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In the previous talk, we have seen that the sequence f1, fo, ... of C*°-maps
generated by the Nash-Kuiper process C''-converges toward a C'-isometry
foo provided that

Z O — Op—1 < +00.

In this talk we adress the C?-regularity of f.o. To avoid some technicalities
in the computations we still assume that the Nash-Kuiper process is applied
to a smooth initial map fo : E/Z — E? such that:

e (Cond 1) it is of constant speed 7o := || f{|l <1
e (Cond 2) it is radially symmetric, that is: fj(z + 3) = — f}(z)

and that the target speed function is » = 1. We also assume that the Ngs
are chosen among even numbers. The general case, slightly more technical
in nature, is left to the reader.

Proposition 1.— For every k € N*, fi. is of constant speed ry, and radially
symmetric. In particular,

Tt = IC(fx—1, hr, Ni).
The functions ay, are also constant and equal to Jal (%)

Proof.— By induction. Assume that f;_; satisfies (Cond 1) and (Cond 2).
In particular fr_q is of constant speed rip_; and thus the function o =

Jo_l (T’;—;l) is constant. Since Nj € 2N*, we have

ul + 5, {Na( + 5)1) = —hu(a, (N )



and consequently
1
/ hi(s,{Ngs})ds = 0.
0

It ensues that .
IC(fr—1,hi, Ni) = IC(fr—1, hi, Ni)

and therefore fj, is of constant speed || f,.(x)|| = ||hx(z, {Nz})|| = r¢. It is
also radially symmetric since fi(z) = h(z, {Ngz}). 0.

1 (C?-regularity
Proposition 1.— For every x € E/Z, we have

i COS 27rNk:vtk 1 (

fr(x) = (=2magNg sin 2 Ny + r_18caly_1(x)) irge x)

where scaly, denotes the signed curvature of fi. Moreover

k
ripscaly(x) = roscalp(x) — 27 Z ay Ny sin(2w Njz).
=1

Remark 1.— Recall that two regular C? curves differ by a rigid motion if
and only if they have the same signed curvature function.

Remark 2.— Let ui(z) = scalp(x)| f;,(z)||dx be the signed curvature
measure of fr. We have

pr(z) = pg—1(z) — 2may N, sin(27 Nyx)dz.

The convex integration process modifies the curvature mesure in the sim-
plest way by a cosine term with frequency N.

Remark 3.— More generally, if hy(z, s) = r,e/¥+(®)t;_;, one can show that

pur(x) = Ny, (Nix) + prge—1 ().

Thus, if we require to modify the curvature mesure by a single term of
frequency N, we have to choose

V() := ay sin(2mz + phase difference).
This is the reason why in Talk II we have chosen

Yp(z) = ap cos 2.



Proof.— We have

0 .
fl/q/(x) — % (,rkezak cosQﬂ'Nkmtk_l(l,))
3}
= 3 (r(cos(oy, cos 2T N )t—1(z) + sin(oy, cos 2n Nyz)ng_; (z))
x
3}
_ Tk o (cos(auy, cos 2 Ni) fr._1 () + sin(oy, cos 2 Ny )i fi,_ ()
Tk—1 0X ]
= —2imay Ny sin(2m Nz )rie' ™ 2”katk_1(a:)
4+ (cos(ay, cos 2 Ny) fil_1 (x) + sin(ay, cos 2 Ny )i fil_ 1 ()
Tk—1

Since fr_1 is of constant speed 7;_1 we have

ro1 (@) = rp—1scalp—1 (2)ify 1 (2)

therefore

fi(z) = —2i7roszksin(QWNka;)TkemkCOS%N’“Itk_l(az)
rprh_1scaly_q (x)iek oS 2m Nk, (1)

Finally,
7 (x) = (—2map Ny sin 2 Ny + rj_qscalg_1(z)) irj e cos QWN’“wtk_l(x).
Because fi, is of constant arc length we also have
fl(x) = rpscaly(z)ifi(x) = rpscaly(x)irgel® ©52™Neoy, (1),
From this we deduce

ripscaly(x) = rg—1scali—1(x) — 2woy Ny sin(2m Ny x)

and by induction

k
ripscal(x) = roscaly(x) — 27 Z oy Ny sin(2r Njz).
=1

Lemma 2 (Amplitude Lemma).— We have

Qp ~ 2(1 — 7'(2))\/51@ — 5k71

where ~ denotes the equivalence of sequences.



Proof.— By definition oy = Jj I(T’;—;l) Recall that the Taylor expansion
of Jo(a) up to order 2 is

2

wzl—%—ko(oﬁ).

Let y =1 —w and X = o2, we have y = 3 + 0(X) thus X = 4y + o(y) and
so X ~ 4y. We finally get

a~2yv1—w and o ~ 2 1 Dt
Tk

Since rZ 4+ (1 —73) = 1, we have
ric =15+ 0p(1 = 18) = 1+ (6 — 1)(1 —17)

SO
e =11 = (O — 1) (1 — 79)

and

T2 _ _ ’f'2

In an other hand

Thus

and

Proposition 2.— If >, -y« /0 — 0p—1Ng < +00 then foo is C?.

Proof.— Since we already know that the sequence (fi)reny C' converges, it
is enough to prove that (f;') ren 18 a Cauchy sequence. From

7 (x) = rpscaly ()i fr ()



we deduce

Ifi(x) = fi_i(@)lco < lrescaly(z) fr.(x) — rr—1scalp—1(x) fr._ ()| co
< lrreascaly—1 () fy(z) = rp—1scaly 1 () fr_y () ]| co
+|rrscali(x) — re—1scalp—1(x)||| fr(@)] co
< rpealscalp_1 (@)1 fr(z) = fr_1 ()]l co

+rg|rpscaly(x) — re_1scalp_1(x)].

Since .
rpscal(x) = roscaly(x) — 27 Z oy Ny sin(2w Nyz)
=1
we have
Iriscaly(x) — rg—1scalg—1(x)| < 2may N
and

ri|scaly(x)| < rolscaly(z)| + 27 Z aN;.
leN*

In particular the rx|scaly(x)| are uniformly bounded by

M := ||roscalg()||co + 27 Y N
keN*

Note that M < +oo. Indeed ay, ~ /2(1 — 8)\/0k — Ok_1 therefore

Z O — 01N < +o0 — Z ap N, < +o0.

keN* keN*

We deduce

I1£7 (@) = fila(@)lleo < M fi(2) = fr1(@)llco + 2map Ny

Let p < ¢, we thus have
q q
I1£2(2) = £l (@)llco < MY N0k — dp1 + 27 Ny,
k=p k=p
oo o
MZ O — Op_1+ QFZOszk.
k=p k=p

IN

Hence ( f,’c’) pen 18 @ Cauchy sequence. 0



2 The normal map

2.1 Analogy with a Riesz product

Theorem 1.— Let ng be the normal map of fr. We have
Ve € B/Z, ng(z) = e sCN)y, ) (2)

where ay, 1s the amplitude of the loop used in the convex integration to build
fr—1 from fi and Ny € 2N* is the number of corrugations of fi (precise
definitions below). In particular, the normal map n of foo has the following
exTpression

+0o0

Ve € E/Z, ny(z) = (H ik cos(27rka)) no().

k=1

Proof.— This is straightforward from Lemma 3, Talk IT and the fact that
ng = ’itk. Il

Theorem 1 puts into light some resemblance of no, with a Riesz product,
that is, an infinite product

o0

p(x) = H(l + aj cos(2mNjx)),
j=1

where (a;)jen is a sequence of real numbers such that for every j € N*,
laj| <1, and
Vj e N* Nitt g q
) N‘] —
for some fixed ¢ > 0. In particular, if

plz) =1+ Z'yl, cos(2mvx)

v=1

is the Fourier expansion of p, then vy, = a; and 7, = 0 if v is not of the
form Nj + Nj, £ ... £ Nj,, j1 > jo > ... > ji [3]. Riesz products are well
known to have a fractal structure. Precisely, their Riesz measures p(z)dz
have a fractionnary Hausdorff dimension [4].



An interesting case of a Riesz structure occurs for a; = a/ and N; = b/ for
some positive numbers a,b with a < 1 and ab > 1. Indeed, in that case,
Ao := 3, ajcos(2mNjz) is the well-known Weierstrass function:

Aso(z) = Z a’ cos(2nb’ x).

J
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Graph of a Weierstrass function with a = 0.5 and b = 4.

Although its exact value is conjectural, the Hausdorff dimension of its graph
is larger than one [2]. It follows that the Hausdorff dimension of the graph

of
400

ial J
Ny = H ol cos(2wbl ) 1’10(.%).
i=1

is also larger than one.

2.2 Spectrum

The normal map n,, can be thought of as a 1-periodic map from R to C.
Let '
Ve e B/Z, ng(zx)= Z ap(k)e? ™
PEZL

denotes the Fourier series expansion of the normal map nj;. We derive from
Theorem 1 the following inductive formula.



Fourier series expansion of niy.— We have

VpeZ, apk)=> un(k)apnn,(k—1)
neL

where uy (k) = i"Jp ().

In the above formula, .J,, denotes the Bessel function of order n (see [I] or

iB): .
ar— Jy(a) = ;/0 cos(nu — asinu)du.
The Fourier expansion of ng gives the key to understand the construction
of the spectrum (a,(k))pez from the spectrum (ay(k — 1))pez. The k-th
spectrum is obtained by collecting an infinite number of shifts of the previous
spectrum. The n-th shift is of amplitude nNy and weighted by wu, (k) =
i"Jn (). Since
[ n(or)] 10

the weight is decreasing with n (see the figure below).
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A schematic picture of the various spectra (ay(k))pez with Nj = b*.

Lemma (Jacobi-Anger identity).— For every x € Ry, we have

—+00
6i:ccost9= § : ,ian(x)einO.

n=—oo



Proof of the Jacobi-Anger identity. — Since 6 — @9 i a C
periodic function, it admits an expansion in Fourier series:

n=oQ

eixcosé — Z Cn(l,)einQ

n=-—00
with
1 2 )
Cn(.%') . / el cos Ge—znedﬂ.
0

T o
The change of variable § — 7 — 6 shows that

1 21
cn(z) = 2 /. e
1 2m
= 3= cos (z cosd — nf) do if n is even
T Jo
1 27
= — isin (z cos — nd) do if n is odd
2 0

1T Cos 0—m9d9

Now, by arguments similar to the ones of Lemma 1 Talk II, we obtain
cn(z) =" Jy (). O

Proof of the Fourier series expansion of n;y.— From the Jacobi-Anger
identity

+00
eixcos@ — Z ian($)ein9
n=-—o00
we deduce
+o00 +oo
elak cos(2nNpz) _ Z ian(ak)e%mLNkz _ Z un(k)emﬁmem‘
n=-—o00 n=-—00

Since the Fourier coefficients of a product of two fonctions are given by the
discrete convolution product of their coefficients, the product

ny, ($) — ol cos(2m Nix) ng_1 (CC)

can be written

00 ‘ 00 '
ni(z) = (Z un<k>e2”“NM> ( > ap<k—1>e2”m>

n—=—00 pP=—00
+o0o +o00 '
= ) (Z un<k>ap-nNk<k—1>>
p=—00 \N=—00



Therefore

+oo
ap(k) = Y tn(k)ap—nn, (k—1). O

n=—oo
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