Talk III: Regularity of Nash-Kuiper curves

Vincent Borrelli

July 1, 2013

In the previous talk, we have seen that the sequence f_{1}, f_{2}, \ldots of C^{∞}-maps generated by the Nash-Kuiper process C^{1}-converges toward a C^{1}-isometry f_{∞} provided that

$$
\sum \sqrt{\delta_{k}-\delta_{k-1}}<+\infty
$$

In this talk we adress the C^{2}-regularity of f_{∞}. To avoid some technicalities in the computations we still assume that the Nash-Kuiper process is applied to a smooth initial map $f_{0}: \mathbb{E} / \mathbb{Z} \rightarrow \mathbb{E}^{2}$ such that:

- (Cond 1) it is of constant speed $r_{0}:=\left\|f_{0}^{\prime}\right\|<1$
- (Cond 2$)$ it is radially symmetric, that is: $f_{0}^{\prime}\left(x+\frac{1}{2}\right)=-f_{0}^{\prime}(x)$
and that the target speed function is $r \equiv 1$. We also assume that the $N_{k} \mathrm{~s}$ are chosen among even numbers. The general case, slightly more technical in nature, is left to the reader.

Proposition 1.- For every $k \in \mathbb{N}^{*}$, f_{k} is of constant speed r_{k} and radially symmetric. In particular,

$$
f_{k}=I C\left(f_{k-1}, h_{k}, N_{k}\right)
$$

The functions α_{k} are also constant and equal to $J_{0}^{-1}\left(\frac{r_{k-1}}{r_{k}}\right)$.
Proof.- By induction. Assume that f_{k-1} satisfies (Cond 1) and (Cond 2). In particular f_{k-1} is of constant speed r_{k-1} and thus the function $\alpha_{k}=$ $J_{0}^{-1}\left(\frac{r_{k-1}}{r_{k}}\right)$ is constant. Since $N_{k} \in 2 \mathbb{N}^{*}$, we have

$$
h_{k}\left(x+\frac{1}{2},\left\{N_{k}\left(x+\frac{1}{2}\right)\right\}\right)=-h_{k}\left(x,\left\{N_{k} x\right\}\right)
$$

and consequently

$$
\int_{0}^{1} h_{k}\left(s,\left\{N_{k} s\right\}\right) \mathrm{d} s=0 .
$$

It ensues that

$$
I C\left(f_{k-1}, h_{k}, N_{k}\right)=\widetilde{I C}\left(f_{k-1}, h_{k}, N_{k}\right)
$$

and therefore f_{k} is of constant speed $\left\|f_{k}^{\prime}(x)\right\|=\left\|h_{k}(x,\{N x\})\right\|=r_{k}$. It is also radially symmetric since $f_{k}(x)=h\left(x,\left\{N_{k} x\right\}\right)$.

$1 \quad C^{2}$-regularity

Proposition 1.- For every $x \in \mathbb{E} / \mathbb{Z}$, we have

$$
f_{k}^{\prime \prime}(x)=\left(-2 \pi \alpha_{k} N_{k} \sin 2 \pi N_{k} x+r_{k-1} s c a l_{k-1}(x)\right) i r_{k} e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x)
$$

where scal ${ }_{k}$ denotes the signed curvature of f_{k}. Moreover

$$
r_{k} s c a l_{k}(x)=r_{0} s c a l_{0}(x)-2 \pi \sum_{l=1}^{k} \alpha_{l} N_{l} \sin \left(2 \pi N_{l} x\right)
$$

Remark 1.- Recall that two regular C^{2} curves differ by a rigid motion if and only if they have the same signed curvature function.

Remark 2.- Let $\mu_{k}(x):=\operatorname{scal}_{k}(x)\left\|f_{k}^{\prime}(x)\right\| d x$ be the signed curvature measure of f_{k}. We have

$$
\mu_{k}(x)=\mu_{k-1}(x)-2 \pi \alpha_{k} N_{k} \sin \left(2 \pi N_{k} x\right) \mathrm{d} x .
$$

The convex integration process modifies the curvature mesure in the simplest way by a cosine term with frequency N_{k}.

Remark 3.- More generally, if $h_{k}(x, s)=r_{k} e^{i \psi_{k}(s)} \mathbf{t}_{k-1}$, one can show that

$$
\mu_{k}(x)=N_{k} \psi_{k}^{\prime}\left(N_{k} x\right)+\mu_{k-1}(x) .
$$

Thus, if we require to modify the curvature mesure by a single term of frequency N_{k}, we have to choose

$$
\psi_{k}^{\prime}(x):=\alpha_{k} \sin (2 \pi x+\text { phase difference }) .
$$

This is the reason why in Talk II we have chosen

$$
\psi_{k}(x)=\alpha_{k} \cos 2 \pi x
$$

Proof.- We have

$$
\begin{aligned}
f_{k}^{\prime \prime}(x)= & \frac{\partial}{\partial x}\left(r_{k} e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x)\right) \\
= & \frac{\partial}{\partial x}\left(r_{k}\left(\cos \left(\alpha_{k} \cos 2 \pi N_{k} x\right) \mathbf{t}_{k-1}(x)+\sin \left(\alpha_{k} \cos 2 \pi N_{k} x\right) \mathbf{n}_{k-1}(x)\right)\right. \\
= & \frac{r_{k}}{r_{k-1}} \frac{\partial}{\partial x}\left(\cos \left(\alpha_{k} \cos 2 \pi N_{k} x\right) f_{k-1}^{\prime}(x)+\sin \left(\alpha_{k} \cos 2 \pi N_{k} x\right) i f_{k-1}^{\prime}(x)\right) \\
= & -2 i \pi \alpha_{k} N_{k} \sin \left(2 \pi N_{k} x\right) r_{k} e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x) \\
& +\frac{r_{k}}{r_{k-1}}\left(\cos \left(\alpha_{k} \cos 2 \pi N_{k} x\right) f_{k-1}^{\prime \prime}(x)+\sin \left(\alpha_{k} \cos 2 \pi N_{k} x\right) i f_{k-1}^{\prime \prime}(x)\right)
\end{aligned}
$$

Since f_{k-1} is of constant speed r_{k-1} we have

$$
f_{k-1}^{\prime \prime}(x)=r_{k-1} \operatorname{scal}_{k-1}(x) i f_{k-1}^{\prime}(x)
$$

therefore

$$
\begin{aligned}
f_{k}^{\prime \prime}(x)= & -2 i \pi \alpha_{k} N_{k} \sin \left(2 \pi N_{k} x\right) r_{k} e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x) \\
& +r_{k} r_{k-1} s c a l_{k-1}(x) i e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x)
\end{aligned}
$$

Finally,

$$
f_{k}^{\prime \prime}(x)=\left(-2 \pi \alpha_{k} N_{k} \sin 2 \pi N_{k} x+r_{k-1} \operatorname{scal}_{k-1}(x)\right) i r_{k} e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x) .
$$

Because f_{k} is of constant arc length we also have

$$
f_{k}^{\prime \prime}(x)=r_{k} \operatorname{scal}_{k}(x) i f_{k}^{\prime}(x)=r_{k} \operatorname{scal}_{k}(x) i r_{k} e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x) .
$$

From this we deduce

$$
r_{k} \operatorname{scal} l_{k}(x)=r_{k-1} \operatorname{scal}_{k-1}(x)-2 \pi \alpha_{k} N_{k} \sin \left(2 \pi N_{k} x\right)
$$

and by induction

$$
r_{k} s \operatorname{cal}_{k}(x)=r_{0} s c a l_{0}(x)-2 \pi \sum_{l=1}^{k} \alpha_{l} N_{l} \sin \left(2 \pi N_{l} x\right) .
$$

Lemma 2 (Amplitude Lemma).- We have

$$
\alpha_{k} \sim \sqrt{2\left(1-r_{0}^{2}\right)} \sqrt{\delta_{k}-\delta_{k-1}}
$$

where \sim denotes the equivalence of sequences.

Proof.- By definition $\alpha_{k}=J_{0}^{-1}\left(\frac{r_{k-1}}{r_{k}}\right)$. Recall that the Taylor expansion of $J_{0}(\alpha)$ up to order 2 is

$$
w=1-\frac{\alpha^{2}}{4}+o\left(\alpha^{2}\right) .
$$

Let $y=1-w$ and $X=\alpha^{2}$, we have $y=\frac{X}{4}+o(X)$ thus $X=4 y+o(y)$ and so $X \sim 4 y$. We finally get

$$
\alpha \sim 2 \sqrt{1-w} \quad \text { and } \quad \alpha_{k} \sim 2 \sqrt{1-\frac{r_{k-1}}{r_{k}}} .
$$

Since $r_{0}^{2}+\left(1-r_{0}^{2}\right)=1$, we have

$$
r_{k}^{2}=r_{0}^{2}+\delta_{k}\left(1-r_{0}^{2}\right)=1+\left(\delta_{k}-1\right)\left(1-r_{0}^{2}\right)
$$

so

$$
r_{k}^{2}-r_{k-1}^{2}=\left(\delta_{k}-\delta_{k-1}\right)\left(1-r_{0}^{2}\right)
$$

and

$$
1-\frac{r_{k-1}^{2}}{r_{k}^{2}}=\frac{\left(\delta_{k}-\delta_{k-1}\right)\left(1-r_{0}^{2}\right)}{1-\left(1-\delta_{k}\right)\left(1-r_{0}^{2}\right)} \sim\left(\delta_{k}-\delta_{k-1}\right)\left(1-r_{0}^{2}\right) .
$$

In an other hand

$$
1-\frac{r_{k-1}^{2}}{r_{k}^{2}}=\left(1-\frac{r_{k-1}}{r_{k}}\right)\left(1+\frac{r_{k-1}}{r_{k}}\right) \sim 2\left(1-\frac{r_{k-1}}{r_{k}}\right) .
$$

Thus

$$
\left(1-\frac{r_{k-1}}{r_{k}}\right) \sim \frac{1}{2}\left(\delta_{k}-\delta_{k-1}\right)\left(1-r_{0}^{2}\right) .
$$

and

$$
\alpha_{k} \sim 2 \sqrt{1-\frac{r_{k-1}}{r_{k}}} \sim \sqrt{2\left(1-r_{0}^{2}\right)} \sqrt{\delta_{k}-\delta_{k-1}} .
$$

Proposition 2.- If $\sum_{k \in \mathbb{N}^{*}} \sqrt{\delta_{k}-\delta_{k-1}} N_{k}<+\infty$ then f_{∞} is C^{2}.
Proof.- Since we already know that the sequence $\left(f_{k}\right)_{k \in \mathbb{N}} C^{1}$ converges, it is enough to prove that $\left(f_{k}^{\prime \prime}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence. From

$$
f_{k}^{\prime \prime}(x)=r_{k} s c a l_{k}(x) i f_{k}^{\prime}(x)
$$

we deduce

$$
\begin{aligned}
\left\|f_{k}^{\prime \prime}(x)-f_{k-1}^{\prime \prime}(x)\right\|_{C^{0}} \leq & \left\|r_{k} s c a l_{k}(x) f_{k}^{\prime}(x)-r_{k-1} \operatorname{scal}_{k-1}(x) f_{k-1}^{\prime}(x)\right\|_{C^{0}} \\
\leq & \left\|r_{k-1} \operatorname{scal}_{k-1}(x) f_{k}^{\prime}(x)-r_{k-1} s c a l_{k-1}(x) f_{k-1}^{\prime}(x)\right\|_{C^{0}} \\
& +\left|r_{k} s c a l_{k}(x)-r_{k-1} \operatorname{scal}_{k-1}(x)\right|\left\|f_{k}^{\prime}(x)\right\|_{C^{0}} \\
\leq & r_{k-1}\left|\operatorname{scal}_{k-1}(x)\right|\left\|f_{k}^{\prime}(x)-f_{k-1}^{\prime}(x)\right\|_{C^{0}} \\
& +r_{k}\left|r_{k} s c a l_{k}(x)-r_{k-1} s c a l_{k-1}(x)\right| .
\end{aligned}
$$

Since

$$
r_{k} s c a l_{k}(x)=r_{0} s c a l_{0}(x)-2 \pi \sum_{l=1}^{k} \alpha_{l} N_{l} \sin \left(2 \pi N_{l} x\right)
$$

we have

$$
\left|r_{k} \operatorname{scal}_{k}(x)-r_{k-1} \operatorname{scal}_{k-1}(x)\right| \leq 2 \pi \alpha_{k} N_{k}
$$

and

$$
r_{k}\left|\operatorname{scal}_{k}(x)\right| \leq r_{0}\left|\operatorname{scal}_{0}(x)\right|+2 \pi \sum_{l \in \mathbb{N}^{*}} \alpha_{l} N_{l} .
$$

In particular the $r_{k}\left|s c a l_{k}(x)\right|$ are uniformly bounded by

$$
M:=\left\|r_{0} \operatorname{scal}_{0}(x)\right\|_{C^{0}}+2 \pi \sum_{k \in \mathbb{N}^{*}} \alpha_{k} N_{k} .
$$

Note that $M<+\infty$. Indeed $\alpha_{k} \sim \sqrt{2\left(1-r_{0}^{2}\right)} \sqrt{\delta_{k}-\delta_{k-1}}$ therefore

$$
\sum_{k \in \mathbb{N}^{*}} \sqrt{\delta_{k}-\delta_{k-1}} N_{k}<+\infty \quad \Longrightarrow \quad \sum_{k \in \mathbb{N}^{*}} \alpha_{k} N_{k}<+\infty .
$$

We deduce

$$
\left\|f_{k}^{\prime \prime}(x)-f_{k-1}^{\prime \prime}(x)\right\|_{C^{0}} \leq M\left\|f_{k}^{\prime}(x)-f_{k-1}^{\prime}(x)\right\|_{C^{0}}+2 \pi \alpha_{k} N_{k}
$$

Let $p<q$, we thus have

$$
\begin{aligned}
\left\|f_{q}^{\prime \prime}(x)-f_{p}^{\prime \prime}(x)\right\|_{C^{0}} & \leq M \sum_{k=p}^{q} \sqrt{\delta_{k}-\delta_{k-1}}+2 \pi \sum_{k=p}^{q} \alpha_{k} N_{k} \\
& \leq M \sum_{k=p}^{\infty} \sqrt{\delta_{k}-\delta_{k-1}}+2 \pi \sum_{k=p}^{\infty} \alpha_{k} N_{k}
\end{aligned}
$$

Hence $\left(f_{k}^{\prime \prime}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence.

2 The normal map

2.1 Analogy with a Riesz product

Theorem 1.- Let \mathbf{n}_{k} be the normal map of f_{k}. We have

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad \mathbf{n}_{k}(x)=e^{i \alpha_{k} \cos \left(2 \pi N_{k} x\right)} \mathbf{n}_{k-1}(x)
$$

where α_{k} is the amplitude of the loop used in the convex integration to build f_{k-1} from f_{k} and $N_{k} \in 2 \mathbb{N}^{*}$ is the number of corrugations of f_{k} (precise definitions below). In particular, the normal map \mathbf{n}_{∞} of f_{∞} has the following expression

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad \mathbf{n}_{\infty}(x)=\left(\prod_{k=1}^{+\infty} e^{i \alpha_{k} \cos \left(2 \pi N_{k} x\right)}\right) \mathbf{n}_{0}(x)
$$

Proof.- This is straightforward from Lemma 3, Talk II and the fact that $\mathbf{n}_{k}=i \mathbf{t}_{k}$.

Theorem 1 puts into light some resemblance of \mathbf{n}_{∞} with a Riesz product, that is, an infinite product

$$
p(x):=\prod_{j=1}^{\infty}\left(1+\alpha_{j} \cos \left(2 \pi N_{j} x\right)\right)
$$

where $\left(\alpha_{j}\right)_{j \in \mathbb{N}}$ is a sequence of real numbers such that for every $j \in \mathbb{N}^{*}$, $\left|\alpha_{j}\right| \leq 1$, and

$$
\forall j \in \mathbb{N}^{*}, \quad \frac{N_{j+1}}{N_{j}} \geq 3+q
$$

for some fixed $q>0$. In particular, if

$$
p(x)=1+\sum_{\nu=1}^{\infty} \gamma_{\nu} \cos (2 \pi \nu x)
$$

is the Fourier expansion of p, then $\gamma_{N_{j}}=\alpha_{j}$ and $\gamma_{\nu}=0$ if ν is not of the form $N_{j_{1}} \pm N_{j_{2}} \pm \ldots \pm N_{j_{k}}, j_{1}>j_{2}>\ldots>j_{k}$ [3]. Riesz products are well known to have a fractal structure. Precisely, their Riesz measures $p(x) d x$ have a fractionnary Hausdorff dimension (4].

An interesting case of a Riesz structure occurs for $\alpha_{j}=a^{j}$ and $N_{j}=b^{j}$ for some positive numbers a, b with $a<1$ and $a b>1$. Indeed, in that case, $A_{\infty}:=\sum_{j} \alpha_{j} \cos \left(2 \pi N_{j} x\right)$ is the well-known Weierstrass function:

$$
A_{\infty}(x)=\sum_{j} a^{j} \cos \left(2 \pi b^{j} x\right) .
$$

Graph of a Weierstrass function with $a=0.5$ and $b=4$.

Although its exact value is conjectural, the Hausdorff dimension of its graph is larger than one [2]. It follows that the Hausdorff dimension of the graph of

$$
\mathbf{n}_{\infty}=\left(\prod_{j=1}^{+\infty} e^{i a^{j} \cos \left(2 \pi b^{j} x\right)}\right) \mathbf{n}_{0}(x)
$$

is also larger than one.

2.2 Spectrum

The normal map \mathbf{n}_{∞} can be thought of as a 1 -periodic map from \mathbb{R} to \mathbb{C}. Let

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad \mathbf{n}_{k}(x)=\sum_{p \in \mathbb{Z}} a_{p}(k) e^{2 i \pi p x}
$$

denotes the Fourier series expansion of the normal map \mathbf{n}_{k}. We derive from Theorem 1 the following inductive formula.

Fourier series expansion of \mathbf{n}_{k}.- We have

$$
\forall p \in \mathbb{Z}, \quad a_{p}(k)=\sum_{n \in \mathbb{Z}} u_{n}(k) a_{p-n N_{k}}(k-1)
$$

where $u_{n}(k)=i^{n} J_{n}\left(\alpha_{k}\right)$.
In the above formula, J_{n} denotes the Bessel function of order n (see [1] or (5):

$$
\alpha \longmapsto J_{n}(\alpha)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n u-\alpha \sin u) \mathrm{d} u .
$$

The Fourier expansion of n_{k} gives the key to understand the construction of the spectrum $\left(a_{p}(k)\right)_{p \in \mathbb{Z}}$ from the spectrum $\left(a_{p}(k-1)\right)_{p \in \mathbb{Z}}$. The k-th spectrum is obtained by collecting an infinite number of shifts of the previous spectrum. The n-th shift is of amplitude $n N_{k}$ and weighted by $u_{n}(k)=$ $i^{n} J_{n}\left(\alpha_{k}\right)$. Since

$$
\left|J_{n}\left(\alpha_{k}\right)\right| \downarrow 0
$$

the weight is decreasing with n (see the figure below).

Lemma (Jacobi-Anger identity).- For every $x \in \mathbb{R}_{+}$, we have

$$
e^{i x \cos \theta}=\sum_{n=-\infty}^{+\infty} i^{n} J_{n}(x) e^{i n \theta}
$$

Proof of the Jacobi-Anger identity. - Since $\theta \longmapsto e^{i x \cos \theta}$ is a C^{∞} periodic function, it admits an expansion in Fourier series:

$$
e^{i x \cos \theta}=\sum_{n=-\infty}^{n=\infty} c_{n}(x) e^{i n \theta}
$$

with

$$
c_{n}(x):=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i x \cos \theta} e^{-i n \theta} \mathrm{~d} \theta .
$$

The change of variable $\theta \longrightarrow \pi-\theta$ shows that

$$
\begin{array}{rlrl}
c_{n}(x) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i x \cos \theta-i n \theta} \mathrm{~d} \theta & \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (x \cos \theta-n \theta) \mathrm{d} \theta & & \text { if } n \text { is even } \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} i \sin (x \cos \theta-n \theta) \mathrm{d} \theta & & \text { if } n \text { is odd }
\end{array}
$$

Now, by arguments similar to the ones of Lemma 1 Talk II, we obtain $c_{n}(x)=i^{n} J_{n}(x)$.

Proof of the Fourier series expansion of $\mathbf{n}_{k} .-$ From the Jacobi-Anger identity

$$
e^{i x \cos \theta}=\sum_{n=-\infty}^{+\infty} i^{n} J_{n}(x) e^{i n \theta}
$$

we deduce

$$
e^{i \alpha_{k} \cos \left(2 \pi N_{k} x\right)}=\sum_{n=-\infty}^{+\infty} i^{n} J_{n}\left(\alpha_{k}\right) e^{2 i \pi n N_{k} x}=\sum_{n=-\infty}^{+\infty} u_{n}(k) e^{2 i \pi n N_{k} x} .
$$

Since the Fourier coefficients of a product of two fonctions are given by the discrete convolution product of their coefficients, the product

$$
\mathbf{n}_{k}(x)=e^{i \alpha_{k} \cos \left(2 \pi N_{k} x\right)} \mathbf{n}_{k-1}(x)
$$

can be written

$$
\begin{aligned}
\mathbf{n}_{k}(x) & =\left(\sum_{n=-\infty}^{+\infty} u_{n}(k) e^{2 i \pi n N_{k} x}\right)\left(\sum_{p=-\infty}^{+\infty} a_{p}(k-1) e^{2 i \pi p x}\right) \\
& =\sum_{p=-\infty}^{+\infty}\left(\sum_{n=-\infty}^{+\infty} u_{n}(k) a_{p-n N_{k}}(k-1)\right) e^{2 i \pi p x} .
\end{aligned}
$$

Therefore

$$
a_{p}(k)=\sum_{n=-\infty}^{+\infty} u_{n}(k) a_{p-n N_{k}}(k-1) .
$$

References

[1] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, 1965.
[2] K. Falconer, Fractal Geometry, Wiley 2003.
[3] J.-P. Kahane, Jacques Peyrière et les produits de Riesz, arXiv.org/abs/1003.4600v1.
[4] F. R. Keogh, Riesz products, Proc. London Math. Soc. 14A (1965), 174-182.
[5] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1995.

