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The Nash and Kuiper process [1, 2] converts a short embedding of a Rie-
mannian manifold into an Euclidean space into a C1-isometric embedding.
A short embedding is a map f0 : (Mm, g) −→ Eq = (Rq, 〈., .〉) that shortens
the length of curves, that is:

Length(f ◦ γ) = Length(γ)

for every rectifiable curve γ : [a, b] −→Mm. Since these maps are plentiful,
the Nash and Kuiper process must be thought of as a machinery to produce
C1-isometric maps in great profusion.

Here we present the Nash and Kuiper process in the simplest situation where
the source manifold is a Riemannian segment or a circle and the target
manifold is the Euclidean 2-plane E2.

1 One dimensional Isometric Problem

Let us begin with the following elementary problem.

One dimensional Isometric Problem, first version.– Let f0 : [0, 1]
C∞−→

E2 ' C be a given regular curve and let r : [0, 1] −→ R∗+ be any C∞ map
such that

∀x ∈ [0, 1], r(x) > ‖f ′0(x)‖.

Build f : [0, 1]
C∞−→ E2 such that:

i) ∀ x ∈ [0, 1], ‖f ′(x)‖ = r(x)
ii) ‖f − f0‖C0 < δ

where δ > 0 is given.
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We would like to solve this problem by using the One-dimensional Convex
Integration Theory. To do so, we need to find a C∞ family of loops

h : [0, 1] −→ C∞(R/Z,C)
x 7−→ h(x, .)

such that

∀x ∈ [0, 1],

∫ 1

0
h(x, s)ds = f ′0(x)

and
∀x ∈ [0, 1],∀x ∈ E/Z, ‖h(x, s)‖ = r(x).

We will then simply have to define f by

∀x ∈ [0, 1], f(x) := f0(0) +

∫ x

0
h(s, {Ns})ds

where N ∈ N∗. By the very definition of f we will have

∀x ∈ [0, 1], ‖f ′(x)‖ = ‖h(x, {Nx})‖ = r(x),

and by the C0-density property, we will also have

‖f − f0‖C0 = O

(
1

N

)
.

Therefore, if N is large enough, f := IC(f0, h,N) will be a solution of our
problem.

The choice of h.– In that construction, we have a huge freedom in the
choice of the family of loops h and we must be careful to make a choice as
natural as possible. It sounds clear to choose h in the form

h(x, s) := r(x)eiψ(x,s)t0(x)

where t0(x) :=
f ′0(x)
‖f ′0(x)‖

and ψ : [0, 1]× E/Z −→ R is any map such that

∫ 1

0
eiψ(x,s)ds =

‖f ′0(x)‖
r(x)

.

But there is no obvious choice for ψ.
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A choice in the form h(x, s) := r(x)eiψ(x,s)t0(x)

For some reasons that will become clear latter (in Talk III), we decide to
take

ψ(x, s) := α(x) cos 2πs

where α(x) must be chosen such that∫ 1

0
eiα(x) cos 2πsds =

‖f ′0(x)‖
r(x)

.

Note that ∫ 1

0
sin(α(x) cos 2πs)ds = 0

thus ∫ 1

0
eiα(x) cos 2πsds =

∫ 1

0
cos(α(x) cos 2πs)ds

The loop h(x, .) is round-trip

Definition.– The map

J0 : R+ −→ R

α 7−→ 1

π

∫ π

0
cos(α sin s)ds
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is called the Bessel function of the first kind and of order 0.

Graph of the Bessel function J0.

Lemma 1.– We have:

J0(α) =

∫ 1

0
cos(α cos 2πs)ds.

Proof.– Indeed

J0(α) =
1

π

∫ π

0
cos(α sin s)ds

=
2

π

∫ π/2

0
cos(α sin s)ds (since sin(π − s) = sin s)

=
2

π

∫ π/2

0
cos(α sinu)du (u = π

2 − s)

=
1

2π

∫ 2π

0
cos(α sinu)du

=

∫ 1

0
cos(α cos 2πs)ds (u = 2πs).

�
Let κ = 2.404... be the first positive zero of J0. The restricted Bessel function

J0 : [0, κ] −→ [0, 1]

is 1:1. We denote by J−10 its inverse. We must choose

α(x) := J−10

(
‖f ′0(x)‖
r(x)

)
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to ensure ∫ 1

0
eiα(x) cos 2πsds =

‖f ′0(x)‖
r(x)

.

Solution of the One dimensional Isometric Problem.– Obviously,
the map f defined by

∀x ∈ [0, 1], f(x) := f0(0) +

∫ x

0
r(x)eiα(x) cos 2πNsds

where
eiθ := cos θ t0 + sin θ n0, n0 = it0

is a solution of problem 1.

The two following pictures shows the image of f = IC(f0, h,N) with

x 7→ f0(x) :=

(
x,

1

π
cos

(
3

2
πx2

))
and r ≡ 4.

The number N of oscillation is 9

Beware that f(0) = f0(0) but f(1) 6= f0(1) even if it seems that the endpoints

coincide on the picture. Here N is 20
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2 Isometric Problem for E/Z

We now adress the question of the isometric problem for the circle S1 = E/Z.

Isometric Problem for E/Z.– Let f0 : E/Z C∞−→ E2 ' C be a given regular
closed curve and let r : E/Z −→ R∗+ be any C∞ map such that

∀x ∈ [0, 1], r(x) > ‖f ′0(x)‖.

Build f : E/Z C∞−→ E2 such that:

i) ∀ x ∈ [0, 1], ‖f ′(x)‖ = r(x)
ii) ‖f − f0‖C0 < δ

where δ > 0 is given.

Not that, even if f0 is defined over E/Z, the curve

x 7−→ f0(0) +

∫ x

0
r(x)eiα(x) cos 2πNsds

is not closed in general. This defect can be easily corrected by the following
modification of the convex integration formula:

f(x) := f0(0) +

∫ x

0
r(x)eiα(x) cos 2πNsds− x

∫ 1

0
r(x)eiα(x) cos 2πNsds.

For short, we write f = ĨC(f0, h,N) with

h(x, s) = r(x)eiα(x) cos 2πs.

Let F = IC(f0, h,N), from the C0-density property we have ‖F − f0‖C0 =
O
(
1
N

)
and since f(x) = F (x)− x(F (1)− F (0)) we also have

‖f − f0‖C0 ≤ 2‖F − f0‖C0 = O

(
1

N

)
.
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Modified integration convex formula with N = 3, 5, 10 and 20

The speed ‖f ′‖ is only approximately equal to r(x), precisely

∀x ∈ E/Z,
∣∣‖f ′(x)‖ − r(x)

∣∣ ≤ ‖F − f0‖C0 = O

(
1

N

)
.

We shall obtain a map f∞ : E/Z −→ E2 such that

∀x ∈ E/Z, ‖f ′∞(x)‖ = r(x)

by iteratively applying the modifying convex integration formula. The idea
behind the construction of f∞ is due to Nash.

The Nash and Kuiper Process.– Let (δk)k∈N∗ such that δk ↑ 1 and
δk > 0. For all k ∈ N∗ and for all x ∈ E/Z we set

r2k(x) := r20(x) + δk
(
r2(x)− r20(x)

)
with r0(x) := ‖f ′0(x)‖ and then define

fk := ĨC(fk−1, hk, Nk)
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with
hk(x, s) := rk(x)eiαk(x) cos 2πs

where

αk(x) = J−10

(‖f ′k−1(x)‖
rk(x)

)
and eiθ := cos θ tk−1 + sin θ nk−1.

Each fk has a speed which is approximately rk:∣∣‖f ′k(x)‖ − rk(x)
∣∣ = O

(
1

Nk

)
.

Since the sequence rk(x) is strictly increasing for every x ∈ E/Z, the number
Nk can be chosen large enough such that

∀x ∈ E/Z, rk+1(x) > ‖fk(x)‖.

From now on, we implicitely assume that every Nk is iteratively chosen
such that to fulfill the above inequality. This is crucial to define fk+1 as
ĨC(fk, hk+1, Nk+1).

Theorem (solution of the Isometric Problem for E/Z).– If the se-
quence (δk)k∈N∗ is chosen so that∑√

δk − δk−1 < +∞

then there exists a sequence of integers (Nk)k∈N∗ such that fk := ĨC(fk−1, hk, Nk)
is C1 converging toward a C1 limit f∞ with speed ‖f ′∞‖ = r.
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The Nash-Kuiper process, f0, f1, f2 and f∞.

3 Proof of the Theorem

Lemma 2.– The inequality

1 + J2
0 (α)− 2J0(α) cos(α) ≤ 7(1− J2

0 (α))

holds for every α ∈ [0, κ] (recall that κ is the first positive root of J0).

Proof of lemma 2.– Subtracting the right hand side from the left hand
side, we rewrite this inequality as

4J2
0 (α)− J0(α) cos(α)− 3 ≤ 0.

By considering the alternating Taylor series of J0 and cos, we get

J0(α) ≤ 1− α2

4
+
α4

64
and cos(α) ≥ 1− α2

2
.
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Whence

0 ≤ 4J0(α)− cos(α) ≤ 3− α2

2
+
α4

16
≤ 3 +

α2

2
,

where the last inequality follows from −α2

2 + α4

16 ≤
α2

2 for all α ∈ [0, κ]. We
can now write

4J2
0 (α)− J0(α) cos(α)− 3 = J0(α)(4J0(α)− cos(α))− 3

≤ (1− α2

4
+
α4

64
)(3 +

α2

2
)− 3.

Putting x = α2/4, this last polynomial can be rewritten

(1− x+
x2

4
)(3 + 2x)− 3 =

x

2
(x− x1)(x− x2),

where x1 < 0 < κ2/4 < x2. It ensues that this polynomial is negative for
α ∈ [0, κ]. �

Lemma 3.– For all x ∈ E/Z, we have

‖f ′k(x)− f ′k−1(x)‖ ≤
√

7r(x)
√
δk − δk−1

+
√

14r(x)‖Fk−1 − fk−2‖
1/2
C0 + ‖Fk − fk−1‖C0

Proof of lemma 3.– Since J0(αk(x)) = ‖f ′k−1(x)‖/rk(x), we have

‖F ′k(x)− f ′k−1(x)‖2=r2k(x) + ‖f ′k−1(x)‖2 − 2rk(x)‖f ′k−1(x)‖ cos(αk(x) cos(2πNx))

=r2k(x)
(
1 + J0(αk(x))2 − 2J0(αk(x)) cos(αk(x) cos(2πNx))

)
.

We also have cos(α cos(2πNx)) ≥ cos(α) for every α ∈ [0, κ] ⊂ [0, π]. By
using the previous lemma, we get

‖F ′k(x)− f ′k−1(x)‖2 ≤ r2k(x)
(
1 + J0(αk(x))2 − 2J0(αk(x)) cos(αk(x))

)
≤ 7r2k(x)(1− J0(αk(x))2)

≤ 7(r2k(x)− ‖f ′k−1(x)‖2).

Since ∣∣‖f ′k−1(x)‖ − rk−1(x)
∣∣ ≤ ‖Fk−1 − fk−2‖C0

and
‖f ′k−1(x)‖+ rk−1(x) ≤ 2r(x)
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we deduce ∣∣‖f ′k−1(x)‖2 − r2k−1(x)
∣∣ ≤ 2r(x)‖Fk−1 − fk−2‖C0 .

Therefore

‖F ′k(x)− f ′k−1(x)‖2 ≤ 7(r2k(x)− r2k−1(x) + 2r(x)‖Fk−1 − fk−2‖C0)

≤ 7(δk − δk−1)(r2(x)− r20(x)) + 14r(x)‖Fk−1 − fk−2‖C0

and

‖F ′k(x)− f ′k−1(x)‖ ≤
√

7r(x)
√
δk − δk−1 +

√
14r(x)‖Fk−1 − fk−2‖

1/2
C0 .

Finally,

‖f ′k(x)− f ′k−1(x)‖ ≤
√

7r(x)
√
δk − δk−1

+
√

14r(x)‖Fk−1 − fk−2‖
1/2
C0 + ‖Fk − fk−1‖C0

�
Proof of the theorem (solution of the Isometric Problem for E/Z).–

Since ‖Fk − fk−1‖C0 = O
(

1
Nk

)
, we can choose the sequence (Nk)k∈N∗ such

that ∑
‖Fk − fk−1‖C0 < +∞

and thus the maps fks are C0-converging toward a C0-map f∞. If∑√
δk − δk−1 < +∞

and if the sequence (Nk)k∈N∗ is also chosen such that∑
‖Fk − fk−1‖

1/2
C0 < +∞

then, by Lemma 3, ∑
‖f ′k − f ′k−1‖C0 < +∞

and the maps fks are C1-converging. In particular

∀ x ∈ E/Z, lim
k→+∞

‖f ′k(x)‖ = ‖f ′∞(x)‖

and since
∀ x ∈ E/Z, rk−1(x) < ‖f ′k(x)‖ < rk+1(x)

we obtain
∀ x ∈ E/Z, ‖f ′∞(x)‖ = r(x).

�
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