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The Nash and Kuiper process [1} 2] converts a short embedding of a Rie-
mannian manifold into an Euclidean space into a C'-isometric embedding.
A short embedding is a map fo : (M™,g) — E? = (RY,(.,.)) that shortens
the length of curves, that is:

Length(f o~) = Length(y)

for every rectifiable curve « : [a,b] — M™. Since these maps are plentiful,
the Nash and Kuiper process must be thought of as a machinery to produce
C'-isometric maps in great profusion.

Here we present the Nash and Kuiper process in the simplest situation where
the source manifold is a Riemannian segment or a circle and the target
manifold is the Euclidean 2-plane E2.

1 One dimensional Isometric Problem

Let us begin with the following elementary problem.

One dimensional Isometric Problem, first version.— Let f : [0, 1] Sl
E? ~ C be a given regular curve and let v : [0,1] — R% be any C° map
such that

Vo € [0,1], r(z) > | fo(z)ll.

Build f : [0,1] <5 E2? such that:

i) Veelod], [f(@)]=r)
i) |If = folleo <6

where § > 0 is given.



We would like to solve this problem by using the One-dimensional Convex
Integration Theory. To do so, we need to find a C'*° family of loops

h: [0,1] — C*([R/Z,C)
xr > h(z,.)

such that .
voe0.1), [ hes)ds = fi)
0

and
Vz € [0,1],Ve € E/Z, | h(z,s)| =r(x).

We will then simply have to define f by

Vo€ 0.1, f(@) = fol0)+ [ h(s,{Ns}ds
0
where N € N*. By the very definition of f we will have
vz €[0,1], [If' (@)l = [h(z,{Nz})|| = r(z),

and by the C%-density property, we will also have

1
If = follco =0 <N> :

Therefore, if N is large enough, f := IC(fo, h, N) will be a solution of our
problem.

The choice of h.— In that construction, we have a huge freedom in the
choice of the family of loops h and we must be careful to make a choice as
natural as possible. It sounds clear to choose h in the form

h(z,s) = r(m)ew(m’s)tg (x)

where to(x) := H}E’Eg” and 1 : [0,1] x E/Z — R is any map such that

/1 vt g — I5@)I
0 r(z)

But there is no obvious choice for 1.



Q h(x’.)

A choice in the form h(z,s) := r(z)e? @)ty (z)

For some reasons that will become clear latter (in Talk III), we decide to
take
Y(x, s) := a(x)cos2ms

where «(z) must be chosen such that

/1 eia(z)cosZﬂ'st _ ”f(l)(x)” )
0 r(z)

Note that .
/ sin(a(z) cos2ms)ds = 0
0

thus 1 1
/ 6ia(z) cos 27rsd3 = / COS(OZ(.’E) CcOoS 27T8)d8
0 0

Q h(x,.)

The loop h(z,.) is round-trip

Definition.— The map
Jo: Ry — R

1 ™
a —/ cos(asin s)ds
T Jo
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is called the Bessel function of the first kind and of order 0.

Graph of the Bessel function Jy.

Lemma 1.— We have:

1
Jo(a) :/ cos(a cos 27s)ds.
0

Proof.— Indeed

Let kK = 2.404...

3
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/ cos(a cos 2ms)ds
0

(since sin(m — s) = sin s)

(u=5-5)

SJE]

(u=2ms).

O

be the first positive zero of Jy. The restricted Bessel function

Jo : [0, k] — [0, 1]

is 1:1. We denote by J; ! its inverse. We must choose

afz) = Jy! <

4

/o ()l
r(z) )



to ensure

1 /
/ eia(x)cos%rsds — ||f0(l')||
0 r(z)

Solution of the One dimensional Isometric Problem.— Obviously,
the map f defined by

Vo € [O, 1], f(x) = fO(O) + /50 T(x)eia(x) CosQszds
0

where
e :=cosf tg +sinf ng, ny = ito

1$ a solution of problem 1.

The two following pictures shows the image of f = IC(fo, h, N) with

z = fo(x) = (x,icos <27‘r:c2)>

and r = 4.

Beware that f(0) = fo(0) but f(1) # fo(1) even if it seems that the endpoints
coincide on the picture. Here N is 20



2 Isometric Problem for E/7Z

We now adress the question of the isometric problem for the circle S' = E/Z.

Isometric Problem for E/Z.— Let fy : E/Z N E2~Chea given regular
closed curve and let v : E/Z — R be any C*° map such that

Vo € [0,1], () > [ fo()]-

Build f : E/Z <5 B2 such that:

i) Vaelo1], [f(x)l=r(z)
i) |f = folloo <0
where § > 0 is given.

Not that, even if fy is defined over E/Z, the curve
:D .
T fO(O) + / ’r‘(x)ew‘(x) cos2mNs
0

is not closed in general. This defect can be easily corrected by the following
modification of the convex integration formula:

xT

1
f(a:) — fO(O) +/ T(gj)eia(:p)cos%rNsds o J:\/ T(x)eia(x)cos%rNsd&
0 0

For short, we write f = fé(fo, h, N) with

h(l‘, 8) — ,r(x)eia(:p) cos 2ms
Let F = IC(fo,h,N), from the CO-density property we have |F — follco =
0 (%) and since f(z) = F(z) — 2(F(1) — F(0)) we also have

1
1f — follo < 2IF — folloo = O (N> |



S 0
O

Modified integration convex formula with N = 3, 5, 10 and 20

The speed || f’|| is only approximately equal to r(x), precisely

Ve € E/Z, |If'@)] - r(@)| < IF - foloo = O <le> |

We shall obtain a map fs : E/Z — E? such that
Vo €E/Z, ||fs(@)] =r()

by iteratively applying the modifying convex integration formula. The idea
behind the construction of f, is due to Nash.

The Nash and Kuiper Process.— Let (Jx)ren+ such that 6 T 1 and
0k > 0. For all £k € N* and for all x € E/Z we set

ri(z) = 1§ (x) + 0 (r*(x) — r§(2))
with ro(z) := || fi(x)|| and then define

i = 1C(fy—1, b, Ni)



with

iy (x) cos 2ms

hi(z,s) :=ri(z)e

where

/
ag(z) = JO_1 (W) and € := cosf tx_1 + sinf nj;_;.

Each fi has a speed which is approximately r:

1

@) - ()| =0 (Nk) |

Since the sequence ry(z) is strictly increasing for every « € E/Z, the number
Ny can be chosen large enough such that

Ve € BE/Z, rii1(x) > || fr(x)|.

From now on, we implicitely assume that every N} is iteratively chosen
such that to fulfill the above inequality. This is crucial to define fi 1 as
IC(fi: M1, Nig1)-

Theorem (solution of the Isometric Problem for E/Z).— If the se-
quence (0k)ken+ is chosen so that

Z 7/ O — 0p_1 < +00

then there exists a sequence of integers (Ni)gen+ such that fi := fé(fk_l, hi, Nk)
is 1 converging toward a C* limit fo with speed || f.o|| = 7.



The Nash-Kuiper process, fo, fi, fo and fo.

3 Proof of the Theorem

Lemma 2.— The inequality
1+ J3(a) — 2Jo() cos(a) < 7(1 — JE(a))
holds for every a € [0, k| (recall that k is the first positive oot of Jy).

Proof of lemma 2.— Subtracting the right hand side from the left hand
side, we rewrite this inequality as

4J3 (o) — Jo(a) cos(a) — 3 < 0.

By considering the alternating Taylor series of Jy and cos, we get

a2 Oé4 2

(6
0(()[) ~ 1 + 64 an COS((I) =~ 1 9



Whence

o? 4 o2
0 < 4Jy(a) — cos(a) §3—?+T6 §3+?,
where the last inequality follows from —%2 + ff—; < 0‘7 for all « € [0, k]. We

can now write
4J3(a) — Jo(a)cos(a) =3 = Jo(a)(4Jo(a) — cos(a)) — 3

< Q-2+ 3.

Putting = a?/4, this last polynomial can be rewritten

22
(1_$+Z)(3+2$) —-3= 2(.7}—1‘1)(1‘—3}2),

where 1 < 0 < k2/4 < xo. It ensues that this polynomial is negative for
a € 0, k] O

Lemma 3.— For all x € E/Z, we have

() = fro @) < VTr@) /o, — o1
+V/14r(2) || Feor — froallgle + 1Fx — feoillco

Proof of lemma 3.— Since Jy(ag(z)) = || f1._,(2)||/rr(z), we have

1Fi(2) = froa (@) P =13(@) + || fr—1 (@)1 = 2ri(@) | fi—1 (2)]| cos(c () cos(2m N )
:ri(a:) (1 + Jo(oz,yf(a:))2 — 2Jo(ag(z)) cos(ag(x) cos(27TN:c))) i

We also have cos(acos(2rNz)) > cos(a) for every a € [0,k] C [0,7]. By
using the previous lemma, we get

IFi(z) = froi(@)|I? < ri(@) (14 Jo(aw(2))? — 2Jo(an(x)) cos(ax(x)))
< 77“k($)(1 Jo(ag(z )) )
< 7(r(@) = | fioa (@)]P).
Since
1 (@) = i1 (@) | < [ Fee1 — fr—zllco
and

1fr1 @)+ re—1(z) < 2r(x)
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we deduce

[ fea @) = iy (@)] < 2r(@)[[ Fi-1 = fr-zllco-

Therefore

1Fk(z) = fioa ()] T(ri(x) — i1 () + 2r(2) | Fre1 = frzllco)
2

T(0 — 6p—1) (r*(z) — r3(x)) + 14r(2)|| Feey — fr—2llco

IN A

and

|E{ (@) = fioa(@)] < VTr(@)y/0k = 051 + V14 @) Fir — froall
Finally,

Ift(z) = froi (@) < VTr(x)y/or — 0kt
+/14r(2)[| Fi—1 — fkfz\lé/f + [ Fr — fr-1llco

O
Proof of the theorem (solution of the Isometric Problem for E/Z).—
Since || Fy, — fr—1llco = O <Nik>, we can choose the sequence (Nj)ren+ such
that

> e = fraalleo < +o0

and thus the maps fis are C%-converging toward a C%-map foo. If

Z\/ék —Op_q < +00

and if the sequence (Ng)ren+ is also chosen such that

> IF - fkflulc/OQ < +oo

then, by Lemma 3,
DMk ficalleo < o0

and the maps fjs are C'-converging. In particular
Ve eE/Z,  lim |fi@)] = [lfx(@)]
—+00

and since
Ve eB/Z, rp1(z) < |fr(o)] <rr(e)

we obtain

Yz eR/Z, |fi(@)]=r(z).
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