Talk II: The Nash-Kuiper process for curves

Vincent Borrelli

July 2, 2013

The Nash and Kuiper process [1, 2] converts a short embedding of a Riemannian manifold into an Euclidean space into a C^1 -isometric embedding. A short embedding is a map $f_0: (M^m, g) \longrightarrow \mathbb{E}^q = (\mathbb{R}^q, \langle ., . \rangle)$ that shortens the length of curves, that is:

 $Length(f \circ \gamma) = Length(\gamma)$

for every rectifiable curve $\gamma : [a, b] \longrightarrow M^m$. Since these maps are plentiful, the Nash and Kuiper process must be thought of as a machinery to produce C^1 -isometric maps in great profusion.

Here we present the Nash and Kuiper process in the simplest situation where the source manifold is a Riemannian segment or a circle and the target manifold is the Euclidean 2-plane \mathbb{E}^2 .

1 One dimensional Isometric Problem

Let us begin with the following elementary problem.

One dimensional Isometric Problem, first version. Let $f_0 : [0,1] \xrightarrow{C^{\infty}} \mathbb{E}^2 \simeq \mathbb{C}$ be a given regular curve and let $r : [0,1] \longrightarrow \mathbb{R}^*_+$ be any C^{∞} map such that

$$\forall x \in [0,1], \quad r(x) > \|f_0'(x)\|.$$

Build $f: [0,1] \xrightarrow{C^{\infty}} \mathbb{E}^2$ such that:

i) $\forall x \in [0,1], ||f'(x)|| = r(x)$ ii) $||f - f_0||_{C^0} < \delta$ where $\delta > 0$ is given.

1

We would like to solve this problem by using the One-dimensional Convex Integration Theory. To do so, we need to find a C^{∞} family of loops

$$\begin{array}{rccc} h: & [0,1] & \longrightarrow & C^{\infty}(\mathbb{R}/\mathbb{Z},\mathbb{C}) \\ & x & \longmapsto & h(x,.) \end{array}$$

such that

$$\forall x \in [0,1], \quad \int_0^1 h(x,s) \mathrm{d}s = f_0'(x)$$

and

$$\forall x \in [0,1], \forall x \in \mathbb{E}/\mathbb{Z}, \quad \|h(x,s)\| = r(x).$$

We will then simply have to define f by

$$\forall x \in [0,1], \quad f(x) := f_0(0) + \int_0^x h(s, \{Ns\}) \mathrm{d}s$$

where $N \in \mathbb{N}^*$. By the very definition of f we will have

$$\forall x \in [0,1], \quad \|f'(x)\| = \|h(x,\{Nx\})\| = r(x),$$

and by the C^0 -density property, we will also have

$$||f - f_0||_{C^0} = O\left(\frac{1}{N}\right).$$

Therefore, if N is large enough, $f := IC(f_0, h, N)$ will be a solution of our problem.

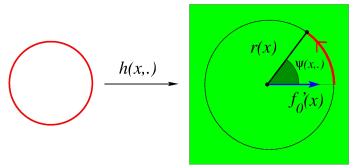
The choice of h.— In that construction, we have a huge freedom in the choice of the family of loops h and we must be careful to make a choice as natural as possible. It sounds clear to choose h in the form

$$h(x,s) := r(x)e^{i\psi(x,s)}\mathbf{t}_0(x)$$

where $t_0(x) := \frac{f'_0(x)}{\|f'_0(x)\|}$ and $\psi : [0,1] \times \mathbb{E}/\mathbb{Z} \longrightarrow \mathbb{R}$ is any map such that

$$\int_0^1 e^{i\psi(x,s)} \mathrm{d}s = \frac{\|f_0'(x)\|}{r(x)}.$$

But there is no obvious choice for ψ .



A choice in the form $h(x,s) := r(x)e^{i\psi(x,s)}\mathbf{t}_0(x)$

For some reasons that will become clear latter (in Talk III), we decide to take

$$\psi(x,s) := \alpha(x) \cos 2\pi s$$

where $\alpha(x)$ must be chosen such that

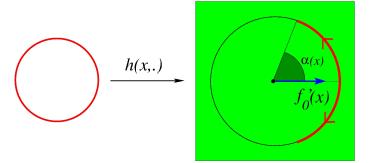
$$\int_0^1 e^{i\alpha(x)\cos 2\pi s} \mathrm{d}s = \frac{\|f_0'(x)\|}{r(x)}.$$

Note that

$$\int_0^1 \sin(\alpha(x)\cos 2\pi s) \mathrm{d}s = 0$$

thus

$$\int_0^1 e^{i\alpha(x)\cos 2\pi s} \mathrm{d}s = \int_0^1 \cos(\alpha(x)\cos 2\pi s) \mathrm{d}s$$

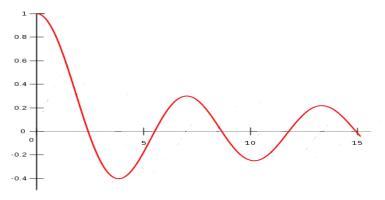


The loop h(x, .) is round-trip

Definition.– The map

$$J_0: \ \mathbb{R}_+ \longrightarrow \mathbb{R}$$
$$\alpha \longmapsto \frac{1}{\pi} \int_0^\pi \cos(\alpha \sin s) \mathrm{d}s$$

is called the Bessel function of the first kind and of order 0.



Graph of the Bessel function J_0 .

Lemma 1.- We have:

$$J_0(\alpha) = \int_0^1 \cos(\alpha \cos 2\pi s) \mathrm{d}s.$$

 $\mathbf{Proof.}- \ \mathrm{Indeed}$

$$J_0(\alpha) = \frac{1}{\pi} \int_0^{\pi} \cos(\alpha \sin s) ds$$

= $\frac{2}{\pi} \int_0^{\pi/2} \cos(\alpha \sin s) ds$ (since $\sin(\pi - s) = \sin s$)
= $\frac{2}{\pi} \int_0^{\pi/2} \cos(\alpha \sin u) du$ ($u = \frac{\pi}{2} - s$)
= $\frac{1}{2\pi} \int_0^{2\pi} \cos(\alpha \sin u) du$
= $\int_0^1 \cos(\alpha \cos 2\pi s) ds$ ($u = 2\pi s$).

Let $\kappa = 2.404...$ be the first positive zero of J_0 . The restricted Bessel function

$$J_0: [0,\kappa] \longrightarrow [0,1]$$

 $J_0:[0,\kappa]\longrightarrow [0,1]$ is 1:1. We denote by J_0^{-1} its inverse. We must choose

$$\alpha(x) := J_0^{-1} \left(\frac{\|f_0'(x)\|}{r(x)} \right)$$

to ensure

$$\int_0^1 e^{i\alpha(x)\cos 2\pi s} ds = \frac{\|f_0'(x)\|}{r(x)}.$$

Solution of the One dimensional Isometric Problem. – Obviously, the map f defined by

$$\forall x \in [0, 1], \quad f(x) := f_0(0) + \int_0^x r(x) \mathbf{e}^{i\alpha(x)\cos 2\pi Ns} \mathrm{d}s$$

where

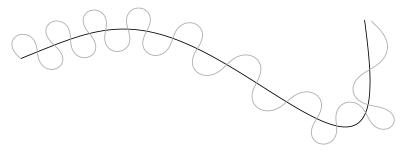
 $\mathbf{e}^{i\theta} := \cos \theta \mathbf{t}_0 + \sin \theta \mathbf{n}_0, \quad \mathbf{n}_0 = i\mathbf{t}_0$

is a solution of problem 1.

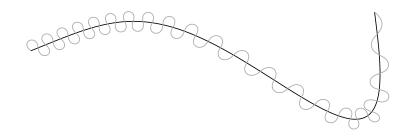
The two following pictures shows the image of $f = IC(f_0, h, N)$ with

$$x \mapsto f_0(x) := \left(x, \frac{1}{\pi} \cos\left(\frac{3}{2}\pi x^2\right)\right)$$

and $r \equiv 4$.



The number N of oscillation is 9



Beware that $f(0) = f_0(0)$ but $f(1) \neq f_0(1)$ even if it seems that the endpoints coincide on the picture. Here N is 20

2 Isometric Problem for \mathbb{E}/\mathbb{Z}

We now address the question of the isometric problem for the circle $\mathbb{S}^1 = \mathbb{E}/\mathbb{Z}$.

Isometric Problem for \mathbb{E}/\mathbb{Z} .- Let $f_0 : \mathbb{E}/\mathbb{Z} \xrightarrow{C^{\infty}} \mathbb{E}^2 \simeq \mathbb{C}$ be a given regular closed curve and let $r : \mathbb{E}/\mathbb{Z} \longrightarrow \mathbb{R}^*_+$ be any C^{∞} map such that

$$\forall x \in [0,1], \quad r(x) > \|f_0'(x)\|.$$

Build $f : \mathbb{E}/\mathbb{Z} \xrightarrow{C^{\infty}} \mathbb{E}^2$ such that:

i) $\forall x \in [0,1], ||f'(x)|| = r(x)$ ii) $||f - f_0||_{C^0} < \delta$ where $\delta > 0$ is given.

Not that, even if f_0 is defined over \mathbb{E}/\mathbb{Z} , the curve

$$x \longmapsto f_0(0) + \int_0^x r(x) \mathbf{e}^{i\alpha(x)\cos 2\pi Ns} \mathrm{d}s$$

is not closed in general. This defect can be easily corrected by the following modification of the convex integration formula:

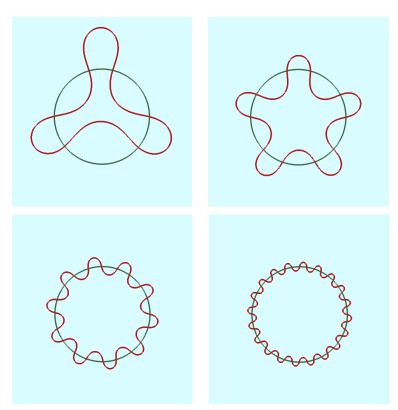
$$f(x) := f_0(0) + \int_0^x r(x) \mathbf{e}^{i\alpha(x)\cos 2\pi Ns} ds - x \int_0^1 r(x) \mathbf{e}^{i\alpha(x)\cos 2\pi Ns} ds$$

For short, we write $f = \widetilde{IC}(f_0, h, N)$ with

$$h(x,s) = r(x)\mathbf{e}^{i\alpha(x)\cos 2\pi s}.$$

Let $F = IC(f_0, h, N)$, from the C^0 -density property we have $||F - f_0||_{C^0} = O\left(\frac{1}{N}\right)$ and since f(x) = F(x) - x(F(1) - F(0)) we also have

$$||f - f_0||_{C^0} \le 2||F - f_0||_{C^0} = O\left(\frac{1}{N}\right).$$



Modified integration convex formula with N = 3, 5, 10 and 20

The speed ||f'|| is only approximately equal to r(x), precisely

$$\forall x \in \mathbb{E}/\mathbb{Z}, \ \left| \|f'(x)\| - r(x) \right| \le \|F - f_0\|_{C^0} = O\left(\frac{1}{N}\right)$$

We shall obtain a map $f_\infty: \mathbb{E}/\mathbb{Z} \longrightarrow \mathbb{E}^2$ such that

$$\forall x \in \mathbb{E}/\mathbb{Z}, \quad \|f'_{\infty}(x)\| = r(x)$$

by iteratively applying the modifying convex integration formula. The idea behind the construction of f_{∞} is due to Nash.

The Nash and Kuiper Process. Let $(\delta_k)_{k \in \mathbb{N}^*}$ such that $\delta_k \uparrow 1$ and $\delta_k > 0$. For all $k \in \mathbb{N}^*$ and for all $x \in \mathbb{E}/\mathbb{Z}$ we set

$$r_k^2(x) := r_0^2(x) + \delta_k \left(r^2(x) - r_0^2(x) \right)$$

with $r_0(x) := \|f'_0(x)\|$ and then define

$$f_k := IC(f_{k-1}, h_k, N_k)$$

with

$$h_k(x,s) := r_k(x) \mathbf{e}^{i\alpha_k(x)\cos 2\pi s}$$

where

$$\alpha_k(x) = J_0^{-1} \left(\frac{\|f'_{k-1}(x)\|}{r_k(x)} \right) \text{ and } \mathbf{e}^{i\theta} := \cos\theta \, \mathbf{t}_{k-1} + \sin\theta \, \mathbf{n}_{k-1}.$$

Each f_k has a speed which is approximately r_k :

$$\left| \|f'_k(x)\| - r_k(x) \right| = O\left(\frac{1}{N_k}\right).$$

Since the sequence $r_k(x)$ is strictly increasing for every $x \in \mathbb{E}/\mathbb{Z}$, the number N_k can be chosen large enough such that

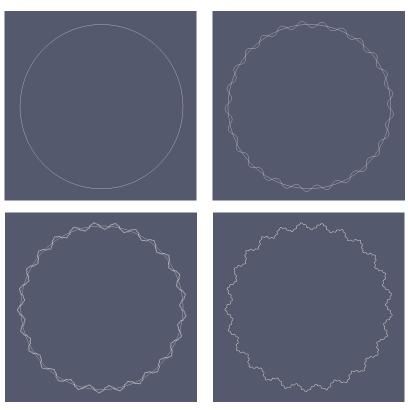
$$\forall x \in \mathbb{E}/\mathbb{Z}, \quad r_{k+1}(x) > \|f_k(x)\|.$$

From now on, we implicitely assume that every N_k is iteratively chosen such that to fulfill the above inequality. This is crucial to define f_{k+1} as $\widetilde{IC}(f_k, h_{k+1}, N_{k+1})$.

Theorem (solution of the Isometric Problem for \mathbb{E}/\mathbb{Z}).- If the sequence $(\delta_k)_{k\in\mathbb{N}^*}$ is chosen so that

$$\sum \sqrt{\delta_k - \delta_{k-1}} < +\infty$$

then there exists a sequence of integers $(N_k)_{k \in \mathbb{N}^*}$ such that $f_k := \widetilde{IC}(f_{k-1}, h_k, N_k)$ is C^1 converging toward a C^1 limit f_∞ with speed $||f'_\infty|| = r$.



The Nash-Kuiper process, f_0 , f_1 , f_2 and f_{∞} .

3 Proof of the Theorem

Lemma 2.– The inequality

$$1 + J_0^2(\alpha) - 2J_0(\alpha)\cos(\alpha) \le 7(1 - J_0^2(\alpha))$$

holds for every $\alpha \in [0, \kappa]$ (recall that κ is the first positive root of J_0).

Proof of lemma 2.– Subtracting the right hand side from the left hand side, we rewrite this inequality as

$$4J_0^2(\alpha) - J_0(\alpha)\cos(\alpha) - 3 \le 0$$

By considering the alternating Taylor series of J_0 and \cos , we get

$$J_0(\alpha) \le 1 - \frac{\alpha^2}{4} + \frac{\alpha^4}{64}$$
 and $\cos(\alpha) \ge 1 - \frac{\alpha^2}{2}$.

Whence

$$0 \le 4J_0(\alpha) - \cos(\alpha) \le 3 - \frac{\alpha^2}{2} + \frac{\alpha^4}{16} \le 3 + \frac{\alpha^2}{2},$$

where the last inequality follows from $-\frac{\alpha^2}{2} + \frac{\alpha^4}{16} \le \frac{\alpha^2}{2}$ for all $\alpha \in [0, \kappa]$. We can now write

$$4J_0^2(\alpha) - J_0(\alpha)\cos(\alpha) - 3 = J_0(\alpha)(4J_0(\alpha) - \cos(\alpha)) - 3$$

$$\leq (1 - \frac{\alpha^2}{4} + \frac{\alpha^4}{64})(3 + \frac{\alpha^2}{2}) - 3.$$

Putting $x = \alpha^2/4$, this last polynomial can be rewritten

$$(1 - x + \frac{x^2}{4})(3 + 2x) - 3 = \frac{x}{2}(x - x_1)(x - x_2),$$

where $x_1 < 0 < \kappa^2/4 < x_2$. It ensues that this polynomial is negative for $\alpha \in [0, \kappa]$.

Lemma 3. For all $x \in \mathbb{E}/\mathbb{Z}$, we have

$$\begin{aligned} \|f'_{k}(x) - f'_{k-1}(x)\| &\leq \sqrt{7}r(x)\sqrt{\delta_{k} - \delta_{k-1}} \\ &+ \sqrt{14r(x)} \|F_{k-1} - f_{k-2}\|_{C^{0}}^{1/2} + \|F_{k} - f_{k-1}\|_{C^{0}} \end{aligned}$$

Proof of lemma 3. Since $J_0(\alpha_k(x)) = ||f'_{k-1}(x)||/r_k(x)$, we have

$$\|F'_{k}(x) - f'_{k-1}(x)\|^{2} = r_{k}^{2}(x) + \|f'_{k-1}(x)\|^{2} - 2r_{k}(x)\|f'_{k-1}(x)\|\cos(\alpha_{k}(x)\cos(2\pi Nx))$$

= $r_{k}^{2}(x) \left(1 + J_{0}(\alpha_{k}(x))^{2} - 2J_{0}(\alpha_{k}(x))\cos(\alpha_{k}(x)\cos(2\pi Nx))\right).$

We also have $\cos(\alpha \cos(2\pi Nx)) \ge \cos(\alpha)$ for every $\alpha \in [0, \kappa] \subset [0, \pi]$. By using the previous lemma, we get

$$\begin{aligned} \|F'_k(x) - f'_{k-1}(x)\|^2 &\leq r_k^2(x) \left(1 + J_0(\alpha_k(x))^2 - 2J_0(\alpha_k(x))\cos(\alpha_k(x))\right) \\ &\leq 7r_k^2(x)(1 - J_0(\alpha_k(x))^2) \\ &\leq 7(r_k^2(x) - \|f'_{k-1}(x)\|^2). \end{aligned}$$

Since

$$\left| \|f_{k-1}'(x)\| - r_{k-1}(x) \right| \le \|F_{k-1} - f_{k-2}\|_{C^0}$$

and

$$||f_{k-1}'(x)|| + r_{k-1}(x) \le 2r(x)$$

we deduce

$$\left| \|f_{k-1}'(x)\|^2 - r_{k-1}^2(x) \right| \le 2r(x) \|F_{k-1} - f_{k-2}\|_{C^0}$$

Therefore

$$\|F'_{k}(x) - f'_{k-1}(x)\|^{2} \leq 7(r_{k}^{2}(x) - r_{k-1}^{2}(x) + 2r(x)\|F_{k-1} - f_{k-2}\|_{C^{0}})$$

$$\leq 7(\delta_{k} - \delta_{k-1})(r^{2}(x) - r_{0}^{2}(x)) + 14r(x)\|F_{k-1} - f_{k-2}\|_{C^{0}}$$

and

$$||F'_k(x) - f'_{k-1}(x)|| \le \sqrt{7}r(x)\sqrt{\delta_k - \delta_{k-1}} + \sqrt{14r(x)}||F_{k-1} - f_{k-2}||_{C^0}^{1/2}.$$

Finally,

$$\|f'_{k}(x) - f'_{k-1}(x)\| \leq \sqrt{7}r(x)\sqrt{\delta_{k} - \delta_{k-1}} + \sqrt{14r(x)} \|F_{k-1} - f_{k-2}\|_{C^{0}}^{1/2} + \|F_{k} - f_{k-1}\|_{C^{0}}$$

Proof of the theorem (solution of the Isometric Problem for \mathbb{E}/Z).-Since $||F_k - f_{k-1}||_{C^0} = O\left(\frac{1}{N_k}\right)$, we can choose the sequence $(N_k)_{k \in \mathbb{N}^*}$ such that

$$\sum \|F_k - f_{k-1}\|_{C^0} < +\infty$$

and thus the maps $f_k s$ are C^0 -converging toward a C^0 -map f_∞ . If

$$\sum \sqrt{\delta_k - \delta_{k-1}} < +\infty$$

and if the sequence $(N_k)_{k\in\mathbb{N}^*}$ is also chosen such that

$$\sum \|F_k - f_{k-1}\|_{C^0}^{1/2} < +\infty$$

then, by Lemma 3,

$$\sum \|f'_k - f'_{k-1}\|_{C^0} < +\infty$$

and the maps $f_k s$ are C^1 -converging. In particular

$$\forall x \in \mathbb{E}/\mathbb{Z}, \quad \lim_{k \to +\infty} \|f'_k(x)\| = \|f'_{\infty}(x)\|$$

and since

$$\forall x \in \mathbb{E}/\mathbb{Z}, \quad r_{k-1}(x) < \|f'_k(x)\| < r_{k+1}(x)$$

we obtain

$$\forall x \in \mathbb{E}/\mathbb{Z}, \quad \|f'_{\infty}(x)\| = r(x).$$

References

- [1] N. KUIPER, On $C^1\mbox{-}isometric\ imbeddings, Indag. Math., 17 (1955), 545-556.$
- [2] J. NASH, C¹-isometric imbeddings, Ann. of Math. (2), 60 (1954), 383-396.