Université Claude Bernard Lyon 1

M1 MEEF – Géométrie

Partiel du 12 octobre 2015 - durée 2h

Les documents et les calculettes sont interdits. Il sera tenu compte de la qualité de la rédaction pour l'attribution d'une note.

Les questions. – Les questions sont indépendantes les unes des autres. Chaque question rapporte 2 points.

- 1.— Soit $f: E \longrightarrow E$ une isométrie. Montrer que f est injective.
- **2.** Soit $f: E \longrightarrow E$ une application affine bijective. Montrer que f^{-1} est affine.
- **3.** Soient $F \subset E$ un sous-espace affine non vide et $f: E \longrightarrow H$ une application affine. Montrer que $f(F) \subset H$ est un sous-espace affine.
- **4.** Soit $f: E \longrightarrow E$ une application affine inversible et $\overrightarrow{u} \in \overrightarrow{E}$. Montrer que $f \circ t_{\overrightarrow{u}} \circ f^{-1} = t_{\overrightarrow{f}(\overrightarrow{u})}$.
- **5.** Soient $h_{I,k}$ (resp. $h_{J,k^{-1}}$) l'homothétie de centre $I \in E$ (resp. $J \in E$) et de rapport k > 0 (resp. k^{-1}). Montrer que $h_{I,k} \circ h_{J,k^{-1}}$ est une translation de vecteur $(k-1)\overrightarrow{IJ}$. On admettra que les applications affines dont la partie linéaire est l'identité sont des translations.

Le problème. – (10 pts) Dans tout ce problème on identifie l'espace affine euclidien orienté \mathbb{R}^2 au corps des nombres complexes \mathbb{C} . On note $(O, \overrightarrow{u}, \overrightarrow{v})$ un repère orthonormé de \mathbb{R}^2 tel que $0 = O, 1 = O + \overrightarrow{u}$ et $i = O + \overrightarrow{v}$. Comme toujours, on commet l'abus de notation consistant à confondre un nombre complexe et son affixe, en particulier $z = x + iy = O + x\overrightarrow{u} + y\overrightarrow{v}$.

1) a) Soit $f:\mathbb{R}^2=\mathbb{C}\longrightarrow\mathbb{R}^2=\mathbb{C}$ une application affine. Montrer qu'il

existe $(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2) \in \mathbb{R}^6$ tels que

$$\forall z = x + iy \in \mathbb{C}, \quad f(z) = (\alpha_1 x + \beta_1 y + \gamma_1) + i(\alpha_2 x + \beta_2 y + \gamma_2)$$

et interpréter géométriquement les coefficients $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1$ et γ_2 .

b) Montrer qu'il existe $a = a_1 + ia_2$, $b = b_1 + ib_2$ et $c = c_1 + ic_2$ tels que

$$\forall z \in \mathbb{C}, \ f(z) = az + b\bar{z} + c$$

et déterminer a, b et c en fonction de $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2$.

2) On appelle similitudes du plan les transformations $f: \mathbb{C} \longrightarrow \mathbb{C}$ qui conservent le rapport des distances, i. e. il existe $k \in \mathbb{R}_+^*$ tel que :

$$\forall (p,q) \in \mathbb{C} \times \mathbb{C}, p \neq q, \quad \frac{|f(p) - f(q)|}{|p - q|} = k$$

Montrer qu'une application affine $f(z) = az + b\bar{z} + c$ est une similitude du plan si et seulement si

$$(a = 0 \text{ et } b \neq 0)$$
 ou $(a \neq 0 \text{ et } b = 0)$.

3) On va montrer que les similitudes du plan sont nécessairement des applications affines. Soit

$$\widetilde{f}: \overrightarrow{\mathbb{R}^2} \longrightarrow \overrightarrow{\mathbb{R}^2}$$
 $\overrightarrow{w} \longmapsto \overline{f(O)f(O+\overrightarrow{w})}$

- a) Montrer que pour tout $\overrightarrow{w} \in \overrightarrow{\mathbb{R}^2}$, on $\underbrace{\mathbf{a}}_{1} \|\widetilde{f}(\overrightarrow{w})\| = k \|\overrightarrow{w}\|$ b) Montrer que pour tout $(\overrightarrow{w}_1, \overrightarrow{w}_2) \in \overrightarrow{\mathbb{R}^2} \times \overrightarrow{\mathbb{R}^2}$, on a

$$\|\widetilde{f}(\overrightarrow{w}_1) - \widetilde{f}(\overrightarrow{w}_2)\| = k \|\overrightarrow{w}_1 - \overrightarrow{w}_2\|$$

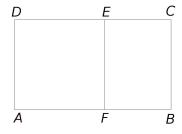
c) Montrer que pour tout $(\overrightarrow{w}_1, \overrightarrow{w}_2) \in \overrightarrow{\mathbb{R}^2} \times \overrightarrow{\mathbb{R}^2}$, on a

$$\langle \widetilde{f}(\overrightarrow{w}_1), \widetilde{f}(\overrightarrow{w}_2) \rangle = k^2 \langle \overrightarrow{w}_1, \overrightarrow{w}_2 \rangle$$

d) Montrer que pour tout $(\alpha_1, \alpha_2) \in \mathbb{R}^2$, tout $(\overrightarrow{w}_1, \overrightarrow{w}_2) \in \overrightarrow{\mathbb{R}^2} \times \overrightarrow{\mathbb{R}^2}$, on a

$$\|\tilde{f}(\alpha_1 \overrightarrow{w}_1 + \alpha_2 \overrightarrow{w}_2) - \alpha_1 \tilde{f}(\overrightarrow{w}_1) - \alpha_2 \tilde{f}(\overrightarrow{w}_2)\| = 0$$

- e) En déduire de que les similitudes du plan sont les applications de la forme f(z) = az + c (similitudes directes) ou $f(z) = a\bar{z} + c$ (similitudes indirectes) avec $a \in \mathbb{C}^*$ et $c \in \mathbb{C}$.
- 4) Montrer qu'une similitude $f:\mathbb{C}\longrightarrow\mathbb{C}$ de rapport $k\neq 1$ possède un unique point fixe Ω . Ce point fixe est appelé le *centre* de la similitude.
- 5) Soit $f: \mathbb{C} \longrightarrow \mathbb{C}$ une similitude de centre Ω et de rapport $k \neq 1$. On considère l'homothétie $h_{\Omega,1/k}: \mathbb{C} \longrightarrow \mathbb{C}$ de centre Ω et de rapport 1/k et on pose $g:=h_{\Omega,1/k}\circ f$.
- a) Montrer que g admet Ω comme point fixe.
- b) On suppose f(z)=az+c. Montrer que g est une rotation dont on déterminera le centre et l'angle en fonction de a et de ω .
- c) On suppose $f(z) = a\bar{z} + c$. Donner l'écriture complexe de g en fonction de a et de ω puis décrire la nature géométrique de g.
- 6) Montrer que toute similitude f avec $k \neq 1$ est la composée commutative d'une homothétie et d'une isométrie admettant le centre de l'homothétie comme point fixe.
- 7) Soit R = (ABCD) un rectangle avec AB > BC et R' = (BCEF) un autre rectangle tel que $E \in]CD[$ et $F \in]AB[$. On suppose qu'il existe une similitude directe f telle que f(R) = R'.



- a) Montrer par l'absurde que f([AB]) = [EF] ou [BC]. En déduire le rapport k de la similitude et montrer que son angle vaut $\pm \frac{\pi}{2}$
- b) Montrer que f([AC]) = [EB].
- c) On suppose désormais que f(A) = B. Que valent f(B), f(C) et f(D)?
- d) Montrer que $f \circ f$ est une homothétie de même centre que f.
- e) Déterminer le centre de f.