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An isometric immersion of a Riemannian manifold into an Euclidean
space is a C! map f : (M™,g) — E? = (RY,(.,.)) such that f*(.,.) = g.
Such a map preserves the length of curves that is:

Length(f o~) = Length(y)

for every rectifiable curve v : [a,b] — M™. In a local coordinate system

. . ops . . 1
x = (21, ..., T ) the isometric condition gives rise to a system of s,,, = %

equations
- of . of 0 9
<i<j< Ir - Oz’ 0z, )

Thus generically, isometric maps are expected to exist —at least locally— if
the target space has dimension greater than s,,. In 1926, Janet [10] proved
that any analytic Riemannian surface (M2, g) admit local isometric analytic
immersions in E®2. Shortly after, this result was generalized by Cartan [5]
for analytic Riemannian manifold of dimension m: local isometric analytic
maps do exist if the dimension of the target Euclidean space is at least s,.
Thirty years after the result of Janet, J. Nash showed in an outstanding ar-
ticle [I5] that every C* Riemannian manifold (3 < k < +00) can be mapped
C* isometrically into an Euclidean space E¢ with ¢ = 3s,, + 4m if M™ is
compact and ¢ = (m—+1)(3s,,+4m) if not. This result was then improved by
Gromov [12] and Giinther [9] who proved that ¢ = max{s,,+2m, sy, +m+5}
is enough for the compact case.

Another amazing result of J. Nash is the discovery that, in a C' setting,
the barrier formed by the Janet dimension can be completely destroyed: in
the compact case, if a Riemannian manifold admits an immersion into some
E9, ¢ > m + 1, then it admits a C' isometric immersion into the same Eu-
clidean space (Nash [14] proved the case ¢ > m + 2 and Kuiper [13] the case



g =m+1). As a consequence every compact riemannian surface admits a
C' isometric immersion in E? but in general, for obvious curvature reasons,
the immersion can not be enhanced to be C2.

Beyond the breaking of the dimensional barrier, there is another phenomenon
which is utterly baffling in the Nash-Kuiper result: not only C' isometric
maps do exist but they are plentiful! In fact, there is a C'! isometric map
near every strictly short map. A map fo : (M™,g) — EY is called strictly
short if it strictly shortens distances, that is, if the difference g — fg(.,.) is
a metric. The Nash-Kuiper approach reveals that if fy is a strictly short
embedding, then for every e > 0 there exists a C! isometric embedding
f:(M™, g) — E? such that

If = follco <€

where ||.||co denotes the supremum norm over M (this manifold is assumed
to be compact for the simplicity of the presentation). For instance, for every
€ > 0, there is a C'! isometric embedding of the unit sphere inside a ball of
radius e.

Recently [4], we have converted the Nash-Kuiper proof into an algorithm,
using the Gromov convex integration theory ([12], [I6], [7]). We have imple-
mented this algorithm and produced numerical pictures of a C! isometric
embedding f., of the square flat torus E? /Z? inside E3 that is C close to a
strictly short embedding fy of E? /Z? as a torus of revolution. Our algorithm
generates a sequence of maps

fo, fii fi2, f13. fo1, fa2, fo3,

defined recursively that C' converges toward f.,. The geometry of the limit
map consists merely of the behavior of its tangent planes or, equivalently,
of the properties of its Gauss map ny, : E2/Z — S? ¢ E3. From the algo-
rithm, one can extract a formal expression of that Gauss map as an infinite
product of corrugation matrices applied to the initial Gauss map of fy. One
major obstacle to the understanding of n., lies in the inherent complexity
of the coefficients of these corrugation matrices. The main theorem of [4]
(the Corrugation Theorem) describes their asymptotic behaviour.

In this article, we propose to study the normal map of isometric maps result-
ing from a convex integration process in the simpler situation of isometric
immersions of the circle E/Z into E2. In this case, the isometric problem



in itself is totally trivial but the way the Nash-Kuiper process solves it,
produces a sequence of curves

anfl?fQ)

whose limit fo, has a non trivial geometry. Of course, in that one dimen-
sional setting, some of the difficulties inherent to the dimension two vanish.
In particular, if the initial curve fp : E/Z — E2 ~ C is parametrized with
constant speed and is radially symmetric (see the definition below) all com-
putations can be completely carried out and lead to an explicit formula for
the normal map n., of the limit curve f.

Theorem 1.— Let ng be the normal map of fr. We have

Vo € E/Z, mni(z) = e COS(Zﬂka)nk,l(a;)
where ay, €]0, 5[ is the amplitude of the loop used in the conver integration
to build fr_1 from fi and Ny € 2N* is the number of corrugations of fi
(precise definitions below). In particular, the normal map ns of foo has the
following expression

400
Ve e E/Z, ny(z) = (H el cos(27rka)) no(z).

k=1

The above expression of the normal map n. is reminiscent of a Riesz prod-
uct, that is a product of the form

+oo
h(z) = H(l + ay, cos(2m Nyx)).
k=1

It is a fact that an exponential growth of N, known as Hadamard’s lacunary
condition, results in a fractional Hausdorff dimension of the Riesz measureﬂ
p = h(z)dz [LI].

The normal map ne, can be thought of as a 1-periodic map from R to C. In
§3 we perform its Fourier series expansion. Its spectrum, whose structure is
very similar to the spectrum of a Riesz product, is obtained as a limit of an

et dimsuppe (resp. diminep) denotes the supremum (resp. the infimum) of the Haus-
dorff dimension of the Borel sets of positive p-measure. If d = dimgsuppt = dimingpe then
the measure p is said to have Hausdorff dimension d.



iterative process starting with the spectrum of the initial map ng. Precisely,
let
Ve € E/Z, ni(z)= Z ap(k)e? ™
PEL

denotes the Fourier series expansion of the normal map nj;. We derive from
the above theorem the following inductive formula (c¢f. Lemma 3):

Fourier series expansion of n;.— We have

VpeZ, apk)=> un(k)ap nn,(k—1)
neZ

where u, (k) = i" Jp ().

In the above formula, .J,, denotes the Bessel function of order n (see [I] or
[17):

1 ™
ar— Jy(a) = / cos(nu — asinu)du.
T Jo

The Fourier expansion of ng gives the key to understand the construction
of the spectrum (a,(k))pez from the spectrum (a,(k — 1))pez. The k-th
spectrum is obtained by collecting an infinite number of shifts of the previous
spectrum. The n-th shift is of amplitude nNy and weighted by w,(k) =
i"Jn(ag). Since
| n(a) L0

the weight is decreasing with n (see the figure of §3).

In the Nash-Kuiper process there is a infinite number of degrees of freedom in
the construction of the sequence (fx)ken. In particular, given any sequence

of positive numbers (Jx)ren increasing toward 1, the process produces a
sequence such that

e — fioillco < C%\/6), — 1.

Thus, if

Z v/ O — dp—1 < 00

the sequence (fy)ren is O converging toward a C! limit f... Moreover if

Z VO — 0p—1Np < +00



then f. is C? (see Proposition 5). Regarding the intermediary regularities,
we prove the following:

Theorem 2.— Assume that

Zm<+oo and Zme:—i—oo.
Let 0 <n<1andSy:=31 /o —0_1N. If
3 (6 — 8r1) 7S] < +oo
then foo is C11.

In the simplified one dimensional approach followed in this article, the se-
quence (Ng)ren can be chosen freely. This is no longer possible in the
general case: some constraints appear that force the Nis to be increasing.
The control of the growth of the INis is then the key to understand the
CY" regularity of the limit map. In the original proof of Nash, the chosen
sequence for &, was 1 — 2~ *+1D_ For such a choice, the numerical result we
have obtained for the square flat torus seems to suggest that the sequence
(Nk)ken is exponentially growing (see also the theoretical arguments of [6]).
This gives the motivation for the following corollary.

Corollary 3.— Let 0 <~y < 1 and 6 :== 1 — e Y5+D If there exists 3 > 0
such that
Vk € N, N, < NyePk

then fs is OV for any n > 0 such that

i
< —.
n 23
The question of the C''7 regularity of isometric maps resulting from the
Nash-Kuiper process is addressed in [2], [3] and [6]. The optimal C reg-
ularity of an isometric immersion of a Riemannian surface in E? is still an
open question.

1 The convex integration process for curves

The convex integration process.— Let fp : [0, 1] — R? be a C* map and
let
h: [0,1] — C*(R/Z,C)
x> h(z,.)



be a C*° family of loops such that

1
vz € [0,1], /Oh(x,s)ds:fé(x).

Let N € N* the any natural number. We define a new C*° map f : [0,1] —
R? by the formula

Ve e [0,1], f(x):= fo(0)+ /Ox h(s,{Ns})ds

where { N's} denotes the fractional part of Ns. We call such a formula giving
a new map f from the data of fy and h a convex integration. We sometimes
write

[=1C(fo,h,N).

The new map f has a derivative whose image obviously lies inside the image
of h since
Vo €[0.1), f(z)= h(z,{Na}).

Moreover, f remains C° close to fy. Indeed, it can be shown that

1
|f = follco = O <N>

(see [4] for instance).

Curves with given speeds.— Let fj : [0,1] — E? ~ C be a regular curve
(Vz € [0,1], fj(z) #0) and let 7 : [0,1] — R% be any C*° map such that

Ve €[0,1], r(z)> | fo(@)l.
Let h defined by
h(zx,s) :=r(z) (cos(a(zr) cos 2ms)to(x) + sin(a(z) cos 2ws)ng(x))

with tg := ”}c‘)”, ng := itp and a(z) € |0, x[ is such that

olo

r(@)Jo(a(z)) = [ fo(x)]

where Jy denotes the Bessel function of the first kind and of order 0 and
k =~ 2.4 denotes the first zero of Jy. Since the Bessel function Jy is decreasing



on the interval [0, x] and Jy(0) = 1, there is a unique «(z) that solves the
above implicite equation. Note that

1
/0 h(zx,s)ds = r(z)Jo(a(x))to(x)

therefore the above implicit condition on «a(x) implies that the average of
h(z,.) is fj(z). The map f obtained by convex integration from fy and h
has speed || f/|| equal to the given function r and is arbitrarily C° close to fo.

Closed curves with given speeds.— If fj is defined over E/Z rather than
[0,1] the curve f obtained from fy and h by convex integration is not closed
in general. This defect can be easily corrected by the following modification
of the convex integration formula:

1

Ve e [0,1], f(z):= fo(0)+ /Off h(s,{Ns})ds — x/o h(s,{Ns})ds.

For short we write f := IC (fo,h, N). The C° closeness implies that

[ o] -0 (1)

so that the correction can be made arbitrarily small. We still have ||f —
follco = O (%) but now || f'|| is only approximately equal to 7(x), precisely

1
Ve cB/Z, |f(2)] = Hh(ac, (Ve = [ s, (vepds

and therefore, for all z € E/Z, we have ||| f'(z)|| — r(z)| = O (%) -

Nash and Kuiper process.— In the spirit of the Nash and Kuiper proof,
the way to obtain a map f : E/Z — E? ~ C with speed the given function
r is to produce a sequence of closed curves (fx)ren+ by iteratively applying
the modifying convex integration formula so that to reduce step by step the
isometric default r — || f]|-

Let (0x)ren+ be a sequence of increasing positive number converging to-
ward 1, we set

Vk € N* Vo € E/Z, ri(x) = | fo(@)” + o, (r*(2) — I fo(2)]?) -



Note that for every x € E/Z, the sequence ri(z) is increasing toward r(z).
We define fi to be IC(fx—1, hg, Ni) with

hi(z,s) == rk(x)em’“(z) cos2msg, 1 (x)
where oy (z) = JO_1 <W> and tg_1 is the normalized derivative of fj_1.
Each fi has a speed which is approximately r:

@) - ()| =0 (;k) |

Since the sequence ry(z) is strictly increasing for every « € E/Z, the number
Ny can be chosen large enough such that

Ve e B/Z, ripp1(x) > || fu(2)].

This is crucial to define f;; as fé’(fk, hi+1, Ngt1). If the sequence (Jx)gen-

is chosen so that
Z 7/ O — 0p_1 < +00

and if (Vg )ren-+ is rapidly diverging then the sequence fj, := I:E’(fk,l, hi, Ni)
is C! converging toward a C! limit f., with speed ||f., || = r. This is proven
further in the text in the particular case of closed curves with constant speed.
The general case, slightly more technical in nature, is left to the reader.

Closed curves with constant speed.— From now on, in order to get the
most pleasant computations we consider the simplified case where » = 1 and
fo:E/Z — E? is a C* map such that:

e (Cond 1) it is of constant speed 7o := || f{|l <1
e (Cond 2) it is radially symmetric, that is: f(z + %) = — f}(=).

In all what follows, we will also assume that the Nash-Kuiper sequence of
C* maps derived from fy:

fo = IC(fy—1,hi, Ni), k€N

is such that hg(z,s) = retok(®) cos2msg, 1(z) and Nj € 2N*. Note that
(Cond 1) implies that every function ry, = /73 + 0(1 — 73) is constant.



Proposition 1.— For every k € N*| fi. is of constant speed ry, and radially
symmetric. In particular,

fe = IC(fr—1, b, Ni).

The functions oy, are also constant and equal to JO_1 (T’;:)

Proof.— By induction. Assume that fi_1 satisfies (Cond 1) and (Cond 2).
In particular fi_; is of constant speed rp_; and thus the function o =

JO_1 (T’;—;l> is constant. Since N € 2N*, we have

u( + 5, INule + )} = ~hae, {Naa})

and consequently
1
/ he(s, {Ns})ds = 0.
0

It ensues that .
IC(fr—1,hi, Ni) = IC(fr—1, hi, Ni)

and therefore fi, is of constant speed || f,.(z)|| = ||hx(z, {Nz})|| = % It is
also radially symmetric since fi(z) = h(z, {Npz}). a.

The convex integration process applied to circle (left fo, center fi, right fs)

2 (' convergence

It turns out that the sequence (0j)reny mainly determines the sequence
(k) ken-



Lemma 1 (Amplitude Lemma).— We have

Q. ~ 2(1 — T%)\/(Sk — 5k—1

where ~ denotes the equivalence of sequences. We also have

ap < i 2(1 — r%)vék — 5k71-

To

Proof.— By definition oy, = Jy ' (™=

kl ). Recall that the Taylor expansion
of Jo(«) up to order 2 is

2
wzl—%—l—o(az).

Let y =1 —w and X = a?, we have y = %Jro(X) thus X = 4y + o(y) and
so X ~ 4y. We finally get

a~2v/1—w and ak~21/1—rk_1.
Tk

Since 73 + (1 — r3) = 1, we have

=12 +5(1—13) =1+ (6, — 1)(1 —rd)

SO
rh— iy = (6k — 0p—1)(1 = 13)

and )
L Tk Ok = ) (1~ 3)

7 T i-(-sga—m) ~ %D,

In an other hand
2
T The Th_ Th_
1- ’;21:(1— ’;1> <1+ - 1>~2<1— i 1>.
% k Tk Tk

(1 - Tkl) ~ 1(5k — k1) (1 —19).

Tk 2

TEe_—
ap~2,/1— ’;kl ~\/2(1 = 12)\ /B — Op_1.

10

Thus

and




The Taylor expansion of Jy up to order 4 shows that

Oé2 OZ4 042 2
<1-2 4 (-2
vElT T ( 8)

(because it is alternating) and hence

a%§8<1— T’“).
Tk

Thus
o} < = (i~ Vi)
VT q
< A
N e AL
< 8 (7“,% — 7",%71)
VTE(VTE + /Te—1) (ke + 1)
2
< S (-ria)
7o
since g < r_1 < ri. We deduce
1 1
ap < 208 —r2 ) = — 2(1 — 1)/, — Or_1.
0 0

Let (Ag)ren+ be the sequence of functions defined by

k
Ve e E/Z, Ap(z):= Zal cos(2m Niz).
1=1

Lemma 2.— For every x € E/Z, we have:

fi@) = 4@ gt ),

o

Proof.— Let ng_; :=ity_;. From

fr(z) = rg(cos(ay cos(2mNyx))tg_1(z) + sin(ay cos(2m Nyz))ny_1(z))

— Tkeiakcos(QﬂNkm) 1 fl/g—l(x)
Tk—1

we deduce by induction : fj(z) = eiAk(x)%f(’)(x).

11



Proposition 2.— If > \/0x — 0x—1 < +00 then

i) the sequence (Ag)ken s normally converging and Aso := limg_, 4 oo Ak
18 continuous.

ii) the sequence (fx)ren+ is C1 converging toward foo = limp_s o0 f&
and

o0

VeeR/Z, fl(z)= =@ L),
To

Proof.— From the Amplitude Lemma we deduce that

Zak < 400

thus the sequence (Ag)ren is normally converging and

Ay = lim A
JHm Ay

—+00

is continuous. Moreover, from the relation

fi@) = @ I gt

ro
we also deduce that ( f,’,c) ken 1S normally converging toward
’ 1
eono (z) *f(/) (l‘)
A0

Since (fx(0))ken obviously converges, we obtain that the sequence (fi)ken
is C'! converging toward fo := limy_ 400 fi. O

Corollary 1.— Let v > 0 and 0y, := 1 —e Y51 Then sequence (6 )ren- is
increasing toward 1 and /0 — 0p_1 ~ \/%e_%k. In particular, fs is CL.
3 The normal map

From now on, we assume

Z 7/ O — 0p_1 < +00

so that the sequence (fi)ren is C! converging toward its limit f... The
following theorem is a straightforward consequence of the results of the pre-
ceding section:

12



Theorem 1.— Let ng be the normal map of fr. We have
Vo € B/Z, ny(z) = e osCmNez)py, o (2)
In particular, the normal map Ny of foo has the following expression

Ve € B/Z, mne(z) = =@ng(z).

We deduce from this theorem the following result about Fourier expansion
of ng.

Lemma 3 (Fourier expansion of ny).— For all k € N we denote by
Ve € E/Z, ng(x)= Zap(k)ezi”px
PEZL
the Fourier expansion of ng. We have
VpeZ, apk)="> un(k)apnn,(k—1)
nez

where uy (k) = i"J, (o) (Jn denotes the Bessel function of order n).

Proof.— From the Jacobi-Anger identity

+oo
eizcos@ _ Z ian(z)einG
n=—oo
we deduce
+00 +oo
eiock cos(2nNpz) _ Z ian(ak)einnka _ Z un(k)GinnNka:'
n=—00 n=—00

Since the Fourier coefficients of a product of two fonctions are given by the
discrete convolution product of their coeflicients, the product

ny, (IE) — eiozk cos(2m Nix) ny,_ 1 (x)

can be written

00 ‘ 00 '
ni(z) = (Z un<k>e2”“NM> ( > ap<k—1>e2”m>

n—=—00 pP=—00
+o0o +o00 '

= ) (Z un<k>ap-nNk<k—1>>
p=—00 \N=—00

13



Therefore

+oo
ap(k) = Z Un (k) ap—nn, (k = 1). O

n=—oo

|ap(0)|

lap(1)|

lap(2)]

lap(3)|

23 b 0 b 2p3 p

A schematic picture of the various spectra (ay(k))pez with Ny = b.

Remark.— The analogy with Riesz products suggests that the Hausdorff
dimension of the graph of the normal map ny, could be fractional. Note
that the relevant part of this map is the 1-periodic function

“+o0

Rz Ax(x) = Zak cos(2rNiz) € R.

k=1
In the simple case where a; = a* and N, = b* with 0 < a < 1 < b, the
map Ay is a Weiestrass functiorﬂ If ab > 1, it is known that its graph has
a fractional Hausdorff dimension. The exact value of this dimension is still
an open question. It is believed to be equal to 2 + ¢ (see [8]).

4 C' regularity

Proposition 3.— We have

/i — fr_1lloo < Cter/ok — 61

2Cf Lemma 1 and the lines above Corollary 3 in the introductory part of this article
for a motivation for such choice for ay and Ny.

14



with Cter = \/T(1 —13).
Proof.— For every point z € E/Z, we have

1% = frall® = WP + 1 fa P = 20L&l ]| cos(aug cos 2m Nar)

since oy, cos 2m Nz is the angle between f, (x) and f;_,(z). An upper bound
for this angle is ay, = J; ' (w) where w = ri_y /7 € ]0, 1] since

me = lfe (@)l and ey = | fi (@)

Recall that from the Amplitude Lemma we have the following inequality

2
A

> < 4(1 = Vw).

By using the upper bound «j, we obtain

I fr. — f,;,1|]2 < ri4r? | —2rp_1rRcosag
< rz — 7”1%71 + 2rp_q1(rp—1 — rE cOS ).
Since
2
"
cosap > 1——=
2
we have
2 ai
Th—1(rk—1 — TR cOsag) < Ti_q — TRTE—1 + Th-1Th
TE_
< PRy = TRTho1 ATy (1 - ’; 1)
k
< le—l + 3rp_1rr — ATk 1/TETk—1
< 7“,%_1 + 37",% — 47 _q4 /7",%_1 ( since 151 < 7TE)
< 3(77% - rl?:—1)-
Therefore
1% = FealP* < 7 (I = )
Now /2 o2 2 2
[fell® = [ frmall® = 71k =7k
= (0 — Op—1)(1 — r%).
Finally

i — fr_1llco < Ctei/dx — 01

15



with Cte; = \/7(1 —r3). O

For every k € N, we denote by Mjy(g) the supremum over E/Z of the k-th
derivative ¢*) of g : E/Z — C (if k = 0, it is understood that ¢(®) = g)
and we define ||g||-+ to be the sum My(g) + ... + Mg(g).

Corollary 2.— We have

| fe — fr—illcr < 2Ctern/Ok — dk—1
with Ctey = /7(1 —rd).

Proof.— From the theorem we deduce by a mere integration

| fe = fr—1llco < Cter/6k — dk—1

thus the result since

Ife = fo—iller = Ifx = fro=1llco + Mi(fr — fr—1)-

Proposition 4.— For every x € E/Z, we have
() = (—2map Ny sin 2 Ny + 77—y scaly_q () iret@ ST Ney, ) (1)

where scaly, denotes the signed curvature of fi. Moreover

k
ripscaly(z) = roscalp(z) — 27 Z ay Ny sin(2m Njz).
=1

Proof.— We have

) .
lgl(x) — % (T,kezak cos Qﬂkatk,1($))
= ; (rk(cos(oy, cos 2 N )t—1(z) + sin(oy, cos 2r Nyz)ng_; (z))
x
= TV"k ({% (cos(au, cos 2 Ni) fr._1 () + sin(ay, cos 2 Ny )i fi._ 1 ()
k—1

= —2mayNg sin(27rka)Tkei°‘k cos2rNgzg (z)

TR (cos(ay, cos 2 Nyx) fil_1 (x) + sin(ay, cos 2 Ny )i fil_ ()
Tk—1

Since fr_1 is of constant speed r,_1 we have

ro1 (@) = rp—1scalp—1 (2)ify o (2)

16



therefore

fi(z) = —2i7roszksin(QWNka;)TkemkCOS%N’“Ztk_l(az)
+rprp_15caly_q (x)ielr o2 Nk, (1)

Finally,
fi(z) = (—2may Ny, sin 2 N + 11 5caly_1(z)) irj et cos 2”N’“mtk_1(a:).

Because fj, is of constant arc length we also have

iax cos 2Ny, (

fi(x) = rpscaly(z)if(z) = rrscaly(x)irge x).

From this we deduce
rpscaly(x) = rp_1scaly_1(x) — 2may Ny sin(27w Ny x)

and by induction

k
ripscaly(z) = roscalp(z) — 27 Z ay Ny sin(2m Njz).
=1

Proposition 5.— If ), -y« \/0r — 0p—1Ng < +00 then fuo is C?.

Proof.— Since we already know that the sequence (fi)reny C' converges, it
is enough to prove that (f}/), oy is a Cauchy sequence. From

17 (z) = rgscalg(x)ifi(z)

we deduce
e (@) = fil 1 (@)lco < |lrescaly(2) fi(x) — re—1scaly—1(x) fr_1 (x) | co
< re—rscaly—i(2) fr(x) — rr—1scaly—1(x) fr_1 (2)l|co
+lrescaly(z) — rp—1scalp—1(x)||| fr(2)||co
< rp-alscaly—1 (@) fr (@) — fr_1(2)]lco

+r|rpscaly(x) — re—1scalg_q1(x)|.

Since

k
rpscaly(x) = roscaly(x) — 27 Z oy Ny sin(2w Nyz)
=1

17



we have
Iriscaly(x) — rg—1scalp—1(x)| < 2mag N

and
ri|scal(z)| < rolscalo(x)| + 27 Z a;N;.
lEN*

In particular the 7 |scaly(x)| are uniformly bounded by

M := ||roscalo ()|l co + 27 Y N
keN*

Note that M < +oo. Indeed oy, ~ 1/2(1 — r8)\/0k — Ok_1 therefore

Z O — 01N < +o0o — Z ap Ny, < +00.

keN* keN*

We deduce

I1£7 (@) = fila(@)lleo < M fi(2) = fr1(@)lloo + 2man Ny

Let p < ¢, we thus have

17g (@) = f (@)l co

IN

q q
MZ \ O — Op—1 + QWZO%Nk
k=p k=p
) 00
MZ O — Op_1+ 27TZaka.
k=p k=p

IN

Hence ( f,g) pen 1S a Cauchy sequence.
Theorem 2.— Assume that
Zm<+oo and Z\/m]\fk:—i—oo.
Let 0 <n<1andSy:=>1 /o — 01N, If
3 (6 — Gro1) 7S] < +oo

then foo is CH1.

Proof.— Let 0 < n < 1. We are going to use the interpolation inequality

1—
1fllcra < ClFll a1 F 11
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to show that (||fx — fr—1llc1.n)ken= is a Cauchy sequence. From the above

sections, we have

| fe — fr—illcr < 2Ctern/6k — dk—1

and

Ma(fx — fr-1) My (fr) + Ma(fr—1)
Mo (rg scal) My (fr) + Mo(rg—1 scalp—1)Mi(fx)
My (scaly) + Mo(scalg—1)
k
2My(scalp) + 4w Z oy N;.

=1

VAVANYAN

IN

From the Amplitude Lemma we deduce

T/ 77"2
M(fr = fk—1) < 2Mo(scalp) + #&10) Sy VO — G,
< 2My(scalp) + dry2U-ro) ”2:01_7“3)5;3.

So

47/2(1 — 72
i firllex < 2Ctery/5, 8o + 2Mo(sealp) + V21 g,

ro
Since limy_, 4 oo Sk = +00, for k large enough we have
I fe — fe—1llc2 < CteaSk.
for some constant Ctes. We now have
1fie = Fiall gl = Froalle < Ctes(0 — 0p—1) =" S}

with Ctes = (2Cte;)!~"1Cte].

O

Corollary 3.— Let 0 <~y < 1 and 6 :== 1 — e Y D If there exists B > 0

such that
Vk € N, N, < NyePk

then fso is CY for any n > 0 such that

N
<55
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Proof.— We have
8k — Op_1 = dpe Tk

thus
(B=3%)(k+1)

k k
1—
Sy = Z \/le < \/%NO Ze(,ﬁ*%)l < \/%N06ﬁ7% 1@_ 6;7%
=1 Py

Suppose first that g > g We then have :

Sk < C’te4e(5_%)k.

Finally
1— 1—
(O — Op_1) 2 S]l < Ctese™ " 2 kenlB=2)k,

Now
if and only if

Therefore, under that condition
1—n n
E (5k — 5k71) 2 Sk < 400

hence the corollary in the case where § > % We left to the reader the easier

case B < % O
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