 3 respectivement et de degré 1. Supposons
que b f  a. Alors il existe 0(z,7) € L(M) tel que N |= 0(a,b) et RM(0(a,y)) < p.
On peut supposer que 0(z,y) implique ¢(Z) A ¢(y). Par la proposition 4.31, I’ensemble

{ne N:RM(0(n,9)) <f} ={neN:¢(y) £z 0(n,9)}

est définissable par une formule ¢'(z) € L(M). Remarquons que ¢'(z) € tp(a/M). On
peut donc remplacer 0(z,y) par 0'(z,y) = 0(z,y) A ¢'(Z). Alors pour tout n € N tel
que N |= 0'(n,b), RM(¢' (72, 5)) < 3. Par conséquent ¢'(z,b) n’est pas satisfaite dans
M et comme M est w-saturée, le lemme 4.30 implique que RM(¢'(z, b)) < RM(¢()).
Doua f , b

Dans le cas général, considérons une structure M w-saturée contenant A et élémen-
tairement équivalente & N au-dessus de A. On peut alors, par I'existence d’extension
non déviante et I'existence d’extension élémentaire commune, supposer que b | M,
al ,;M et M <N.Supposons a | ,b. Par transitivité a | , Mb et donca |, b
D’ou b | , @ et encore par transitivité b | , a.

:a | , B ssi pour tout bo € B et tout ¢(z,9) € L(A) si M |= ¢(a,b) alors

RM((b(:c bo)) > RM(a/A) ssi pour tout by € B, a L. bo.

5 : il existe by € B et ¢(7,9) € L tel que M |= ¢(a, by) et RM(é(, b)) = RM(a, B).
]

Définition 4.38. Soient M une structure totalement transcendante et A, B,C' C M.

On dit que A est indépendant de B au-dessus de C, noté A | o B, sl pour tout uple
a€A,al B



41

Exercice 4.39. Vérifier que la généralisation de I'indépendance ci-dessus est cohérente
avec la premiére définition et qu’elle est toujours monotone, transitive et symétrique.

Exercice 4.40. Soient M une structure totalement transcendante et A, B C M. Alors

A L jacl(B).

4.5 Groupes définissables

Définition 4.41. Soit M une structure.

1. Un groupe définissable sur M est la donnée d’une partie définissable D de M"
et de deux fonctions définissables i : M2 — M"™ et + : M™ — M™ telles que les
restrictions de p et « munissent D d’une structure de groupe G ( la multiplication
de G est définie par u et le passage a 'inverse par ¢.)

2. Un groupe infiniment définissable sur M est la donnée d’une famille (D;);c; de
parties définissables de M™ et de deux fonctions définissables p : M?" — M™ et
t: M™ — M™ tel que dans toute extension élémentaire de M, les restrictions de
f et ¢ munissent (7),.; D; d’une structure de groupe G.

Remarque. 1. Dans le cas d'un groupe définissable, les restrictions de p et ¢ mu-
nissent D d’une structure de groupe dans toute extension élémentaire de M.

2. Dans le cas d’une famille (D;);cs, si M est |I|T-saturée, on peut donc se passer
de “dans toute extension élémentaire” dans la définition précédente.

Théoréme 4.42. Un groupe infiniment définissable sur une structure totalement trans-
cendante est définissable.

Démonstration. Soient M totalement transcendante et G un groupe infiniment définissa-
ble sur M par une famille (D;);c; et les fonctions u et «. Pour simplifier les notations
supposons que n = 1. Notons 1 I’élément neutre et z -y = u(z,y), 2~! = «(z) pour
tous z, y.

On peut supposer que la famille (D;);c; est close par intersection finie. Dans toute
extension élémentaire de M, si x,y, 2 € N;erD; alors

lL.x-1=1-z=2x

2.t x=x-271=1

3. (x =2

4 (z-y)z=a-(y-2)
Par compacité, il existe ig € I tel que dans toute extension élémentaire de M, si
x,y,z € D,, alors x,y, z vérifie 1, 2, 3 et 4. On peut supposer de plus que D;, est de
rang de Morley minimum et de degré minimum pour ce rang.

Soient « ce rang et ¢(z) € L(M) définissant D;,. Dans toute extension élémentaire

de M, si a satisfait ¢ et est de rang maximal o sur M, alors a € G car pour tout ¢ € I,
D et DN D; ont méme rang o et méme degré de Morley.
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Montrons que dans toute extension élémentaire N’ de M, le groupe G est égal a
I’ensemble

D:={beN N E ¢b) et ¢(x) Cy d(x-b)}

qui est définissable sur M par la proposition 4.31.

Soit b € D. Soit g (dans une extension élémentaire de \'), satisfaisant ¢, de rang «
sur M (donc g € G), et indépendant de b au-dessus de M. Alors g est de rang o sur Mb
et satisfait également ¢(x-b). De plus RM(g-b/M) > RM(g-b/Mb) = RM(g/Mb) = a.
Donc g - b satisfait ¢ et est de rang maximal «. Donc ¢g - b € (. Par conséquent
b=g'-(g-b)€eG (Icib=g "' (g-b) car g,g7',b € D).

Soit b € G. Vérifions alors que ¢(x) C, ¢(x - b). Soit g satisfaisant ¢ et de rang «
sur Mb. Alors g € G et donc g - b satisfait ¢. Par conséquent b € D. O



