Talk I: One dimensional Convex Integration

Vincent Borrelli

June 30, 2013

Convex Integration Theory is a powerful tool for solving differential relations. It was introduced by M. Gromov in his thesis dissertation in 1969, then published in an article [2] in 1973 and eventually generalized in a book [3] in 1986. Nevertheless, reading Gromov is often a challenge since important details are not provided explicitely. Fortunately, there is a good reference that leaves no details in the shadow : the Spring's book [5]. My understanding of Convex Integration Theory primarily comes from this book. I owe it much in this presentation.

1 Two introductory examples

1.1 A first example

Let us consider the following elementary problem.
Problem 1.- Let

$$
\begin{aligned}
f_{0}:[0,1] & \longrightarrow \mathbb{R}^{3} \\
t & \longmapsto(0,0, t)
\end{aligned}
$$

be the linear application mapping the segment $[0,1]$ vertically in \mathbb{R}^{3}. The problem is to find $f:[0,1] \xrightarrow{C^{1}} \mathbb{R}^{3}$ such that:
i) $\forall t \in[0,1], \quad\left|\cos \left(f^{\prime}(t), e_{3}\right)\right|<\epsilon$
ii) $\left\|f-f_{0}\right\|_{C^{0}}<\delta$
where $\epsilon>0$ and $\delta>0$ are given.

Solution.- At a first glance, the problem seems hopeless since condition i says that the slope is small and then the image has to move far away from the segment before reaching the desired height. After a few seconds of extra thinking, the solution occurs. It is good enough to move along an helix
spiralling around the vertical axis:

$$
\begin{aligned}
f:[0,1] & \longrightarrow \mathbb{R}^{3} \\
t & \longmapsto\left\{\begin{array}{l}
\delta \cos 2 \pi N t \\
\delta \sin 2 \pi N t \\
t
\end{array}\right.
\end{aligned}
$$

where $N \in \mathbb{N}^{*}$ is the number of spirals. We have

$$
\left\langle\frac{f^{\prime}}{\left\|f^{\prime}\right\|}, e_{3}\right\rangle=\frac{1}{\sqrt{1+4 \pi^{2} N^{2} \delta^{2}}} .
$$

Therefore, if N is large enough, f fulfills conditions i and $i i$.

The image of f_{0} is the green vertical segment, the solution f is the red helix.
Rephrasing.- The above problem was pretty easy, it will become very informative with a rephrasing of the two conditions. Condition (i) means that the image of f^{\prime} lies inside the cone:

$$
\mathcal{R}=\left\{\left.v \in \mathbb{R}^{3} \backslash\{O\}| |\left\langle\frac{v}{|v|}, e_{3}\right\rangle \right\rvert\,<\epsilon\right\} \cup\{O\} .
$$

By extension, that cone \mathcal{R} is called the differential relation of our problem.

The cone \mathcal{R} is pictured in blue, the image of f^{\prime} is the red circle and the constant image of f_{0}^{\prime} the green point outside the cone.

The C^{0}-closeness required in the second condition, is a consequence of a geometric property of the derivative of f. Indeed, the image of f^{\prime} in that cone is a circle whose center is the constant image of f_{0}^{\prime}. Therefore, the average of f^{\prime} for each spiral of f is $f_{0}^{\prime}(t)$:

$$
\frac{1}{\operatorname{Length}\left(I_{k}\right)} \int_{I_{k}} f^{\prime}(u) d u=f_{0}^{\prime}(t)
$$

where $I_{k}=\left[\frac{k}{N}, \frac{k+1}{N}\right]$ the preimage of one spiral by f. Therefore, when integrating, the two resulting maps are closed together.

1.2 A more general example

Problem.- Let $\mathcal{R} \subset \mathbb{R}^{3}$ be a path-connected subset (=our differential relation) and $f_{0}:[0,1] \xrightarrow{C^{1}} \mathbb{R}^{3}$ be a map such

$$
\forall t \in[0,1], \quad f_{0}^{\prime}(t) \in \operatorname{Int} \operatorname{Conv}(\mathcal{R})
$$

where $\operatorname{Int} \operatorname{Conv}(\mathcal{R})$ denotes the interior of the convex hull of \mathcal{R}. The problem is to find $f:[0,1] \xrightarrow{C^{1}} \mathbb{R}^{3}$ such that :
i) $\forall t \in[0,1], \quad f^{\prime}(t) \in \mathcal{R}$
ii) $\left\|f-f_{0}\right\|_{C^{0}}<\delta$
with $\delta>0$ given.

Solution.- From the hypothesis, the image of f_{0}^{\prime} lies in the convex hull of \mathcal{R}. The idea is to build f^{\prime} with an image lying inside \mathcal{R} and such that, on average, it looks like the derivative of f_{0}. One way to do that is to choose a the f^{\prime}-image to resemble to a kind of spring. In the spring, each arc as the same effect, on average, as a small piece of the image of the initial map f_{0}^{\prime}. So, when integrating, the resulting map will be close to the initial map. As before, we will improve the closeness of f to f_{0} by increasing the number of spirals.

The green bended spaghetti ${ }^{1}$ pictures the image of f_{0}^{\prime}, the half of a spring in rep/pink is the chosen image for f^{\prime}.

To formally construct a solution f of the problem, it is enough to choose a continuous family of loops of \mathcal{R} :

$$
\begin{array}{ccc}
h:[0,1] & \longrightarrow & C^{0}(\mathbb{R} / \mathbb{Z}, \mathcal{R}) \\
u & \longmapsto & h_{u}
\end{array}
$$

such that

$$
\forall u \in[0,1], \quad \int_{[0,1]} h_{u}(s) d s=f_{0}^{\prime}(u)
$$

i.e the average of the loop h_{u} is $f_{0}^{\prime}(u)$.

The image of the loop h_{u}. In that picture, this image is an arc. This loop is a round-trip starting at one of the endpoint of the arc and arriving at the same endpoint.

Then, the map f^{\prime} is extracted from that familly of loops by a simple diagonal process

$$
\forall t \in[0,1], \quad f^{\prime}(t):=h_{t}(\{N t\})
$$

where $N \in \mathbb{N}^{*}$ and $\{N u\}$ is the fractional part of $N t$.

[^0]

The image of f^{\prime}.
Eventually, it remains to integrate to obtain a solution to our problem:

$$
f(t):=f_{0}(0)+\int_{0}^{t} h_{u}(\{N u\}) d u .
$$

We say that f is obtained from f_{0} by a convex integration process. We denote $f:=I C\left(f_{0}, h, N\right)$.

2 Finding the loops

In the above problem, we were wilfully blind to the question of the existence of the family of loops $\left(h_{u}\right)_{u \in[0,1]}$ needed to build the solution. We now deal with that issue.

Notation.- Let $A \subset \mathbb{R}^{n}$ and $a \in A$. We denote by $\operatorname{IntConv}(A, a)$ the interior of the convex hull of the connected component of A to which a belongs.

Definition.- A (continuous) loop $g:[0,1] \rightarrow \mathbb{R}^{n}, g(0)=g(1)$, strictly surrounds $z \in \mathbb{R}^{n}$ if

$$
\operatorname{IntConv}(g([0,1])) \supset\{z\} .
$$

Fundamental Lemma.- Let $\mathcal{R} \subset \mathbb{R}^{n}$ be an open set, $\sigma \in \mathcal{R}$ and $z \in$ $\operatorname{IntConv}(\mathcal{R}, \sigma)$ There exists a loop $h:[0,1] \xrightarrow{C^{0}} \mathcal{R}$ with base point σ that strictly surrounds z and such that:

$$
z=\int_{0}^{1} h(s) d s
$$

Proof.- Since $z \in \operatorname{Int} \operatorname{Conv}(\mathcal{R}, \sigma)$, there exists a n-simplex Δ whose vertices y_{0}, \ldots, y_{n} belong to \mathcal{R} and such that z lies in the interior of Δ. Therefore, there also exist

$$
\left.\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in\right] 0,1\left[^{n+1}\right.
$$

such that $\sum_{k=0}^{n} \alpha_{k}=1$ and $z=\sum_{k=0}^{n} \alpha_{k} y_{k}$. Every loop $g:[0,1] \rightarrow \mathcal{R}$ with base point σ and passing through y_{0}, \ldots, y_{n} satisfies $\operatorname{IntConv}(g([0,1]) \supset\{z\}$ i. e. g surrounds z.

In general

$$
z \neq \int_{0}^{1} g(s) d s
$$

Let s_{0}, \ldots, s_{n} be the times for which $g\left(s_{k}\right)=y_{k}$ and let $f_{k}:[0,1] \rightarrow \mathbb{R}_{+}^{*}$ be such that:
i) $f_{k}<\eta_{1}$ sur $[0,1] \backslash\left[s_{k}-\eta_{2}, s_{k}+\eta_{2}\right]$,
ii) $\int_{0}^{1} f_{k}=1$,
with η_{1}, η_{2} two small positive numbers. We set:

$$
z_{k}:=\int_{0}^{1} g(s) f_{k}(s) d s
$$

The number $\epsilon>0$ being given, we can choose η_{1}, η_{2} such that:

$$
\forall k \in\{0, \ldots, n\}, \quad\left\|z_{k}-g\left(s_{k}\right)\right\| \leq \epsilon
$$

Since \mathcal{R} in open and $z \in \operatorname{Int} \Delta$, for ϵ small enough we have

$$
z \in \operatorname{IntConv}\left(z_{0}, \ldots, z_{n}\right) .
$$

Therefore, there exist $\left.\left(p_{0}, \ldots, p_{n}\right) \in\right] 0,1\left[{ }^{n+1}\right.$ such that $\sum_{k=0}^{n} p_{k}=1$ and:

$$
\begin{array}{rll}
z & =\quad \sum_{k=0}^{n} p_{k} z_{k} & =\sum_{k=0}^{n} p_{k} \int_{0}^{1} g(s) f_{k}(s) d s \\
& =\int_{0}^{1} g(s) \sum_{k=0}^{n} p_{k} f_{k}(s) d s & =\int_{0}^{1} g(s) \varphi^{\prime}(s) d s
\end{array}
$$

where we have set

$$
\varphi^{\prime}(s):=\sum_{k=0}^{n} p_{k} f_{k}(s)
$$

and

$$
\begin{aligned}
\varphi:[0,1] & \longrightarrow[0,1] \\
s & \longmapsto \int_{0}^{s} \varphi(u) d u .
\end{aligned}
$$

We have $\varphi^{\prime}(s)>0, \varphi(0)=0, \varphi(1)=1$. Thus φ is a strictly increasing diffeomorphism of $[0,1]$. Let us employ the change of coordinates $s=\varphi^{-1}(t)$, that is $t=\varphi(s)$, we have

$$
d t=\varphi^{\prime}(s) d s
$$

therefore:

$$
z=\int_{0}^{1} g(s) \varphi^{\prime}(s) d s=\int_{0}^{1} g \circ \varphi^{-1}(t) d t .
$$

Thus $h=g \circ \varphi^{-1}$ is our desired loop.
Remark.- A priori $h \in \Omega_{\sigma}(\mathcal{R})$, but it is obvious that we can choose h among "round-trips" $i . e$ the space:

$$
\Omega_{\sigma}^{A R}(\mathcal{R})=\left\{h \in \Omega_{\sigma}(\mathcal{R}) \mid \forall s \in[0,1] h(s)=h(1-s)\right\} .
$$

The point is that the above space is contractible. For every $u \in[0,1]$ we then denote by $h_{u}:[0,1] \longrightarrow \mathcal{R}$ the map defined by

$$
h_{u}(s)=\left\{\begin{array}{lll}
h(s) & \text { if } & s \in\left[0, \frac{u}{2}\right] \cup\left[1-\frac{u}{2}\right] \\
h(u) & \text { if } & s \in\left[\frac{u}{2}, 1-\frac{u}{2}\right] .
\end{array}\right.
$$

This homotopy induces a deformation retract of $\Omega_{\sigma}^{A R}(\mathcal{R})$ to the constant map

$$
\begin{aligned}
\tilde{\sigma}:[0,1] & \longrightarrow \mathcal{R} \\
s & \longmapsto \sigma .
\end{aligned}
$$

$3 \quad C^{0}$-density

Let $\mathcal{R} \subset \mathbb{R}^{n}$ be a arc-connected subset, $f_{0} \in C^{\infty}\left(I, \mathbb{R}^{n}\right)$ be a map such that $f_{0}^{\prime}(I) \subset \operatorname{Int} \operatorname{Conv}(\mathcal{R})$. From the C^{∞} parametric version of the Fundamental Lemma there exists a C^{∞}-map $h: I \times \mathbb{E} / \mathbb{Z} \longrightarrow \mathcal{R}$ such that

$$
\forall t \in I, \quad f_{0}^{\prime}(t)=\int_{0}^{1} h(t, u) d u
$$

We set

$$
\forall t \in I, \quad F(t):=f_{0}(0)+\int_{0}^{t} h(s, N s) d s
$$

with $N \in \mathbb{N}^{*}$.
Definition.- We say that $F \in C^{\infty}\left(I, \mathbb{R}^{n}\right)$ is obtained from f_{0} by an convex integration process.

Obviously $F^{\prime}(t)=h(t, N t) \in \mathcal{R}$ and thus F is a solution of the differential relation \mathcal{R}. One crucial property of the convex integration process is that the solution F can be made arbitrarily close to the initial map f_{0}.

Proposition (C^{0}-density).- We have

$$
\left\|F-f_{0}\right\|_{C^{0}} \leq \frac{1}{N}\left(2\|h\|_{C^{0}}+\left\|\frac{\partial h}{\partial t}\right\|_{C^{0}}\right)
$$

where $\|g\|_{C^{0}}=\sup _{p \in D}\|g(p)\|_{\mathbb{E}^{3}}$ denotes the C^{0} norm of a function $g: D \rightarrow$ \mathbb{E}^{3}.

Proof.- Let $t \in[0,1]$. We put $n:=[N t]$ (the integer part of $N t$) and set $I_{j}=\left[\frac{j}{N}, \frac{j+1}{N}\right]$ for $0 \leq j \leq n-1$ and $I_{n}=\left[\frac{n}{N}, t\right]$. We write

$$
F(t)-f(0)=\sum_{j=0}^{n} S_{j} \text { and } f_{0}(t)-f_{0}(0)=\sum_{j=0}^{n} s_{j}
$$

with $S_{j}:=\int_{I_{j}} h(v, N v) \mathrm{d} v$ and $s_{j}:=\int_{I_{j}} \int_{0}^{1} h(x, u) \mathrm{d} u \mathrm{~d} x$. By the change of variables $u=N v-j$, we get for each $j \in[0, n-1]$

$$
S_{j}=\frac{1}{N} \int_{0}^{1} h\left(\frac{u+j}{N}, u\right) \mathrm{d} u=\int_{I_{j}} \int_{0}^{1} h\left(\frac{u+j}{N}, u\right) \mathrm{d} u \mathrm{~d} x .
$$

It ensues that

$$
\left\|S_{j}-s_{j}\right\|_{\mathbb{E}^{3}} \leq \frac{1}{N^{2}}\left\|\frac{\partial h}{\partial t}\right\|_{C^{0}} .
$$

The proposition then follows from the obvious inequalities

$$
\left\|S_{n}-s_{n}\right\|_{\mathbb{E}^{3}} \leq \frac{2}{N}\|h\|_{C^{0}} \quad \text { and } \quad\left\|F(t)-f_{0}(t)\right\|_{\mathbb{E}^{3}} \leq \sum_{j=0}^{n}\left\|S_{j}-s_{j}\right\|_{\mathbb{E}^{3}}
$$

Remark.- Even if $f_{0}(0)=f_{0}(1)$, the map F obtained by a convex integration from f_{0} does not satisfy $F(0)=F(1)$ in general. This can be easily corrected by defining a new map f with the formula

$$
\forall t \in[0,1], \quad f(t)=F(t)-t(F(1)-F(0)) .
$$

The following proposition shows that the C^{0}-density property still holds for f and, provided N is large enough, that the map f is still a solution of \mathcal{R}.

Proposition.- We have

$$
\left\|f-f_{0}\right\|_{C^{0}} \leq \frac{2}{N}\left(2\|h\|_{C^{0}}+\left\|\frac{\partial h}{\partial t}\right\|_{C^{0}}\right)
$$

and $f^{\prime}(\mathbb{R} / \mathbb{Z}) \subset \mathcal{R}$.
Proof.- The first inequality is obvious. Indeed, from

$$
F(1)-F(0)=F(1)-f_{0}(0)=F(1)-f_{0}(1)
$$

we deduce

$$
\left\|f(t)-f_{0}(t)\right\| \leq\left\|F(t)-f_{0}(t)\right\|+\left\|F(1)-f_{0}(1)\right\| \leq 2\left\|F-f_{0}\right\|_{C^{0}} .
$$

Derivating f we have $f^{\prime}(t)=F^{\prime}(t)-(F(1)-F(0))$ thus

$$
\left\|f^{\prime}-F^{\prime}\right\|_{C^{0}} \leq\left\|F-f_{0}\right\|_{C^{0}}=O\left(\frac{1}{N}\right)
$$

Since \mathcal{R} is open, if N is large enough $f^{\prime}(\mathbb{R} / \mathbb{Z}) \subset \mathcal{R}$.

References

[1] M. Gномi, h-principles for curves and knots of constant curvature, Geom. Dedicata 127, 19-35, 2007. http://tinyurl.com/399y78f
[2] M. Gromov, Convex integration of differential relations I, Izv. Akad. Nauk SSSR 37 (1973), 329-343.
[3] M. Gromov, Partial differential relations, Springer-Verlag, New York, 1986.
[4] M. Kourganov h-principe pour les courbes à courbure constante, rapport de stage ENS-Lyon, http://math.univ-lyon1.fr/ borrelli/Jeunes.html
[5] D. Spring, Convex Integration Theory, Monographs in Mathematics, Vol. 92, Birkhäuser Verlag, 1998.

[^0]: ${ }^{1}$ Spaghetto ?

