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In the previous talk, we have seen that the sequence f1, f2, ... of C∞-maps
generated by the Nash-Kuiper process C1-converges toward a C1-isometry
f∞ provided that ∑√

δk − δk−1 < +∞.

In this talk we adress the C2-regularity of f∞. To avoid some technicalities
in the computations we still assume that the Nash-Kuiper process is applied
to a smooth initial map f0 : E/Z→ E2 such that:

• (Cond 1) it is of constant speed r0 := ‖f ′0‖ < 1

• (Cond 2) it is radially symmetric, that is: f ′0(x+ 1
2) = −f ′0(x)

and that the target speed function is r ≡ 1. We also assume that the Nks
are chosen among even numbers. The general case, slightly more technical
in nature, is left to the reader.

Proposition 1.– For every k ∈ N∗, fk is of constant speed rk and radially
symmetric. In particular,

fk = IC(fk−1, hk, Nk).

The functions αk are also constant and equal to J−10

(
rk−1

rk

)
.

Proof.– By induction. Assume that fk−1 satisfies (Cond 1) and (Cond 2).
In particular fk−1 is of constant speed rk−1 and thus the function αk =

J−10

(
rk−1

rk

)
is constant. Since Nk ∈ 2N∗, we have

hk(x+
1

2
, {Nk(x+

1

2
)}) = −hk(x, {Nkx})

1



and consequently ∫ 1

0
hk(s, {Nks})ds = 0.

It ensues that
IC(fk−1, hk, Nk) = ĨC(fk−1, hk, Nk)

and therefore fk is of constant speed ‖f ′k(x)‖ = ‖hk(x, {Nx})‖ = rk. It is
also radially symmetric since fk(x) = h(x, {Nkx}). �.

1 C2-regularity

Proposition 1.– For every x ∈ E/Z, we have

f ′′k (x) = (−2παkNk sin 2πNkx+ rk−1scalk−1(x)) irke
iαk cos 2πNkxtk−1(x)

where scalk denotes the signed curvature of fk. Moreover

rkscalk(x) = r0scal0(x)− 2π
k∑
l=1

αlNl sin(2πNlx).

Remark 1.– Recall that two regular C2 curves differ by a rigid motion if
and only if they have the same signed curvature function.

Remark 2.– Let µk(x) := scalk(x)‖f ′k(x)‖dx be the signed curvature
measure of fk. We have

µk(x) = µk−1(x)− 2παkNk sin(2πNkx)dx.

The convex integration process modifies the curvature mesure in the sim-
plest way by a cosine term with frequency Nk.

Remark 3.– More generally, if hk(x, s) = rke
iψk(s)tk−1, one can show that

µk(x) = Nkψ
′
k(Nkx) + µk−1(x).

Thus, if we require to modify the curvature mesure by a single term of
frequency Nk, we have to choose

ψ′k(x) := αk sin(2πx+ phase difference).

This is the reason why in Talk II we have chosen

ψk(x) = αk cos 2πx.
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Proof.– We have

f ′′k (x) =
∂

∂x

(
rke

iαk cos 2πNkxtk−1(x)
)

=
∂

∂x
(rk(cos(αk cos 2πNkx)tk−1(x) + sin(αk cos 2πNkx)nk−1(x))

=
rk
rk−1

∂

∂x

(
cos(αk cos 2πNkx)f ′k−1(x) + sin(αk cos 2πNkx)if ′k−1(x)

)
= −2iπαkNk sin(2πNkx)rke

iαk cos 2πNkxtk−1(x)

+
rk
rk−1

(
cos(αk cos 2πNkx)f ′′k−1(x) + sin(αk cos 2πNkx)if ′′k−1(x)

)
Since fk−1 is of constant speed rk−1 we have

f ′′k−1(x) = rk−1scalk−1(x)if ′k−1(x)

therefore

f ′′k (x) = −2iπαkNk sin(2πNkx)rke
iαk cos 2πNkxtk−1(x)

+rkrk−1scalk−1(x)ieiαk cos 2πNkxtk−1(x)
.

Finally,

f ′′k (x) = (−2παkNk sin 2πNkx+ rk−1scalk−1(x)) irke
iαk cos 2πNkxtk−1(x).

Because fk is of constant arc length we also have

f ′′k (x) = rkscalk(x)if ′k(x) = rkscalk(x)irke
iαk cos 2πNkxtk−1(x).

From this we deduce

rkscalk(x) = rk−1scalk−1(x)− 2παkNk sin(2πNkx)

and by induction

rkscalk(x) = r0scal0(x)− 2π

k∑
l=1

αlNl sin(2πNlx).

�
Lemma 2 (Amplitude Lemma).– We have

αk ∼
√

2(1− r20)
√
δk − δk−1

where ∼ denotes the equivalence of sequences.
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Proof.– By definition αk = J−10 (
rk−1

rk
). Recall that the Taylor expansion

of J0(α) up to order 2 is

w = 1− α2

4
+ o(α2).

Let y = 1−w and X = α2, we have y = X
4 + o(X) thus X = 4y + o(y) and

so X ∼ 4y. We finally get

α ∼ 2
√

1− w and αk ∼ 2

√
1− rk−1

rk
.

Since r20 + (1− r20) = 1, we have

r2k = r20 + δk(1− r20) = 1 + (δk − 1)(1− r20)

so
r2k − r2k−1 = (δk − δk−1)(1− r20)

and

1−
r2k−1
r2k

=
(δk − δk−1)(1− r20)

1− (1− δk)(1− r20)
∼ (δk − δk−1)(1− r20).

In an other hand

1−
r2k−1
r2k

=

(
1− rk−1

rk

)(
1 +

rk−1
rk

)
∼ 2

(
1− rk−1

rk

)
.

Thus (
1− rk−1

rk

)
∼ 1

2
(δk − δk−1)(1− r20).

and

αk ∼ 2

√
1− rk−1

rk
∼
√

2(1− r20)
√
δk − δk−1.

�
Proposition 2.– If

∑
k∈N∗

√
δk − δk−1Nk < +∞ then f∞ is C2.

Proof.– Since we already know that the sequence (fk)k∈N C
1 converges, it

is enough to prove that (f ′′k )k∈N is a Cauchy sequence. From

f ′′k (x) = rkscalk(x)if ′k(x)
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we deduce

‖f ′′k (x)− f ′′k−1(x)‖C0 ≤ ‖rkscalk(x)f ′k(x)− rk−1scalk−1(x)f ′k−1(x)‖C0

≤ ‖rk−1scalk−1(x)f ′k(x)− rk−1scalk−1(x)f ′k−1(x)‖C0

+|rkscalk(x)− rk−1scalk−1(x)|‖f ′k(x)‖C0

≤ rk−1|scalk−1(x)|‖f ′k(x)− f ′k−1(x)‖C0

+rk|rkscalk(x)− rk−1scalk−1(x)|.

Since

rkscalk(x) = r0scal0(x)− 2π

k∑
l=1

αlNl sin(2πNlx)

we have
|rkscalk(x)− rk−1scalk−1(x)| ≤ 2παkNk

and
rk|scalk(x)| ≤ r0|scal0(x)|+ 2π

∑
l∈N∗

αlNl.

In particular the rk|scalk(x)| are uniformly bounded by

M := ‖r0scal0(x)‖C0 + 2π
∑
k∈N∗

αkNk.

Note that M < +∞. Indeed αk ∼
√

2(1− r20)
√
δk − δk−1 therefore∑

k∈N∗

√
δk − δk−1Nk < +∞ =⇒

∑
k∈N∗

αkNk < +∞.

We deduce

‖f ′′k (x)− f ′′k−1(x)‖C0 ≤M‖f ′k(x)− f ′k−1(x)‖C0 + 2παkNk.

Let p < q, we thus have

‖f ′′q (x)− f ′′p (x)‖C0 ≤ M

q∑
k=p

√
δk − δk−1 + 2π

q∑
k=p

αkNk

≤ M
∞∑
k=p

√
δk − δk−1 + 2π

∞∑
k=p

αkNk.

Hence
(
f ′′k
)
k∈N is a Cauchy sequence. �
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2 The normal map

2.1 Analogy with a Riesz product

Theorem 1.– Let nk be the normal map of fk. We have

∀x ∈ E/Z, nk(x) = eiαk cos(2πNkx)nk−1(x)

where αk is the amplitude of the loop used in the convex integration to build
fk−1 from fk and Nk ∈ 2N∗ is the number of corrugations of fk (precise
definitions below). In particular, the normal map n∞ of f∞ has the following
expression

∀x ∈ E/Z, n∞(x) =

(
+∞∏
k=1

eiαk cos(2πNkx)

)
n0(x).

Proof.– This is straightforward from Lemma 3, Talk II and the fact that
nk = itk. �

Theorem 1 puts into light some resemblance of n∞ with a Riesz product,
that is, an infinite product

p(x) :=

∞∏
j=1

(1 + αj cos(2πNjx)),

where (αj)j∈N is a sequence of real numbers such that for every j ∈ N∗,
|αj | ≤ 1, and

∀j ∈ N∗,
Nj+1

Nj
≥ 3 + q

for some fixed q > 0. In particular, if

p(x) = 1 +

∞∑
ν=1

γν cos(2πνx)

is the Fourier expansion of p, then γNj = αj and γν = 0 if ν is not of the
form Nj1 ± Nj2 ± ... ± Njk , j1 > j2 > ... > jk [3]. Riesz products are well
known to have a fractal structure. Precisely, their Riesz measures p(x)dx
have a fractionnary Hausdorff dimension [4].
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An interesting case of a Riesz structure occurs for αj = aj and Nj = bj for
some positive numbers a, b with a < 1 and ab > 1. Indeed, in that case,
A∞ :=

∑
j αj cos(2πNjx) is the well-known Weierstrass function:

A∞(x) =
∑
j

aj cos(2πbjx).

Graph of a Weierstrass function with a = 0.5 and b = 4.

Although its exact value is conjectural, the Hausdorff dimension of its graph
is larger than one [2]. It follows that the Hausdorff dimension of the graph
of

n∞ =

+∞∏
j=1

eia
j cos(2πbjx)

n0(x).

is also larger than one.

2.2 Spectrum

The normal map n∞ can be thought of as a 1-periodic map from R to C.
Let

∀x ∈ E/Z, nk(x) =
∑
p∈Z

ap(k)e2iπpx

denotes the Fourier series expansion of the normal map nk. We derive from
Theorem 1 the following inductive formula.
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Fourier series expansion of nk.– We have

∀p ∈ Z, ap(k) =
∑
n∈Z

un(k)ap−nNk
(k − 1)

where un(k) = inJn(αk).

In the above formula, Jn denotes the Bessel function of order n (see [1] or
[5]):

α 7−→ Jn(α) =
1

π

∫ π

0
cos(nu− α sinu)du.

The Fourier expansion of nk gives the key to understand the construction
of the spectrum (ap(k))p∈Z from the spectrum (ap(k − 1))p∈Z. The k-th
spectrum is obtained by collecting an infinite number of shifts of the previous
spectrum. The n-th shift is of amplitude nNk and weighted by un(k) =
inJn(αk). Since

|Jn(αk)| ↓ 0

the weight is decreasing with n (see the figure below).

A schematic picture of the various spectra (ap(k))p∈Z with Nk = bk.

Lemma (Jacobi-Anger identity).– For every x ∈ R+, we have

eix cos θ =

+∞∑
n=−∞

inJn(x)einθ.
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Proof of the Jacobi-Anger identity. – Since θ 7−→ eix cos θ is a C∞

periodic function, it admits an expansion in Fourier series:

eix cos θ =
n=∞∑
n=−∞

cn(x)einθ

with

cn(x) :=
1

2π

∫ 2π

0
eix cos θe−inθdθ.

The change of variable θ −→ π − θ shows that

cn(x) =
1

2π

∫ 2π

0
eix cos θ−inθdθ

=
1

2π

∫ 2π

0
cos (x cos θ − nθ) dθ if n is even

=
1

2π

∫ 2π

0
i sin (x cos θ − nθ) dθ if n is odd

Now, by arguments similar to the ones of Lemma 1 Talk II, we obtain
cn(x) = inJn(x). �

Proof of the Fourier series expansion of nk.– From the Jacobi-Anger
identity

eix cos θ =
+∞∑

n=−∞
inJn(x)einθ

we deduce

eiαk cos(2πNkx) =
+∞∑

n=−∞
inJn(αk)e

2iπnNkx =
+∞∑

n=−∞
un(k)e2iπnNkx.

Since the Fourier coefficients of a product of two fonctions are given by the
discrete convolution product of their coefficients, the product

nk(x) = eiαk cos(2πNkx)nk−1(x)

can be written

nk(x) =

(
+∞∑

n=−∞
un(k)e2iπnNkx

)(
+∞∑
p=−∞

ap(k − 1)e2iπpx

)

=

+∞∑
p=−∞

(
+∞∑

n=−∞
un(k)ap−nNk

(k − 1)

)
e2iπpx.

9



Therefore

ap(k) =
+∞∑

n=−∞
un(k)ap−nNk

(k − 1). �

References

[1] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions,
Dover, 1965.

[2] K. Falconer, Fractal Geometry, Wiley 2003.

[3] J.-P. Kahane, Jacques Peyrière et les produits de Riesz,
arXiv.org/abs/1003.4600v1.

[4] F. R. Keogh, Riesz products, Proc. London Math. Soc. 14A (1965),
174-182.

[5] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cam-
bridge University Press, 1995.

10


	C2-regularity
	The normal map
	Analogy with a Riesz product
	Spectrum


