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Convex Integration Theory is a powerful tool for solving differential re-
lations. It was introduced by M. Gromov in his thesis dissertation in 1969,
then published in an article [2] in 1973 and eventually generalized in a book
[3] in 1986. Nevertheless, reading Gromov is often a challenge since im-
portant details are not provided explicitely. Fortunately, there is a good
reference that leaves no details in the shadow : the Spring’s book [5]. My un-
derstanding of Convex Integration Theory primarily comes from this book.
I owe it much in this presentation.

1 Two introductory examples

1.1 A first example

Let us consider the following elementary problem.

Problem 1.– Let
f0 : [0, 1] −→ R3

t 7−→ (0, 0, t)

be the linear application mapping the segment [0, 1] vertically in R3. The

problem is to find f : [0, 1]
C1

−→ R3 such that:

i) ∀ t ∈ [0, 1], |cos(f ′(t), e3)| < ε
ii) ‖f − f0‖C0 < δ

where ε > 0 and δ > 0 are given.

Solution.– At a first glance, the problem seems hopeless since condition i
says that the slope is small and then the image has to move far away from
the segment before reaching the desired height. After a few seconds of extra
thinking, the solution occurs. It is good enough to move along an helix
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spiralling around the vertical axis:

f : [0, 1] −→ R3

t 7−→


δ cos 2πNt
δ sin 2πNt
t

where N ∈ N∗ is the number of spirals. We have

〈 f ′

‖f ′‖
, e3
〉

=
1√

1 + 4π2N2δ2
.

Therefore, if N is large enough, f fulfills conditions i and ii.

The image of f0 is the green vertical segment, the solution f is the red helix.

Rephrasing.– The above problem was pretty easy, it will become very
informative with a rephrasing of the two conditions. Condition (i) means
that the image of f ′ lies inside the cone:

R = {v ∈ R3 \ {O} |
∣∣∣∣〈 v|v| , e3〉

∣∣∣∣ < ε} ∪ {O}.

By extension, that cone R is called the differential relation of our problem.

f ’
0

f ’

The cone R is pictured in blue, the image of f ′ is the red circle and the constant

image of f ′0 the green point outside the cone.

2



The C0-closeness required in the second condition, is a consequence of a
geometric property of the derivative of f. Indeed, the image of f ′ in that
cone is a circle whose center is the constant image of f ′0. Therefore, the
average of f ′ for each spiral of f is f ′0(t):

1

Length(Ik)

∫
Ik

f ′(u)du = f ′0(t)

where Ik = [ kN ,
k+1
N ] the preimage of one spiral by f . Therefore, when

integrating, the two resulting maps are closed together.

1.2 A more general example

Problem.– Let R ⊂ R3 be a path-connected subset (=our differential

relation) and f0 : [0, 1]
C1

−→ R3 be a map such

∀t ∈ [0, 1], f ′0(t) ∈ IntConv(R)

where IntConv(R) denotes the interior of the convex hull of R. The prob-

lem is to find f : [0, 1]
C1

−→ R3 such that :

i) ∀t ∈ [0, 1], f ′(t) ∈ R
ii) ‖f − f0‖C0 < δ

with δ > 0 given.

Solution.– From the hypothesis, the image of f ′0 lies in the convex hull of
R. The idea is to build f ′ with an image lying inside R and such that, on
average, it looks like the derivative of f0. One way to do that is to choose a
the f ′-image to resemble to a kind of spring. In the spring, each arc as the
same effect, on average, as a small piece of the image of the initial map f ′0.
So, when integrating, the resulting map will be close to the initial map. As
before, we will improve the closeness of f to f0 by increasing the number of
spirals.
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 f ’ 
0

R

 f ’ 

The green bended spaghetti1 pictures the image of f ′0, the half of a spring in

rep/pink is the chosen image for f ′.

To formally construct a solution f of the problem, it is enough to choose a
continuous family of loops of R:

h : [0, 1] −→ C0(R/Z,R)
u 7−→ hu

such that

∀u ∈ [0, 1],

∫
[0,1]

hu(s)ds = f ′0(u)

i.e the average of the loop hu is f ′0(u).

uh 

0
 f ’ (u)

s

u
The image of the loop hu. In that picture, this image is an arc. This loop is a

round-trip starting at one of the endpoint of the arc and arriving at the same

endpoint.

Then, the map f ′ is extracted from that familly of loops by a simple diagonal
process

∀t ∈ [0, 1], f ′(t) := ht({Nt})

where N ∈ N∗ and {Nu} is the fractional part of Nt.

1Spaghetto ?
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({Nu})uf’(u):=h 
s

u
The image of f ′.

Eventually, it remains to integrate to obtain a solution to our problem:

f(t) := f0(0) +

∫ t

0
hu({Nu})du.

We say that f is obtained from f0 by a convex integration process. We
denote f := IC(f0, h,N).

2 Finding the loops

In the above problem, we were wilfully blind to the question of the existence
of the family of loops (hu)u∈[0,1] needed to build the solution. We now deal
with that issue.

Notation.– Let A ⊂ Rn and a ∈ A. We denote by IntConv(A, a) the in-
terior of the convex hull of the connected component of A to which a belongs.

Definition.– A (continuous) loop g : [0, 1] → Rn, g(0) = g(1), strictly
surrounds z ∈ Rn if

IntConv(g([0, 1])) ⊃ {z}.

Fundamental Lemma.– Let R ⊂ Rn be an open set, σ ∈ R and z ∈
IntConv(R, σ) There exists a loop h : [0, 1]

C0

−→ R with base point σ that
strictly surrounds z and such that:

z =

∫ 1

0
h(s)ds.
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Proof.– Since z ∈ IntConv(R, σ), there exists a n-simplex ∆ whose ver-
tices y0, ..., yn belong toR and such that z lies in the interior of ∆. Therefore,
there also exist

(α0, ..., αn) ∈ ]0, 1[ n+1

such that
n∑
k=0

αk = 1 and z =
n∑
k=0

αkyk. Every loop g : [0, 1]→ R with base

point σ and passing through y0, ..., yn satisfies IntConv(g([0, 1]) ⊃ {z} i. e.
g surrounds z.

In general

z 6=
∫ 1

0
g(s)ds.

Let s0, ..., sn be the times for which g(sk) = yk and let fk : [0, 1] → R∗+ be
such that :

i) fk < η1 sur [0, 1] \ [sk − η2, sk + η2],

ii)

∫ 1

0
fk = 1,

with η1, η2 two small positive numbers. We set:

zk :=

∫ 1

0
g(s)fk(s)ds.

The number ε > 0 being given, we can choose η1, η2 such that:

∀k ∈ {0, ..., n}, ‖zk − g(sk)‖ ≤ ε.

Since R in open and z ∈ Int ∆, for ε small enough we have

z ∈ IntConv(z0, ..., zn).
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Therefore, there exist (p0, ..., pn) ∈ ]0, 1[ n+1 such that
n∑
k=0

pk = 1 and:

z =
n∑
k=0

pkzk =
n∑
k=0

pk

∫ 1

0
g(s)fk(s)ds

=

∫ 1

0
g(s)

n∑
k=0

pkfk(s)ds =

∫ 1

0
g(s)ϕ′(s)ds

where we have set

ϕ′(s) :=
n∑
k=0

pkfk(s)

and
ϕ : [0, 1] −→ [0, 1]

s 7−→
∫ s

0
ϕ(u)du.

We have ϕ′(s) > 0, ϕ(0) = 0, ϕ(1) = 1. Thus ϕ is a strictly increasing
diffeomorphism of [0, 1]. Let us employ the change of coordinates s = ϕ−1(t),
that is t = ϕ(s), we have

dt = ϕ′(s)ds

therefore:

z =

∫ 1

0
g(s)ϕ′(s)ds =

∫ 1

0
g ◦ ϕ−1(t)dt.

Thus h = g ◦ ϕ−1 is our desired loop. �

Remark.– A priori h ∈ Ωσ(R), but it is obvious that we can choose h
among ”round-trips” i.e the space:

ΩAR
σ (R) = {h ∈ Ωσ(R) | ∀s ∈ [0, 1] h(s) = h(1− s)}.

The point is that the above space is contractible. For every u ∈ [0, 1] we
then denote by hu : [0, 1] −→ R the map defined by

hu(s) =

{
h(s) if s ∈ [0, u2 ] ∪ [1− u

2 ]
h(u) if s ∈ [u2 , 1−

u
2 ].

This homotopy induces a deformation retract of ΩAR
σ (R) to the constant

map
σ̃ : [0, 1] −→ R

s 7−→ σ.
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3 C0-density

Let R ⊂ Rn be a arc-connected subset, f0 ∈ C∞(I,Rn) be a map such that
f ′0(I) ⊂ IntConv(R). From the C∞ parametric version of the Fundamental
Lemma there exists a C∞-map h : I × E/Z −→ R such that

∀t ∈ I, f ′0(t) =

∫ 1

0
h(t, u)du.

We set

∀t ∈ I, F (t) := f0(0) +

∫ t

0
h(s,Ns)ds

with N ∈ N∗.

Definition.– We say that F ∈ C∞(I,Rn) is obtained from f0 by an convex
integration process.

Obviously F ′(t) = h(t,Nt) ∈ R and thus F is a solution of the differential
relation R. One crucial property of the convex integration process is that
the solution F can be made arbitrarily close to the initial map f0..

Proposition (C0-density).– We have

‖F − f0‖C0 ≤
1

N

(
2‖h‖C0 + ‖∂h

∂t
‖C0

)
where ‖g‖C0 = supp∈D ‖g(p)‖E3 denotes the C0 norm of a function g : D →
E3.
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Proof.– Let t ∈ [0, 1]. We put n := [Nt] (the integer part of Nt) and set
Ij = [ jN ,

j+1
N ] for 0 ≤ j ≤ n− 1 and In = [ nN , t]. We write

F (t)− f(0) =
n∑
j=0

Sj and f0(t)− f0(0) =
n∑
j=0

sj

with Sj :=
∫
Ij
h(v,Nv)dv and sj :=

∫
Ij

∫ 1
0 h(x, u)dudx. By the change of

variables u = Nv − j, we get for each j ∈ [0, n− 1]

Sj =
1

N

∫ 1

0
h(
u+ j

N
, u)du =

∫
Ij

∫ 1

0
h(
u+ j

N
, u)dudx.

It ensues that

‖Sj − sj‖E3 ≤
1

N2
‖∂h
∂t
‖C0 .

The proposition then follows from the obvious inequalities

‖Sn − sn‖E3 ≤
2

N
‖h‖C0 and ‖F (t)− f0(t)‖E3 ≤

n∑
j=0

‖Sj − sj‖E3 .

�
Remark.– Even if f0(0) = f0(1), the map F obtained by a convex inte-
gration from f0 does not satisfy F (0) = F (1) in general. This can be easily
corrected by defining a new map f with the formula

∀t ∈ [0, 1] , f(t) = F (t)− t (F (1)− F (0)) .

The following proposition shows that the C0-density property still holds for
f and, provided N is large enough, that the map f is still a solution of R.

Proposition.– We have

‖f − f0‖C0 ≤
2

N

(
2‖h‖C0 + ‖∂h

∂t
‖C0

)
and f ′(R/Z) ⊂ R.

Proof.– The first inequality is obvious. Indeed, from

F (1)− F (0) = F (1)− f0(0) = F (1)− f0(1)
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we deduce

‖f(t)− f0(t)‖ ≤ ‖F (t)− f0(t)‖+ ‖F (1)− f0(1)‖ ≤ 2‖F − f0‖C0 .

Derivating f we have f ′(t) = F ′(t)− (F (1)− F (0)) thus

‖f ′ − F ′‖C0 ≤ ‖F − f0‖C0 = O

(
1

N

)
.

Since R is open, if N is large enough f ′(R/Z) ⊂ R. �
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