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Convex Integration Theory is a powerful tool for solving differential re-
lations. It was introduced by M. Gromov in his thesis dissertation in 1969,
then published in an article [2] in 1973 and eventually generalized in a book
[3] in 1986. Nevertheless, reading Gromov is often a challenge since im-
portant details are not provided explicitely. Fortunately, there is a good
reference that leaves no details in the shadow : the Spring’s book [5]. My un-
derstanding of Convex Integration Theory primarily comes from this book.
I owe it much in this presentation.

1 Two introductory examples

1.1 A first example

Let us consider the following elementary problem.

Problem 1.– Let
f0 : [0, 1] −→ R3

t 7−→ (0, 0, t)

be the linear application mapping the segment [0, 1] vertically in R3. The

problem is to find f : [0, 1]
C1

−→ R3 such that:

i) ∀ t ∈ [0, 1], |cos(f ′(t), e3)| < ε
ii) ‖f − f0‖C0 < δ

where ε > 0 and δ > 0 are given.

Solution.– At a first glance, the problem seems hopeless since condition i
says that the slope is small and then the image has to move far away from
the segment before reaching the desired height. After a few seconds of extra
thinking, the solution occurs. It is good enough to move along an helix
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spiralling around the vertical axis:

f : [0, 1] −→ R3

t 7−→


δ cos 2πNt
δ sin 2πNt
t

where N ∈ N∗ is the number of spirals. We have

〈 f ′

‖f ′‖
, e3
〉

=
1√

1 + 4π2N2δ2
.

Therefore, if N is large enough, f fulfills conditions i and ii.

The image of f0 is the green vertical segment, the solution f is the red helix.

Rephrasing.– The above problem was pretty easy, it will become very
informative with a rephrasing of the two conditions. Condition (i) means
that the image of f ′ lies inside the cone:

R = {v ∈ R3 \ {O} |
∣∣∣∣〈 v|v| , e3〉

∣∣∣∣ < ε} ∪ {O}.

By extension, that cone R is called the differential relation of our problem.

f ’
0

f ’

The cone R is pictured in blue, the image of f ′ is the red circle and the constant

image of f ′0 the green point outside the cone.
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The C0-closeness required in the second condition, is a consequence of a
geometric property of the derivative of f. Indeed, the image of f ′ in that
cone is a circle whose center is the constant image of f ′0. Therefore, the
average of f ′ for each spiral of f is f ′0(t):

1

Long(Ik)

∫
Ik

f ′(u)du = f ′0(t)

where Ik = [ kN ,
k+1
N ] the preimage of one spiral by f . Therefore, when

integrating, the two resulting maps are closed together.

1.2 An more general example

Problem.– Let R ⊂ R3 be a path-connected subset (=our differential

relation) and f0 : [0, 1]
C1

−→ R3 be a map such

∀t ∈ [0, 1], f ′0(t) ∈ IntConv(R)

where IntConv(R) denotes the interior of the convex hull of R. The prob-

lem is to find f : [0, 1]
C1

−→ R3 such that :

i) ∀t ∈ [0, 1], f ′(t) ∈ R
ii) ‖f − f0‖C0 < δ

with δ > 0 given.

Solution.– From the hypothesis, the image of f ′0 lies in the convex hull of
R. The idea is to build f ′ with an image lying inside R and such that, on
average, it looks like the derivative of f0. One way to do that is to choose a
the f ′-image to resemble to a kind of spring. In the spring, each arc as the
same effect, on average, as a small piece of the image of the initial map f ′0.
So, when integrating, the resulting map will be close to the initial map. As
before, we will improve the closeness of f to f0 by incresing the number of
spirals.
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 f ’ 
0

R

 f ’ 

The green bended spaghetti1 pictures the image of f ′0, the half of a spring in

rep/pink is the chosen image for f ′.

To formally construct a solution f of the problem, it is enough to choose a
continuous family of loops of R:

h : [0, 1] −→ C0(R/Z,R)
u 7−→ hu

such that

∀u ∈ [0, 1],

∫
[0,1]

hu(s)ds = f ′0(u)

i.e the average of the loop hu is f ′0(u).

uh 

0
 f ’ (u)

s

u
The image of the loop hu. In that picture, this image is an arc. This loop is a

round-trip starting at one of the endpoint of the arc and arriving at the same

endpoint.

Then, the map f ′ is extracted from that familly of loops by a simple diagonal
process

∀t ∈ [0, 1], f ′(t) := ht({Nt})

where N ∈ N∗ and {Nu} is the fractional part of Nt.

1Spaghetto ?
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({Nu})uf’(u):=h 
s

u
The image of f ′.

Eventually, it remains to integrate to obtain a solution to our problem:

f(t) := f0(0) +

∫ t

0
hu({Nu})du.

We say that f is obtained from f0 by a convex integration process.

2 Finding the loops

In the above problem, we were wilfully blind to the question of the existence
of the family of loops (hu)u∈[0,1] needed to build the solution. We now deal
with that issue.

Notation.– Let A ⊂ Rn and a ∈ A. We denote by IntConv(A, a) the in-
terior of the convex hull of the connected component of A to which a belongs.

Definition.– A (continuous) loop g : [0, 1] → Rn, g(0) = g(1), strictly
surrounds z ∈ Rn if

IntConv(g([0, 1])) ⊃ {z}.

Fundamental Lemma.– Let R ⊂ Rn be an open set, σ ∈ R and z ∈
IntConv(R, σ) There exists a loop h : [0, 1]

C0

−→ R with base point σ that
strictly surrounds z and such that:

z =

∫ 1

0
h(s)ds.

Proof.– Since z ∈ IntConv(R, σ), there exists a n-simplex ∆ whose ver-
tices y0, ..., yn belong toR and such that z lies in the interior of ∆. Therefore,
there also exist

(α0, ..., αn) ∈ ]0, 1[ n+1
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such that
n∑
k=0

αk = 1 and z =
n∑
k=0

αkyk. Every loop g : [0, 1]→ R with base

point σ and passing through y0, ..., yn satisfies IntConv(g([0, 1]) ⊃ {z} i. e.
g surrounds z.

In general

z 6=
∫ 1

0
g(s)ds.

Let s0, ..., sn be the times for which g(sk) = yk and let fk : [0, 1] → R∗+ be
such that :

i) fk < η1 sur [0, 1] \ [sk − η2, sk + η2],

ii)

∫ 1

0
fk = 1,

with η1, η2 two small positive numbers. We set:

zk :=

∫ 1

0
g(s)fk(s)ds.

The number ε > 0 being given, we can choose η1, η2 such that:

∀k ∈ {0, ..., n}, ‖zk − g(sk)‖ ≤ ε.
Since R in open and z ∈ Int ∆, for ε small enough we have

z ∈ IntConv(z0, ..., zn).

Therefore, there exist (p0, ..., pn) ∈ ]0, 1[ n+1 such that
n∑
k=0

pk = 1 and:

z =
n∑
k=0

pkzk =
n∑
k=0

pk

∫ 1

0
g(s)fk(s)ds

=

∫ 1

0
g(s)

n∑
k=0

pkfk(s)ds =

∫ 1

0
g(s)ϕ′(s)ds
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where we have set

ϕ′(s) :=
n∑
k=0

pkfk(s)

and
ϕ : [0, 1] −→ [0, 1]

s 7−→
∫ s

0
ϕ(u)du.

We have ϕ′(s) > 0, ϕ(0) = 0, ϕ(1) = 1. Thus ϕ is a strictly increasing
diffeomorphism of [0, 1]. Let us employ the change of coordinates s = ϕ−1(t),
that is t = ϕ(s), we have

dt = ϕ′(s)ds

therefore:

z =

∫ 1

0
g(s)ϕ′(s)ds =

∫ 1

0
g ◦ ϕ−1(t)dt.

Thus h = g ◦ ϕ−1 is our desired loop. �

Remark.– A priori h ∈ Ωσ(R), but it is obvious that we can choose h
among ”round-trips” i.e the space:

ΩAR
σ (R) = {h ∈ Ωσ(R) | ∀s ∈ [0, 1] h(s) = h(1− s)}.

The point is that the above space is contractible. For every u ∈ [0, 1] we
then denote by hu : [0, 1] −→ R the map defined by

hu(s) =

{
h(s) if s ∈ [0, u2 ] ∪ [1− u

2 ]
h(u) if s ∈ [u2 , 1−

u
2 ].

This homotopy induces a deformation retract of ΩAR
σ (R) to the constant

map
σ̃ : [0, 1] −→ R

s 7−→ σ.
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Parametric version of the Fundamental Lemma. – Let P be a compact
manifold, E = P × Rn π−→ P be a trivial bundle, and R ⊂ E be a set such
that

∀p ∈ P, Rp := π−1(p) ∩R is an open set of Rn

Let σ ∈ Γ(R) and z ∈ Γ(E) such that:

∀p ∈ P, z(p) ∈ IntConv(Rp, σ(p)).

Then, there exists h : P × [0, 1]
C∞
−→ R such that:

h(., 0) = h(., 1) = σ ∈ Γ∞(R), ∀p ∈ P, h(p, .) ∈ ΩAR
σ(p)(Rp)

and

∀p ∈ P, z(p) =

∫ 1

0
h(p, s)ds.

Proof.– The proof is rather long and technical. The main problem is the
following: the result of the previous lemma rests on the existence of points
y0, ..., yn of R such that z ∈ IntConv({y0, ..., yn}). If we want to mimic the
previous proof while adding, we need to be able to follow continuously the
points over P, that is, we need to show the existence of (n + 1) continuous
maps y0, ..., yn : P −→ Rn such that

∀p ∈ P, z(p) ∈ IntConv({y0(p), ..., yn(p)}).

Locally, it is easy to obtain maps hU : U × [0, 1]
C∞
−→ R over open sets

U , the true problem is to glue them together. In order to do that, we
take advantage of the contractibility of the round-trip loops. The following
sequence of pictures should be enlightning.

A homotopy among loops surrounding z and joining hU (red) to hV (blue).
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We then obtain a globally defined continuous map h : P × [0, 1]
C∞
−→ R such

that
∀p ∈ P, z(p) ∈ IntConv(h(p, [0, 1]))

and

h(., 0) = h(., 1) = σ ∈ Γ∞(R), ∀p ∈ P, h(p, .) ∈ ΩAR
σ(p)(Rp).

It eventually remains to reparametrize the map h so that

∀p ∈ P, z(p) =

∫ 1

0
h(p, s)ds.

For more details, see [5] p. 29-31. �

C∞ parametric version of the Fundamental Lemma. – Let P be a
compact manifold, E = P × Rn π−→ P a trivial bundle and R ⊂ E be a set
such that

∀p ∈ P, Rp := π−1(p) ∩R is an open set of Rn

Let σ ∈ Γ∞(R) and z ∈ Γ∞(E) such that

∀p ∈ P, z(p) ∈ IntConv(Rp, σ(p)).

Then there exists h : P × [0, 1]
C∞
−→ R such that

h(., 0) = h(., 1) = σ ∈ Γ(R), ∀p ∈ P, h(p, .) ∈ ΩAR
σ(p)(Rp)

and

∀p ∈ P, z(p) =

∫ 1

0
h(p, s)ds.

Proof.– Let (ρε : [0, 1] −→ R)ε>0 be a sequence of mollifiers. For every
p ∈ P we define a C∞ map by the formula

hε(p, .) : [0, 1] −→ Rn
t 7−→ (h(p, .) ∗ ρε)(t).

We set

zε(p) :=

∫ 1

0
hε(p, t)dt
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and we define Hε : P × R −→ Rn by

Hε(p, t) := hε(p, t) + z(p)− zε(p).

We have ∫ 1

0
Hε(p, t)dt = z(p).

If ε is small enough, the image of the map t 7−→ Hε(p, t) lies inside Rp.
Thanks to the compactness of P the choice of the ε can be made indepen-
dently of p ∈ P. �

3 C0-density

Let R ⊂ Rn be a arc-connected subset, f0 ∈ C∞(I,Rn) be a map such that
f ′0(I) ⊂ IntConv(R). From the C∞ parametric version of the Fundamental
Lemma there exists a C∞-map h : I × E/Z −→ R such that

∀t ∈ I, f ′0(t) =

∫ 1

0
h(t, u)du.

We set

∀t ∈ I, F (t) := f0(0) +

∫ t

0
h(s,Ns)ds

with N ∈ N∗.

Definition.– We say that F ∈ C∞(I,Rn) is obtained from f0 by an convex
integration process.

Obviously F ′(t) = h(t,Nt) ∈ R and thus F is a solution of the differential
relation R. One crucial property of the convex integration process is that
the solution F can be made arbitrarily close to the initial map f0..

Proposition (C0-density).– We have

‖F − f0‖C0 ≤
1

N

(
2‖h‖C0 + ‖∂h

∂t
‖C0

)
where ‖g‖C0 = supp∈D ‖g(p)‖E3 denotes the C0 norm of a function g : D →
E3.
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Proof.– Let t ∈ [0, 1]. We put n := [Nt] (the integer part of Nt) and set
Ij = [ jN ,

j+1
N ] for 0 ≤ j ≤ n− 1 and In = [ nN , t]. We write

F (t)− f(0) =
n∑
j=0

Sj and f0(t)− f0(0) =
n∑
j=0

sj

with Sj :=
∫
Ij
h(v,Nv)dv and sj :=

∫
Ij

∫ 1
0 h(x, u)dudx. By the change of

variables u = Nv − j, we get for each j ∈ [0, n− 1]

Sj =
1

N

∫ 1

0
h(
u+ j

N
, u)du =

∫
Ij

∫ 1

0
h(
u+ j

N
, u)dudx.

It ensues that

‖Sj − sj‖E3 ≤
1

N2
‖∂h
∂t
‖C0 .

The proposition then follows from the obvious inequalities

‖Sn − sn‖E3 ≤
2

N
‖h‖C0 and ‖F (t)− f0(t)‖E3 ≤

n∑
j=0

‖Sj − sj‖E3 .

�

The increase of the C0 closeness with N.

In a multi-variables setting, the convex integration formula take the following
natural form:

f(c1, ..., cm) := f0(c1, ..., cm−1, 0) +

∫ cm

0
h(c1, ..., cm−1, s,Ns)ds

where (c1, ..., cm) ∈ [0, 1]m. This expression is nothing else but the para-
metric formula of a convex integration process with parameter space P =
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[0, 1]m−1. It turns out that the above C0-density property can then be en-
hanced to a C1,m̂-density property where the notation C1,m̂ means that the
closeness is measured with the following norm

‖f‖C1,m̂ = max(‖f‖C0 , ‖
∂f

∂c1
‖C0 , ..., ‖

∂f

∂cm−1
‖C0),

that is the C1-norm without the ‖ ∂f
∂cm
‖C0 term.

Proposition (C1,m̂-density).– Let R ⊂ Rn be an open set, E = C ×
Rn π−→ C be the trivial bundle over the cube C = [0, 1]m, σ ∈ Γ(R) and let
f0 : C −→ Rn be a map such that:

∀c = (c1, ..., cm) ∈ [0, 1]m,
∂f0
∂cm

(c) ∈ IntConv(Rc, σ(c))

where Rc = π−1(c) ∩ R. Then, for every ε > 0, there exists f : C −→ Rn
such that:

i)
∂f

∂cm
∈ Γ(R)

ii)
∂f

∂cm
is homotopic to σ in Γ(R)

iii) ‖f − f0‖C1,m̂ = O
(
1
N

)
.

Proof.– We have

∂f

∂cm
(c1, ..., cm) = h(c1, ..., cm−1, cm, Ncm) ∈ Rc

and ∂f
∂cm

(c1, ..., cm) is homotopic to σ(c) via

σu(c) := hu(c1, ..., cm−1, cm, Ncm)

where hu is the contracting map described just below the proof of the Fun-
damental Lemma. Mimicking the proof of the C0-density property, it is easy
to show that

‖ ∂f
∂cj
− ∂f0
∂cj
‖C0 = O

(
1

N

)
for every j ∈ {1, ...,m− 1}. �
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Remark.– Even if f0(0) = f0(1), the map F obtained by a convex inte-
gration from f0 does not satisfy F (0) = F (1) in general. This can be easily
corrected by defining a new map f with the formula

∀t ∈ [0, 1] , f(t) = F (t)− t (F (1)− F (0)) .

The following proposition shows that the C0-density property still holds for
f and, provided N is large enough, that the map f is still a solution of R.

Proposition.– We have

‖f − f0‖C0 ≤
2

N

(
2‖h‖C0 + ‖∂h

∂t
‖C0

)
and f ′(R/Z) ⊂ R.

Proof.– The first inequality is obvious. Indeed, from

F (1)− F (0) = F (1)− f0(0) = F (1)− f0(1)

we deduce

‖f(t)− f0(t)‖ ≤ ‖F (t)− f0(t)‖+ ‖F (1)− f0(1)‖ ≤ 2‖F − f0‖C0 .

Derivating f we have f ′(t) = F ′(t)− (F (1)− F (0)) thus

‖f ′ − F ′‖C0 ≤ ‖F − f0‖C0 = O

(
1

N

)
.

Since R is open, if N is large enough f ′(R/Z) ⊂ R. �

Remark.– It is of course easy to produce a parametric version of that
proposition.

4 One dimensional h-principle

Definition.– A subset A ⊂ Rn is ample if for every a ∈ A the interior of
the convex hull of the connected component to which a belongs is Rn i. e. :
IntConv(A, a) = Rn (in particular A = ∅ is ample).
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A is not ample A is ample A is not ample.

Example.– The complement of a linear subspace F ⊂ Rn is ample if and
only if Codim F ≥ 2.

Definition.– Let E = P ×Rn π−→ P be a fiber bundle, a subset R ⊂ E is
said to be ample if, for every p ∈ P , Rp := π−1(p) ∩R is ample in Rn.

Remark.– If R ⊂ E is ample, then, for every p ∈ P, the condition
z(p) ∈ Conv(Rp, σ(p)) necessarily holds.

Proposition.– Let E = R/Z × Rn π−→ R/Z be a trivial bundle and let
R ⊂ E be an open and ample differential relation. Then, for every σ ∈ Γ(R),
there exists f : R/Z −→ Rn such that

i) f ′ ∈ Γ(R), i. e. f ∈ Sol(R),

ii) f ′ is homotopic to σ in Γ(R).

Remark.– As a consequence, the natural

π0(Sol(R)) −→ π0(Γ(R))

is onto.

Proof.– Let f0 : R/Z −→ Rn be a C1 map. Since R is ample, we have

∀t ∈ R/Z, f ′0(t) ∈ Rn = IntConv(Rt, σ(t)).

If N is large enough, the map f : R/Z −→ Rn obtained from f0 by a convex
integration (with gluing)

∀t ∈ [0, 1], f(t) := f0(0) +

∫ t

0
h(s,Ns)ds− t

∫ 1

0
h(s,Ns)ds

is a solution of R. Thus, the point i. For all u ∈ [0, 1], we define fu :
[0, 1] −→ Rn by

∀t ∈ [0, 1], fu(t) := f0(0) +

∫ t

0
hu(s,Ns)ds− u.t

∫ 1

0
h(s,Ns)ds
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where hu : R/Z× [0, 1] −→ R is the natural deformation retract

hu(t, s) =

{
h(t, s) if s ∈ [0, u2 ] ∪ [1− u

2 ]
h(t, u) if s ∈ [u2 , 1−

u
2 ].

Of course h1(t, s) = h(t, s) and h0(t, s) = σ(t). The map fu does not descend
to the quotient R/Z = [0, 1]/∂[0, 1]. But its derivative

f ′u(t) = hu(t,Nt)− u
∫ 1

0
h(s,Ns)ds

induces a map from R/Z in Rn since

f ′u(0) = hu(0, 0)−
∫ 1

0
hu(s,Ns)ds = σ(0)− u

∫ 1

0
h(s,Ns)ds

f ′u(1) = hu(1, N)−
∫ 1

0
hu(s,Ns)ds = σ(1)− u

∫ 1

0
h(s,Ns)ds

and thus f ′u(0) = f ′u(1) because σ(0) = σ(1). Hence, σu := f ′u is a homotopy
joining f ′ = f ′1 to σ. Since∥∥∥∥∫ 1

0
h(s,Ns)ds

∥∥∥∥ = ‖F (1)− f0(1)‖ = O

(
1

N

)
for every u ∈ [0, 1] and t ∈ R/Z, the point σu(t) is as close as desired to
hu(t,Nt) ∈ R. Since R is open, it exists N such that, for all u ∈ [0, 1], we
have σu ∈ Γ(R). This shows the point ii. �

A parametric version of that proof allows to obtain the following theorem:

Theorem (One-dimensional h-principle).– Let E = R/Z×Rn π−→ R/Z
be a un trivial bundle and let R ⊂ E be a open and ample differential
relation, then the map

J : Sol(R) −→ Γ(R)

is a weak homotopy equivalence.

Observation.– Obviously, in the above theorem, R/Z can be replaced by
an interval.
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5 Two applications of one-dimensional convex in-
tegration

5.1 Whitney-Graustein Theorem

Whitney-Graustein Theorem (1937). – We have : π0(I(S1,R2)) ' Z,
with an identification given by the tangential degree.

Proof.– The theorem is a direct application of the 1-dimensional h-principle
with n = 2 and R = R/Z ×

(
R2 \ {(0, 0)}

)
which is open and ample. We

then have

Sol(R) = I(S1,R2), Γ(R) = C0(R/Z,R2 \ {(0, 0)})

and
J : Sol(R) −→ Γ(R)

γ 7−→ γ′

induces a bijection at the π0-level. Note that the components of C0(R/Z,R2\
{(0, 0)}) are in one to one correspondance with Z, the bijection being given
by the turning number. It ensues that π0(J) is the tangential degree. �

5.2 A theorem of Ghomi

Theorem (Ghomi 2007).– Let f0 ∈ I(R/Z,R3) be a curve with curvature
function k0 and let c be a real number such that c > max k0. Then, for
every ε > 0, there exists f1 ∈ I(R/Z,R3) of constant curvature c and such
that

‖f1 − f0‖C1 = ‖f1 − f0‖C0 + ‖f ′1 − f ′0‖C0 ≤ ε.

An example.– How to C1 approximate a line by curve with an arbitrarily
large constant curvature ? The answer lies in an picture :
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Just a little comment however (from [4]: let us parametrize the line as a
vertical segment in the three dimensional Euclidean space

f0(t) =

 0
0
t


with t ∈ [0, 1]. The theorem asserts that there exists a curve with con-
stant curvature c which is C1-close to f0. A starting point is to begin by
approximating the segment with an helix, for instance:

f1(t) =

 ε cosαt
ε sinαt

t


where α > 0 and ε > 0. The C0 closeness of f1 to f0 is ruled by ε. Regard-
ing the curvature, it is constant and can be made as large as we want by
decreasing α. However, as the number α is becoming large, the derivative
moves far away from the derivative of the initial function. It ensues that
the helix is not C1 close to f0. To correct that point, we need to reduce the
horizontal variations of the function. Let k > 0 and τ be two numbers, we
set

fk,τ (t) =



k

k2 + τ2
cos
√
k2 + τ2 t

k

k2 + τ2
sin
√
k2 + τ2 t

τ√
k2 + τ2

t

 .

This is an helix with constant curvature k and constant torsion τ . It is then
visible that we have to choose a torsion notably bigger to the curvature to
ensure a quasi-vertical derivative.

Skecth of the proof.– This is a good example of use of the 1-dimensional
convex integration even if it is not an direct application of the 1-dimensional
h-principle theorem. Here are the main steps:

1) First, reduce the problem to the case where the parametrization of
f0 is given by the arc-length.Then, the curvature is the norm of the second
derivative, that is the speed of T0 := f ′0 : R/Z −→ S2.

2) Find T1 : R/Z −→ S2 with constant speed (in order to have a con-
stant curvature) which is C0-close to T0 (to ensure that ‖f ′1−f ′0‖C0 is small)
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and close in average to T0 ( to get a small norm ‖f1 − f0‖C0).

3) Technically, T1 should complete small loops with constant speed in
a neighborhood of T0(R/Z) in S2 and such that the average on each loop is
close to the one of T0 in the corresponding interval.

For more details, see [1]. �
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