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Convex Integration Theory is a powerful tool for solving differential re-
lations. It was introduced by M. Gromov in his thesis dissertation in 1969,
then published in an article [2] in 1973 and eventually generalized in a book
[3] in 1986. Nevertheless, reading Gromov is often a challenge since im-
portant details are not provided explicitely. Fortunately, there is a good
reference that leaves no details in the shadow : the Spring’s book [5]. My un-
derstanding of Convex Integration Theory primarily comes from this book.
I owe it much in this presentation.

1 Two introductory examples

1.1 A first example

Let us consider the following elementary problem.

Problem 1.— Let
fo: [0,1] — R3
t  +— (0,0,¢)

be the linear application mapping the segment [0,1] vertically in R3. The
1
problem is to find f : [0,1] <> R3 such that:

i) Vtel0,1], |cos(f'(t),e3)] <e

i) |If = follco <9
where € > 0 and § > 0 are given.

Solution.— At a first glance, the problem seems hopeless since condition 4
says that the slope is small and then the image has to move far away from
the segment before reaching the desired height. After a few seconds of extra
thinking, the solution occurs. It is good enough to move along an helix



spiralling around the vertical axis:

f: [0,1] — R3
dcos2m Nt
t — 0sin 27Nt

t

where N € N* is the number of spirals. We have

f! 1
< / ,€3> = :
(KAl V1 + 472N252

Therefore, if NV is large enough, f fulfills conditions ¢ and ii.

£, 3 f
ep /\
61 —

The image of fy is the green vertical segment, the solution f is the red helix.

Rephrasing.— The above problem was pretty easy, it will become very
informative with a rephrasing of the two conditions. Condition (i) means
that the image of f’ lies inside the cone:

R={ve®\ (0] ‘ﬁ%ref”) <uio).

By extension, that cone R is called the differential relation of our problem.

The cone R is pictured in blue, the image of f' is the red circle and the constant
image of f{ the green point outside the cone.



The CP-closeness required in the second condition, is a consequence of a
geometric property of the derivative of f. Indeed, the image of f’ in that
cone is a circle whose center is the constant image of f). Therefore, the
average of f’ for each spiral of f is f{(¢):

1

m " f’(u)du = f(l)(t)

where I, = [%,k—;\’,l] the preimage of one spiral by f. Therefore, when

integrating, the two resulting maps are closed together.

1.2 A more general example

Problem.— Let R C R?® be a path-connected subset (=our differential
1
relation) and fj : [0, 1] CLR3bea map such

vt €[0,1], fi(t) € IntConv(R)

where IntConv(R) denotes the interior of the convex hull of R. The prob-
lem is to find f : [0, 1] % R3 such that :

i) vtelo,1], flt)eR

i) |If = folleo <4
with § > 0 given.

Solution.— From the hypothesis, the image of f lies in the convex hull of
R. The idea is to build f’ with an image lying inside R and such that, on
average, it looks like the derivative of fy. One way to do that is to choose a
the f’-image to resemble to a kind of spring. In the spring, each arc as the
same effect, on average, as a small piece of the image of the initial map f}.
So, when integrating, the resulting map will be close to the initial map. As
before, we will improve the closeness of f to fy by increasing the number of
spirals.



The green bended spaghetti' pictures the image of f}, the half of a spring in
rep/pink is the chosen image for f’.

To formally construct a solution f of the problem, it is enough to choose a
continuous family of loops of R:

h: [0,1] — C°R/Z,R)
u hy

such that
vue 01, [ huo)ds = fiw)
[0,1]

i.e the average of the loop hy, is f{(u).

K h

/

u

Jo(u)

u

The image of the loop h,. In that picture, this image is an arc. This loop is a

round-trip starting at one of the endpoint of the arc and arriving at the same
endpoint.

Then, the map f is extracted from that familly of loops by a simple diagonal

process
vt e [0,1], f/(t) = h({Nt})

where N € N* and {Nu} is the fractional part of Nt.

1Spaghetto ?



f(u):=hy({Nuj)

The image of f'.

Eventually, it remains to integrate to obtain a solution to our problem:

f(t) == fo(0) +/0 hy({Nu})du.

We say that f is obtained from fy by a convex integration process. We
denote f := IC(fo,h,N).

2 Finding the loops

In the above problem, we were wilfully blind to the question of the existence
of the family of loops (hu)ueo,1) needed to build the solution. We now deal
with that issue.

Notation.— Let A C R" and a € A. We denote by IntConv(A, a) the in-
terior of the convex hull of the connected component of A to which a belongs.

Definition.— A (continuous) loop g : [0,1] — R™, ¢(0) = g(1), strictly
surrounds z € R™ if
IntConv(g([0,1])) D {z}.

Fundamental Lemma.— Let R C R" be an open set, 0 € R and z €

0
IntConv(R, o) There exists a loop h : [0,1] Y R with base point o that
strictly surrounds z and such that:

- /0 h(s)ds.



Proof.— Since z € IntConv(R, o), there exists a n-simplex A whose ver-
tices o, ..., yn belong to R and such that z lies in the interior of A. Therefore,

there also exist
(@0, -y ) €10, 1[ "

n n
such that Z ap=1and z = Z axyk. Every loop ¢ : [0,1] — R with base

k=0 k=0
point o and passing through vo, ..., y, satisfies IntConv(g([0,1]) D {2z} i. e.

g surrounds z.

In general

z# /01 g(s)ds.

Let so, ..., s, be the times for which g(s;) = yx and let fi : [0,1] — R% be
such that :

i) fx 1< m sur [0, 1]\ [sg — 12, 85 + M2,

0
with 11, 172 two small positive numbers. We set:
1
= [ o hls
0
The number € > 0 being given, we can choose 1y, 72 such that:

Vk € {0,...,n}, |z —g(sp)] < e

Since R in open and z € Int A, for € small enough we have

z € IntConv(zg, ..., zn).



n
Therefore, there exist (pg, ..., pn) € ]0,1[ "1 such that Zpk =1 and:

k=0
z = > prak = Zpk/ $)Jils)ds
k=0
1 n 1 ,
-/ o sl = | aee s

where we have set N
= prfuls)
k=0

and
¢ [0,1]

1] — [0,1]
S
s — / o(u)du
0
We have ¢'(s) > 0, p(0) = 0, ¢(1) = 1. Thus ¢ is a strictly increasing

diffeomorphism of [0, 1]. Let us employ the change of coordinates s = ¢~ 1(t),
that is t = p(s), we have

dt = ¢'(s)ds
therefore:
1 1
= [t o)s= [ gyl
0 0
Thus h = g o ¢! is our desired loop. g

Remark.— A priori h € Q,(R), but it is obvious that we can choose h
among "round-trips” i.e the space:

QIE(R) = {h € Qu(R) | Vs € [0,1] h(s) =h(1—s)}.

The point is that the above space is contractible. For every u € [0,1] we
then denote by h,, : [0,1] — R the map defined by

Ul -
3)-
This homotopy induces a deformation retract of Q4%(R) to the constant
map
g: [0,1] — R
S — 0.



3 (’-density

Let R C R™ be a arc-connected subset, fo € C*°(I,R"™) be a map such that
1,(I) € IntConv(R). From the C*° parametric version of the Fundamental
Lemma there exists a C*°-map h : I x E/Z — R such that

1
vtel, fit) :/0 h(t,u)du.

We set .
wel,  F(t) = fo(0) + / h(s, Ns)ds
0

with N € N*.

Definition.— We say that F' € C°°(I,R") is obtained from fy by an convex
integration process.

Obviously F'(t) = h(t,Nt) € R and thus F is a solution of the differential
relation R. One crucial property of the convex integration process is that

the solution F' can be made arbitrarily close to the initial map fjy..

Proposition (C’-density).— We have
1 oh
IF = olloo < 5 (20hlloo + 157 oo

where || gllco = sup,ep ||9(p)|lgs denotes the C° norm of a function g : D —
E3.



Proof.— Let t € [0,1]. We put n := [Nt] (the integer part of Nt) and set
I; —[i m] for 0 <j<n—1and I, = [F,t]. We write

n

0) = ZSJ- and fo(t) — fo(0) = ZSJ
5=0

J=0

with S; = fI]- h(v,Nv)dv and s; := fI fo x,u)dudz. By the change of
variables u = Nv — j, we get for each j € [0,n — 1]

1 (Y w4+
sj:N/OMN u) //

It ensues that

u)dudz.

155 = 85l < gl orllcn

The proposition then follows from the obvious inequalities
2 n
150 = snlles < ko and [[F() = fot)lles < > 11S; = sjllgs-

[
Remark.— Even if fp(0) = fo(1), the map F obtained by a convex inte-
gration from fy does not satisfy F'(0) = F'(1) in general. This can be easily
corrected by defining a new map f with the formula

vte[0,1] , f(t)=F(t) —t(F(1) — F(0)).

The following proposition shows that the C°-density property still holds for
f and, provided N is large enough, that the map f is still a solution of R.

Proposition.— We have
2 oh
I£ = olle < 2 (2Wlen + 1 3510
and f'(R/Z) C R

Proof.— The first inequality is obvious. Indeed, from

F(1) = F(0) = F(1) = fo(0) = F(1) = fo(1)



we deduce

1£(#) = foIl < [E®) = fo@Il + [1F(1) = fo(DI] < 2/|F = follco-

Derivating f we have f'(t) = F'(t) — (F(1) — F(0)) thus

1

I = Flew < IF = foloo =0 () -

Since R is open, if N is large enough f'(R/Z) C R. O
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