Talk II: The Nash-Kuiper process for curves

Vincent Borrelli

July 2, 2013

The Nash and Kuiper process [1, 2] converts a short embedding of a Riemannian manifold into an Euclidean space into a C^{1}-isometric embedding. A short embedding is a map $f_{0}:\left(M^{m}, g\right) \longrightarrow \mathbb{E}^{q}=\left(\mathbb{R}^{q},\langle.,\rangle.\right)$ that shortens the length of curves, that is:

$$
\operatorname{Length}(f \circ \gamma)=\operatorname{Length}(\gamma)
$$

for every rectifiable curve $\gamma:[a, b] \longrightarrow M^{m}$. Since these maps are plentiful, the Nash and Kuiper process must be thought of as a machinery to produce C^{1}-isometric maps in great profusion.

Here we present the Nash and Kuiper process in the simplest situation where the source manifold is a Riemannian segment or a circle and the target manifold is the Euclidean 2-plane \mathbb{E}^{2}.

1 One dimensional Isometric Problem

Let us begin with the following elementary problem.
One dimensional Isometric Problem, first version.- Let $f_{0}:[0,1] \xrightarrow{C^{\infty}}$ $\mathbb{E}^{2} \simeq \mathbb{C}$ be a given regular curve and let $r:[0,1] \longrightarrow \mathbb{R}_{+}^{*}$ be any C^{∞} map such that

$$
\forall x \in[0,1], \quad r(x)>\left\|f_{0}^{\prime}(x)\right\|
$$

Build $f:[0,1] \xrightarrow{C^{\infty}} \mathbb{E}^{2}$ such that:
i) $\forall x \in[0,1], \quad\left\|f^{\prime}(x)\right\|=r(x)$
ii) $\left\|f-f_{0}\right\|_{C^{0}}<\delta$
where $\delta>0$ is given.

We would like to solve this problem by using the One-dimensional Convex Integration Theory. To do so, we need to find a C^{∞} family of loops

$$
\begin{aligned}
h:[0,1] & \longrightarrow C^{\infty}(\mathbb{R} / \mathbb{Z}, \mathbb{C}) \\
x & \longmapsto
\end{aligned}
$$

such that

$$
\forall x \in[0,1], \quad \int_{0}^{1} h(x, s) \mathrm{d} s=f_{0}^{\prime}(x)
$$

and

$$
\forall x \in[0,1], \forall x \in \mathbb{E} / \mathbb{Z}, \quad\|h(x, s)\|=r(x) .
$$

We will then simply have to define f by

$$
\forall x \in[0,1], \quad f(x):=f_{0}(0)+\int_{0}^{x} h(s,\{N s\}) \mathrm{d} s
$$

where $N \in \mathbb{N}^{*}$. By the very definition of f we will have

$$
\forall x \in[0,1], \quad\left\|f^{\prime}(x)\right\|=\|h(x,\{N x\})\|=r(x),
$$

and by the C^{0}-density property, we will also have

$$
\left\|f-f_{0}\right\|_{C^{0}}=O\left(\frac{1}{N}\right)
$$

Therefore, if N is large enough, $f:=I C\left(f_{0}, h, N\right)$ will be a solution of our problem.

The choice of $h .-$ In that construction, we have a huge freedom in the choice of the family of loops h and we must be careful to make a choice as natural as possible. It sounds clear to choose h in the form

$$
h(x, s):=r(x) e^{i \psi(x, s)} \mathbf{t}_{0}(x)
$$

where $t_{0}(x):=\frac{f_{0}^{\prime}(x)}{\left\|f_{0}^{\prime}(x)\right\|}$ and $\psi:[0,1] \times \mathbb{E} / \mathbb{Z} \longrightarrow \mathbb{R}$ is any map such that

$$
\int_{0}^{1} e^{i \psi(x, s)} \mathrm{d} s=\frac{\left\|f_{0}^{\prime}(x)\right\|}{r(x)} .
$$

But there is no obvious choice for ψ.

A choice in the form $h(x, s):=r(x) e^{i \psi(x, s)} \mathbf{t}_{0}(x)$
For some reasons that will become clear latter (in Talk III), we decide to take

$$
\psi(x, s):=\alpha(x) \cos 2 \pi s
$$

where $\alpha(x)$ must be chosen such that

$$
\int_{0}^{1} e^{i \alpha(x) \cos 2 \pi s} \mathrm{~d} s=\frac{\left\|f_{0}^{\prime}(x)\right\|}{r(x)}
$$

Note that

$$
\int_{0}^{1} \sin (\alpha(x) \cos 2 \pi s) \mathrm{d} s=0
$$

thus

The loop $h(x,$.$) is round-trip$
Definition.- The map

$$
\begin{aligned}
J_{0}: & \mathbb{R}_{+} \\
& \longrightarrow \mathbb{R} \\
& \longmapsto
\end{aligned}
$$

is called the Bessel function of the first kind and of order 0.

Graph of the Bessel function J_{0}.
Lemma 1.- We have:

$$
J_{0}(\alpha)=\int_{0}^{1} \cos (\alpha \cos 2 \pi s) \mathrm{d} s
$$

Proof.- Indeed

$$
\begin{array}{rlrl}
J_{0}(\alpha) & =\frac{1}{\pi} \int_{0}^{\pi} \cos (\alpha \sin s) \mathrm{d} s & \\
& =\frac{2}{\pi} \int_{0}^{\pi / 2} \cos (\alpha \sin s) \mathrm{d} s & & (\text { since } \sin (\pi-s)=\sin s) \\
& =\frac{2}{\pi} \int_{0}^{\pi / 2} \cos (\alpha \sin u) \mathrm{d} u & & \left(u=\frac{\pi}{2}-s\right) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (\alpha \sin u) \mathrm{d} u & & \\
& =\int_{0}^{1} \cos (\alpha \cos 2 \pi s) \mathrm{d} s & (u=2 \pi s)
\end{array}
$$

Let $\kappa=2.404 \ldots$ be the first positive zero of J_{0}. The restricted Bessel function

$$
J_{0}:[0, \kappa] \longrightarrow[0,1]
$$

is $1: 1$. We denote by J_{0}^{-1} its inverse. We must choose

$$
\alpha(x):=J_{0}^{-1}\left(\frac{\left\|f_{0}^{\prime}(x)\right\|}{r(x)}\right)
$$

to ensure

$$
\int_{0}^{1} e^{i \alpha(x) \cos 2 \pi s} \mathrm{~d} s=\frac{\left\|f_{0}^{\prime}(x)\right\|}{r(x)} .
$$

Solution of the One dimensional Isometric Problem.- Obviously, the map f defined by

$$
\forall x \in[0,1], \quad f(x):=f_{0}(0)+\int_{0}^{x} r(x) \mathbf{e}^{i \alpha(x) \cos 2 \pi N s} \mathrm{~d} s
$$

where

$$
\mathbf{e}^{i \theta}:=\cos \theta \mathbf{t}_{0}+\sin \theta \mathbf{n}_{0}, \quad \mathbf{n}_{0}=i \mathbf{t}_{0}
$$

is a solution of problem 1 .
The two following pictures shows the image of $f=I C\left(f_{0}, h, N\right)$ with

$$
x \mapsto f_{0}(x):=\left(x, \frac{1}{\pi} \cos \left(\frac{3}{2} \pi x^{2}\right)\right)
$$

and $r \equiv 4$.

The number N of oscillation is 9

Beware that $f(0)=f_{0}(0)$ but $f(1) \neq f_{0}(1)$ even if it seems that the endpoints coincide on the picture. Here N is 20

2 Isometric Problem for \mathbb{E} / \mathbb{Z}

We now adress the question of the isometric problem for the circle $\mathbb{S}^{1}=\mathbb{E} / \mathbb{Z}$.
Isometric Problem for $\mathbb{E} / \mathbb{Z} .-$ Let $f_{0}: \mathbb{E} / \mathbb{Z} \xrightarrow{C^{\infty}} \mathbb{E}^{2} \simeq \mathbb{C}$ be a given regular closed curve and let $r: \mathbb{E} / \mathbb{Z} \longrightarrow \mathbb{R}_{+}^{*}$ be any C^{∞} map such that

$$
\forall x \in[0,1], \quad r(x)>\left\|f_{0}^{\prime}(x)\right\| .
$$

Build $f: \mathbb{E} / \mathbb{Z} \xrightarrow{C^{\infty}} \mathbb{E}^{2}$ such that:
i) $\forall x \in[0,1], \quad\left\|f^{\prime}(x)\right\|=r(x)$
ii) $\left\|f-f_{0}\right\|_{C^{0}}<\delta$
where $\delta>0$ is given.

Not that, even if f_{0} is defined over \mathbb{E} / \mathbb{Z}, the curve

$$
x \longmapsto f_{0}(0)+\int_{0}^{x} r(x) \mathbf{e}^{i \alpha(x) \cos 2 \pi N s} \mathrm{~d} s
$$

is not closed in general. This defect can be easily corrected by the following modification of the convex integration formula:

$$
f(x):=f_{0}(0)+\int_{0}^{x} r(x) \mathbf{e}^{i \alpha(x) \cos 2 \pi N s} \mathrm{~d} s-x \int_{0}^{1} r(x) \mathbf{e}^{i \alpha(x) \cos 2 \pi N s} \mathrm{~d} s .
$$

For short, we write $f=\widetilde{I C}\left(f_{0}, h, N\right)$ with

$$
h(x, s)=r(x) \mathbf{e}^{i \alpha(x) \cos 2 \pi s} .
$$

Let $F=I C\left(f_{0}, h, N\right)$, from the C^{0}-density property we have $\left\|F-f_{0}\right\|_{C^{0}}=$ $O\left(\frac{1}{N}\right)$ and since $f(x)=F(x)-x(F(1)-F(0))$ we also have

$$
\left\|f-f_{0}\right\|_{C^{0}} \leq 2\left\|F-f_{0}\right\|_{C^{0}}=O\left(\frac{1}{N}\right) .
$$

Modified integration convex formula with $N=3,5,10$ and 20
The speed $\left\|f^{\prime}\right\|$ is only approximately equal to $r(x)$, precisely

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad\left|\left\|f^{\prime}(x)\right\|-r(x)\right| \leq\left\|F-f_{0}\right\|_{C^{0}}=O\left(\frac{1}{N}\right)
$$

We shall obtain a map $f_{\infty}: \mathbb{E} / \mathbb{Z} \longrightarrow \mathbb{E}^{2}$ such that

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad\left\|f_{\infty}^{\prime}(x)\right\|=r(x)
$$

by iteratively applying the modifying convex integration formula. The idea behind the construction of f_{∞} is due to Nash.

The Nash and Kuiper Process.- Let $\left(\delta_{k}\right)_{k \in \mathbb{N}^{*}}$ such that $\delta_{k} \uparrow 1$ and $\delta_{k}>0$. For all $k \in \mathbb{N}^{*}$ and for all $x \in \mathbb{E} / \mathbb{Z}$ we set

$$
r_{k}^{2}(x):=r_{0}^{2}(x)+\delta_{k}\left(r^{2}(x)-r_{0}^{2}(x)\right)
$$

with $r_{0}(x):=\left\|f_{0}^{\prime}(x)\right\|$ and then define

$$
f_{k}:=\widetilde{I C}\left(f_{k-1}, h_{k}, N_{k}\right)
$$

with

$$
h_{k}(x, s):=r_{k}(x) \mathbf{e}^{i \alpha_{k}(x) \cos 2 \pi s}
$$

where

$$
\alpha_{k}(x)=J_{0}^{-1}\left(\frac{\left\|f_{k-1}^{\prime}(x)\right\|}{r_{k}(x)}\right) \text { and } \mathbf{e}^{i \theta}:=\cos \theta \mathbf{t}_{k-1}+\sin \theta \mathbf{n}_{k-1}
$$

Each f_{k} has a speed which is approximately r_{k} :

$$
\left|\left\|f_{k}^{\prime}(x)\right\|-r_{k}(x)\right|=O\left(\frac{1}{N_{k}}\right)
$$

Since the sequence $r_{k}(x)$ is strictly increasing for every $x \in \mathbb{E} / \mathbb{Z}$, the number N_{k} can be chosen large enough such that

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad r_{k+1}(x)>\left\|f_{k}(x)\right\|
$$

From now on, we implicitely assume that every N_{k} is iteratively chosen such that to fulfill the above inequality. This is crucial to define f_{k+1} as $\widetilde{I C}\left(f_{k}, h_{k+1}, N_{k+1}\right)$.

Theorem (solution of the Isometric Problem for \mathbb{E} / \mathbb{Z}).- If the sequence $\left(\delta_{k}\right)_{k \in \mathbb{N}^{*}}$ is chosen so that

$$
\sum \sqrt{\delta_{k}-\delta_{k-1}}<+\infty
$$

then there exists a sequence of integers $\left(N_{k}\right)_{k \in \mathbb{N}^{*}}$ such that $f_{k}:=\widetilde{I C}\left(f_{k-1}, h_{k}, N_{k}\right)$ is C^{1} converging toward a C^{1} limit f_{∞} with speed $\left\|f_{\infty}^{\prime}\right\|=r$.

The Nash-Kuiper process, f_{0}, f_{1}, f_{2} and f_{∞}.

3 Proof of the Theorem

Lemma 2.- The inequality

$$
1+J_{0}^{2}(\alpha)-2 J_{0}(\alpha) \cos (\alpha) \leq 7\left(1-J_{0}^{2}(\alpha)\right)
$$

holds for every $\alpha \in[0, \kappa]$ (recall that κ is the first positive root of J_{0}).
Proof of lemma 2.- Subtracting the right hand side from the left hand side, we rewrite this inequality as

$$
4 J_{0}^{2}(\alpha)-J_{0}(\alpha) \cos (\alpha)-3 \leq 0 .
$$

By considering the alternating Taylor series of J_{0} and cos, we get

$$
J_{0}(\alpha) \leq 1-\frac{\alpha^{2}}{4}+\frac{\alpha^{4}}{64} \quad \text { and } \quad \cos (\alpha) \geq 1-\frac{\alpha^{2}}{2} .
$$

Whence

$$
0 \leq 4 J_{0}(\alpha)-\cos (\alpha) \leq 3-\frac{\alpha^{2}}{2}+\frac{\alpha^{4}}{16} \leq 3+\frac{\alpha^{2}}{2}
$$

where the last inequality follows from $-\frac{\alpha^{2}}{2}+\frac{\alpha^{4}}{16} \leq \frac{\alpha^{2}}{2}$ for all $\alpha \in[0, \kappa]$. We can now write

$$
\begin{aligned}
4 J_{0}^{2}(\alpha)-J_{0}(\alpha) \cos (\alpha)-3 & =J_{0}(\alpha)\left(4 J_{0}(\alpha)-\cos (\alpha)\right)-3 \\
& \leq\left(1-\frac{\alpha^{2}}{4}+\frac{\alpha^{4}}{64}\right)\left(3+\frac{\alpha^{2}}{2}\right)-3
\end{aligned}
$$

Putting $x=\alpha^{2} / 4$, this last polynomial can be rewritten

$$
\left(1-x+\frac{x^{2}}{4}\right)(3+2 x)-3=\frac{x}{2}\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

where $x_{1}<0<\kappa^{2} / 4<x_{2}$. It ensues that this polynomial is negative for $\alpha \in[0, \kappa]$.

Lemma 3.- For all $x \in \mathbb{E} / \mathbb{Z}$, we have

$$
\begin{aligned}
\left\|f_{k}^{\prime}(x)-f_{k-1}^{\prime}(x)\right\| \leq & \sqrt{7} r(x) \sqrt{\delta_{k}-\delta_{k-1}} \\
& +\sqrt{14 r(x)}\left\|F_{k-1}-f_{k-2}\right\|_{C^{0}}^{1 / 2}+\left\|F_{k}-f_{k-1}\right\|_{C^{0}}
\end{aligned}
$$

Proof of lemma 3.- Since $J_{0}\left(\alpha_{k}(x)\right)=\left\|f_{k-1}^{\prime}(x)\right\| / r_{k}(x)$, we have

$$
\begin{aligned}
\left\|F_{k}^{\prime}(x)-f_{k-1}^{\prime}(x)\right\|^{2} & =r_{k}^{2}(x)+\left\|f_{k-1}^{\prime}(x)\right\|^{2}-2 r_{k}(x)\left\|f_{k-1}^{\prime}(x)\right\| \cos \left(\alpha_{k}(x) \cos (2 \pi N x)\right) \\
& =r_{k}^{2}(x)\left(1+J_{0}\left(\alpha_{k}(x)\right)^{2}-2 J_{0}\left(\alpha_{k}(x)\right) \cos \left(\alpha_{k}(x) \cos (2 \pi N x)\right)\right)
\end{aligned}
$$

We also have $\cos (\alpha \cos (2 \pi N x)) \geq \cos (\alpha)$ for every $\alpha \in[0, \kappa] \subset[0, \pi]$. By using the previous lemma, we get

$$
\begin{aligned}
\left\|F_{k}^{\prime}(x)-f_{k-1}^{\prime}(x)\right\|^{2} & \leq r_{k}^{2}(x)\left(1+J_{0}\left(\alpha_{k}(x)\right)^{2}-2 J_{0}\left(\alpha_{k}(x)\right) \cos \left(\alpha_{k}(x)\right)\right) \\
& \leq 7 r_{k}^{2}(x)\left(1-J_{0}\left(\alpha_{k}(x)\right)^{2}\right) \\
& \leq 7\left(r_{k}^{2}(x)-\left\|f_{k-1}^{\prime}(x)\right\|^{2}\right)
\end{aligned}
$$

Since

$$
\left|\left\|f_{k-1}^{\prime}(x)\right\|-r_{k-1}(x)\right| \leq\left\|F_{k-1}-f_{k-2}\right\|_{C^{0}}
$$

and

$$
\left\|f_{k-1}^{\prime}(x)\right\|+r_{k-1}(x) \leq 2 r(x)
$$

we deduce

$$
\left|\left\|f_{k-1}^{\prime}(x)\right\|^{2}-r_{k-1}^{2}(x)\right| \leq 2 r(x)\left\|F_{k-1}-f_{k-2}\right\|_{C^{0}}
$$

Therefore

$$
\begin{aligned}
\left\|F_{k}^{\prime}(x)-f_{k-1}^{\prime}(x)\right\|^{2} & \leq 7\left(r_{k}^{2}(x)-r_{k-1}^{2}(x)+2 r(x)\left\|F_{k-1}-f_{k-2}\right\|_{C^{0}}\right) \\
& \leq 7\left(\delta_{k}-\delta_{k-1}\right)\left(r^{2}(x)-r_{0}^{2}(x)\right)+14 r(x)\left\|F_{k-1}-f_{k-2}\right\|_{C^{0}}
\end{aligned}
$$

and

$$
\left\|F_{k}^{\prime}(x)-f_{k-1}^{\prime}(x)\right\| \leq \sqrt{7} r(x) \sqrt{\delta_{k}-\delta_{k-1}}+\sqrt{14 r(x)}\left\|F_{k-1}-f_{k-2}\right\|_{C^{0}}^{1 / 2} .
$$

Finally,

$$
\begin{aligned}
\left\|f_{k}^{\prime}(x)-f_{k-1}^{\prime}(x)\right\| \leq & \sqrt{7} r(x) \sqrt{\delta_{k}-\delta_{k-1}} \\
& +\sqrt{14 r(x)}\left\|F_{k-1}-f_{k-2}\right\|_{C^{0}}^{1 / 2}+\left\|F_{k}-f_{k-1}\right\|_{C^{0}}
\end{aligned}
$$

Proof of the theorem (solution of the Isometric Problem for \mathbb{E} / Z).Since $\left\|F_{k}-f_{k-1}\right\|_{C^{0}}=O\left(\frac{1}{N_{k}}\right)$, we can choose the sequence $\left(N_{k}\right)_{k \in \mathbb{N}^{*}}$ such that

$$
\sum\left\|F_{k}-f_{k-1}\right\|_{C^{0}}<+\infty
$$

and thus the maps $f_{k} s$ are C^{0}-converging toward a C^{0}-map f_{∞}. If

$$
\sum \sqrt{\delta_{k}-\delta_{k-1}}<+\infty
$$

and if the sequence $\left(N_{k}\right)_{k \in \mathbb{N}^{*}}$ is also chosen such that

$$
\sum\left\|F_{k}-f_{k-1}\right\|_{C^{0}}^{1 / 2}<+\infty
$$

then, by Lemma 3,

$$
\sum\left\|f_{k}^{\prime}-f_{k-1}^{\prime}\right\|_{C^{0}}<+\infty
$$

and the maps $f_{k} s$ are C^{1}-converging. In particular

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad \lim _{k \rightarrow+\infty}\left\|f_{k}^{\prime}(x)\right\|=\left\|f_{\infty}^{\prime}(x)\right\|
$$

and since

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad r_{k-1}(x)<\left\|f_{k}^{\prime}(x)\right\|<r_{k+1}(x)
$$

we obtain

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad\left\|f_{\infty}^{\prime}(x)\right\|=r(x) .
$$

References

[1] N. Kuiper, On C^{1}-isometric imbeddings, Indag. Math., 17 (1955), 545556.
[2] J. NASH, C ${ }^{1}$-isometric imbeddings, Ann. of Math. (2), 60 (1954), 383396.

