L3: 1D Convex Integration

Vincent Borrelli

Institut Camille Jordan - Université Claude Bernard Lyon 1

General Approach

Problem.– Let $\mathcal{R} \subset \mathbb{R}^n$ be a path-connected subset (=our differential relation) and $f_0 : [0, 1] \xrightarrow{C^1} \mathbb{R}^n$ be a map such

 $\forall t \in [0, 1], \quad f'_0(t) \in Conv(\mathcal{R}).$

Find $F: [0, 1] \xrightarrow{C^1} \mathbb{R}^n$ such that :

i)
$$\forall t \in [0, 1], F'(t) \in \mathcal{R}$$

ii) $\|F - f_0\|_{C^0} < \delta$

with $\delta > 0$ given.

How to build a solution?

Vincent Borrelli

L3 -1D Convex Integration

How to build a solution?

Vincent Borrelli

L3 -1D Convex Integration

How to build a solution?

Construction of the solution

Step 1.- Choose a continuous family of loops

$$egin{array}{rcl} \gamma: & [0,1] & \longrightarrow & C^0(\mathbb{R}/\mathbb{Z},\mathcal{R}) \ & u & \longmapsto & \gamma(u,.) \end{array}$$

such that

$$\forall u \in [0,1], \quad \int_{[0,1]} \gamma(u,s) ds = f'_0(u).$$

Construction of the solution

Step 2.– We define $F := Cl_{\gamma}(f_0, N)$ to be the map obtained by a **convex integration** from f_0 :

$$F(t) := f_0(0) + \int_0^t \gamma(u, Nu) du$$

where $N \in \mathbb{N}^*$ is a free parameter.

• Obviously $F = Cl_{\gamma}(f_0, N)$ fulfills condition *i*) since

$$F'(t) = \gamma(t, Nt) \in \mathcal{R}$$

for all $t \in [0, 1]$. The fact that *F* also fulfills condition *ii*) for *N* large enough will ensue from the following proposition

• Obviously $F = Cl_{\gamma}(f_0, N)$ fulfills condition *i*) since

$$F'(t) = \gamma(t, Nt) \in \mathcal{R}$$

for all $t \in [0, 1]$. The fact that *F* also fulfills condition *ii*) for *N* large enough will ensue from the following proposition

Proposition (C^0 **-density).**– If γ is of class C^1 and satisfies the average condition

$$\forall u \in [0,1], \quad \int_{[0,1]} \gamma(u,s) ds = f'_0(u)$$

then

$$\|F - f_0\|_{C^0} \le \frac{1}{N} (2\|\gamma\|_{C^0} + \|\partial_1\gamma\|_{C^0})$$

where $\|\gamma\|_{C^0} = \sup_{(u,s)\in[0,1]^2} \|\gamma(u,s)\|_{\mathbb{E}^3}$.

Proof : Let $t \in [0, 1]$. Put $n = \lfloor Nt \rfloor$, $I_j = [\frac{j}{N}, \frac{j+1}{N}]$ for $0 \le j \le n-1$, $I_n = [\frac{n}{N}, t]$. Since

$$\forall t \in I, \quad F(t) := f_0(0) + \int_0^t \gamma(s, Ns) ds$$

we obviously have

$$F(t) - f_0(0) = \sum_{k=0}^n F^{[k]}$$

where

$$\mathcal{F}^{[k]} = \int_{I_k} \gamma(s, Ns) \mathrm{d}s.$$

Since

$$f_0(t) = f_0(0) + \int_{x=0}^t \frac{\partial f_0}{\partial x}(x) dx$$

= $f_0(0) + \int_{x=0}^t \int_{u=0}^1 \gamma(x, u) du dx$

we also have

$$f_0(t) - f_0(0) = \sum_{j=0}^n f^{[j]}$$

with

$$f^{[J]} = \int_{R_j} \gamma(x, u) \mathrm{d}x \mathrm{d}u$$

and $R_j = I_j \times [0, 1]$.

We consider $j \in [0, n-1]$. By the change of variables u = Ns - j, we get

$$F^{[j]} = \int_0^1 \frac{1}{N} \gamma\left(\frac{u+j}{N}, u\right) \mathrm{d}u.$$

We consider $j \in [0, n-1]$. By the change of variables u = Ns - j, we get

$$F^{[j]} = \int_0^1 \frac{1}{N} \gamma\left(\frac{u+j}{N}, u\right) \mathrm{d}u.$$

We now define

$$\begin{array}{rccc} H_j: & R_j & \to & \mathbb{R}^n \\ & (x,u) & \mapsto & \gamma(\frac{u+j}{N},u). \end{array}$$

In particular, H_j is constant over each horizontal segment in R_j . It ensues that

$$F^{[j]} = \int_{R_j} H_j(x, u) \mathrm{d}x \mathrm{d}u$$

implying

$$F^{[j]} - f_0^{[j]}| \leq \int_{R_j} \|\gamma(\frac{u+j}{N}, u) - \gamma(x, u)\| \mathrm{d}x \mathrm{d}u \leq \frac{1}{N^2} \|\partial_1 \gamma\|_{\infty}.$$

The last inequality follows from the mean value theorem and the fact that the area of $R_j = [\frac{j}{N}, \frac{j+1}{N}] \times [0, 1]$ is 1/N.

For j = n we can use a simpler upper bound :

$$\|F^{[n]} - f_0^{[n]}\| \le \|F^{[n]}\| + \|f_0^{[n]}\| \le \frac{2}{N} \|\gamma\|_{\infty}.$$

We finally obtain

$$\begin{aligned} \|F(t) - f_0(t)\| &\leq \sum_{j=0}^{n-1} \|F^{[j]} - f_0^{[j]}\| + \|F^{[n]} - f_0^{[n]}\| \\ &\leq \frac{1}{N} \|\partial_1 \gamma\|_{\infty} + \frac{2}{N} \|\gamma\|_{\infty}. \end{aligned}$$

Summing up...

• To sum up, we are able to construct a solution of our initial problem as long as we have found a family of loops

$$egin{array}{rcl} \gamma: & [0,1] & \longrightarrow & \mathcal{C}^0(\mathbb{R}/\mathbb{Z},\mathcal{R}) \ & u & \longmapsto & \gamma(u,.) \end{array}$$

that satisfies the average condition i. e.

$$\forall u \in [0, 1], \quad \int_{[0, 1]} \gamma(u, s) ds = f'_0(u).$$

Summing up...

• To sum up, we are able to construct a solution of our initial problem as long as we have found a family of loops

$$egin{array}{rcl} \gamma: & [0,1] & \longrightarrow & \mathcal{C}^0(\mathbb{R}/\mathbb{Z},\mathcal{R}) \ & u & \longmapsto & \gamma(u,.) \end{array}$$

that satisfies the average condition i. e.

$$\forall u \in [0,1], \quad \int_{[0,1]} \gamma(u,s) ds = f'_0(u).$$

• The existence of such a family γ is the Fundamental Lemma of Convex Integration Theory.

Fundamental Lemma

Notation.– Let $\mathcal{R} \subset \mathbb{R}^n$ be a subset of \mathbb{R}^n (not necessarily path connected) and $\sigma \in \mathcal{R}$. We denote by $IntConv(\mathcal{R}, \sigma)$ the interior of the convex hull of the component of \mathcal{R} to which σ belongs.

Fundamental Lemma (Gromov, 1969).– Let $\mathcal{R} \subset \mathbb{R}^n$ be an open set, $\sigma \in \mathcal{R}$ and $z \in IntConv(\mathcal{R}, \sigma)$ There exists a loop $\gamma : \mathbb{S}^1 \longrightarrow \mathcal{R}$ with base point σ such that :

$$z=\int_0^1\gamma(s)ds.$$

Fundamental Lemma

Notation.– Let $\mathcal{R} \subset \mathbb{R}^n$ be a subset of \mathbb{R}^n (not necessarily path connected) and $\sigma \in \mathcal{R}$. We denote by $IntConv(\mathcal{R}, \sigma)$ the interior of the convex hull of the component of \mathcal{R} to which σ belongs.

Fundamental Lemma (Gromov, 1969).– Let $\mathcal{R} \subset \mathbb{R}^n$ be an open set, $\sigma \in \mathcal{R}$ and $z \in IntConv(\mathcal{R}, \sigma)$ There exists a loop $\gamma : \mathbb{S}^1 \longrightarrow \mathcal{R}$ with base point σ such that :

$$z=\int_0^1\gamma(s)ds.$$

Proof.- On the blackboard.

Fundamental Lemma

Remark.– A priori $\gamma \in \Omega_{\sigma}(\mathcal{R})$, but it is obvious that we can choose γ among back and forth loops *i.e* the space :

$$\Omega^{BF}_{\sigma}(\mathcal{R}) = \{ \gamma \in \Omega_{\sigma}(\mathcal{R}) \mid \forall s \in [0, 1] \ \gamma(s) = \gamma(1 - s) \}.$$

The point is that the above space is contractible. For every $\tau \in [0, 1]$ we then denote by $\gamma^{\tau} : \mathbb{R}/\mathbb{Z} \longrightarrow \mathcal{R}$ the loop defined by

$$\gamma^{ au}(oldsymbol{s}) = \left\{egin{array}{cc} \gamma(oldsymbol{s}) & ext{if} & oldsymbol{s} \in \left[0,rac{ au}{2}
ight] \cup \left[1-rac{ au}{2}
ight] \ \gamma(au) & ext{if} & oldsymbol{s} \in \left[rac{ au}{2},1-rac{ au}{2}
ight]. \end{array}
ight.$$

This homotopy induces a deformation retract of $\Omega_{\sigma}^{BF}(\mathcal{R})$ to the constant loop

$$\widetilde{\sigma}: \mathbb{R}/\mathbb{Z} \longrightarrow \mathcal{R} \ \mathbf{s} \longmapsto \sigma.$$

Parametric Fundamental Lemma

Parametric version of the Fundamental Lemma. – *Let* $E = [a, b] \times \mathbb{R}^n \xrightarrow{\pi} [a, b]$ be a trivial bundle and $\mathcal{R} \subset E$ be an open set. Let $\mathfrak{S} \in \Gamma(\mathcal{R})$ and $z \in \Gamma(E)$ such that :

 $\forall p \in [a, b], \ z(p) \in IntConv(\mathcal{R}_p, \mathfrak{S}(p))$

where $\mathcal{R}_{p} := \pi^{-1}(p) \cap \mathcal{R}$. Then, there exists $\gamma : [a, b] \times \mathbb{S}^{1} \xrightarrow{C^{\infty}} \mathcal{R}$ such that :

$$\gamma(., \mathbf{0}) = \gamma(., \mathbf{1}) = \mathfrak{S} \in \Gamma(\mathcal{R}),$$

 $\forall p \in [a, b], \ \gamma(p, .) \in Concat(\Omega^{BF}_{\mathfrak{S}(p)}(\mathcal{R}_p))$

and

$$\forall p \in [a, b], \ z(p) = \int_0^1 \gamma(p, s) ds.$$

Idea of Proof : concatenation of BF loops

Idea of Proof : concatenation of BF loops

Observation.– The parametric lemma still holds if the parameter space [a, b] is replaced by a compact manifold *P*.

Relative Parametric Fundamental Lemma

Parametric version of the Fundamental Lemma (continuation). – Let K be a closed subset of [a, b]. If for some open neighborhood V(K) of K we have

$$\forall p \in V(K), \quad z(p) = \mathfrak{S}(p)$$

then the family of loops $\gamma : [a, b] \times \mathbb{S}^1 \longrightarrow \mathcal{R}$ can be chosen such that

 $\gamma(p, .)$ is the constant loop $\mathfrak{S}(p)$

for all $p \in V_1(K)$ where $V_1(K) \subset V(K)$ is an open neighborhood K.

Summing up...

• If \mathcal{R} is open then the problem of finding a map F solving \mathcal{R} and C^0 close to f_0 can be solved by a convex integration. Indeed

Proposition.– Let $f = Cl_{\gamma}(f_0, N)$ then :

i) $\forall t \in [0, 1], \partial_t f(t) = \gamma(t, Nt) \in \mathcal{R}$

and if γ satisfy the average condition :

ii) $||f - f_0||_{C^0} = O(\frac{1}{N})$

Corollary.– If N is large enough then $f = CI_{\gamma}(f_0, N)$ is a solution of the above 1D-problem

Exercise : the case of closed curves

Exercise.– Let $\mathcal{R} \subset \mathbb{R}^n$ be a connected open subset and $f_0 : \mathbb{S}^1 \xrightarrow{C^1} \mathbb{R}^n$ be a closed curve such that

 $\forall t \in \mathbb{S}^1, \quad f'_0(t) \in Conv(\mathcal{R}).$

Find a closed curve $f : \mathbb{S}^1 \xrightarrow{C^1} \mathbb{R}^n$ such that :

i)
$$\forall t \in \mathbb{S}^1$$
, $f'(t) \in \mathcal{R}$
ii) $\|f - f_0\|_{C^0} < \delta$

with $\delta > 0$ given.

• Note that, even if f_0 is a closed curve $f_0(0) = f_0(1)$, the map $F = CI_{\gamma}(f_0, N)$ obtained by a convex integration from f_0 does not satisfy F(0) = F(1) in general.

• Note that, even if f_0 is a closed curve $f_0(0) = f_0(1)$, the map $F = Cl_{\gamma}(f_0, N)$ obtained by a convex integration from f_0 does not satisfy F(0) = F(1) in general.

• One natural choice for f is to take

$$\forall t \in [0, 1], \quad f(t) := F(t) - t(F(1) - F(0)).$$

Since f(0) = f(1) this defined a closed curve. Observe also that $\gamma(0, .) = \gamma(1, .)$ implies f'(0) = f'(1).

• Note that, even if f_0 is a closed curve $f_0(0) = f_0(1)$, the map $F = Cl_{\gamma}(f_0, N)$ obtained by a convex integration from f_0 does not satisfy F(0) = F(1) in general.

• One natural choice for f is to take

$$\forall t \in [0, 1], \quad f(t) := F(t) - t(F(1) - F(0)).$$

Since f(0) = f(1) this defined a closed curve. Observe also that $\gamma(0, .) = \gamma(1, .)$ implies f'(0) = f'(1).

From

$$f'(f) = \gamma(t, Nt) - (F(1) - F(0))$$

we deduce

$$\|f'(t) - \gamma(t, Nt)\| = O\left(\frac{1}{N}\right)$$

Since \mathcal{R} is assumed to be open, $f'(t) \in \mathcal{R}$ if N is large enough.

• Condition *ii*) will follow from a C^0 -density result for the closed curve *f*.

Proposition (C^0 **-density).**– If γ is of class C^1 and satisfies the average condition

$$\forall u \in [0, 1], \quad \int_{[0, 1]} \gamma(u, s) ds = f'_0(u)$$

then

$$\|f - f_0\|_{C^0} \leq \frac{C(\|\gamma\|_{C^0}, \|\partial_1\gamma\|_{C^0})}{N}$$

for some function C (to be determined).

 C^0 Density, N = 3

Vincent Borrelli

L3 -1D Convex Integration

 C^0 Density, N = 5

C^0 Density, N = 10

 C^0 Density, N = 20

Multi Variables Setting

• In a multi-variable setting, the convex integration formula takes the following form :

$$F(c_1,...,c_m) := f_0(c_1,...,c_{m-1},0) + \int_0^{c_m} \gamma(c_1,...,c_{m-1},s,Ns) ds$$

where $(c_1, ..., c_m) \in [0, 1]^m$.

A corrugated plane

\/:	D III
VIncent	BOLLOW

Multi Variables Setting

• The C^0 -density property can be enhanced to a $C^{1,\hat{m}}$ -density property where the notation $C^{1,\hat{m}}$ means that the closeness is measured with the following norm

$$\|F\|_{C^{1,\widehat{m}}} = \max(\|F\|_{C^{0}}, \|\frac{\partial F}{\partial c_{1}}\|_{C^{0}}, ..., \|\frac{\partial F}{\partial c_{m-1}}\|_{C^{0}}).$$

Multi Variables Setting

• The C^0 -density property can be enhanced to a $C^{1,\hat{m}}$ -density property where the notation $C^{1,\hat{m}}$ means that the closeness is measured with the following norm

$$\|F\|_{C^{1,\widehat{m}}} = \max(\|F\|_{C^{0}}, \|\frac{\partial F}{\partial c_{1}}\|_{C^{0}}, ..., \|\frac{\partial F}{\partial c_{m-1}}\|_{C^{0}}).$$

Proposition ($C^{1,\hat{m}}$ -density).– If γ is of class C^1 and satisfies the average condition

$$\forall u \in [0, 1], \int_{[0, 1]} \gamma(c_1, ..., c_{m-1}, u, s) ds = f'_0(c_1, ..., c_{m-1}, u)$$

then we have

$$\|F-f_0\|_{C^{1,\widehat{m}}}=O\left(\frac{1}{N}\right)$$

Proof : left as an exercise.

Definition.– A C^1 closed curve $f : \mathbb{S}^1 \to \mathbb{R}^2$ is said to be *regular* (or to be an *immersion* of the circle) if for every $t \in \mathbb{S}^1$ we have $f'(t) \neq 0$.

Definition.– A C^1 closed curve $f : \mathbb{S}^1 \to \mathbb{R}^2$ is said to be *regular* (or to be an *immersion* of the circle) if for every $t \in \mathbb{S}^1$ we have $f'(t) \neq 0$.

Definition.– Let $f_0, f_1 : \mathbb{S}^1 \longrightarrow \mathbb{R}^2$ be two regular curves. A *regular homotopy* between f_0 and f_1 is a C^1 map

$$egin{array}{cccc} F: & \mathbb{S}^1 imes [0,1] & \longrightarrow & \mathbb{R}^2 \ & (x,s) & \longmapsto & F_s(x) = F(x,s) \end{array}$$

such that $F_0 = f_0$, $F_1 = f_1$ and F_s is regular.

Definition.– A C^1 closed curve $f : \mathbb{S}^1 \to \mathbb{R}^2$ is said to be *regular* (or to be an *immersion* of the circle) if for every $t \in \mathbb{S}^1$ we have $f'(t) \neq 0$.

Definition.– Let $f_0, f_1 : \mathbb{S}^1 \longrightarrow \mathbb{R}^2$ be two regular curves. A *regular homotopy* between f_0 and f_1 is a C^1 map

$$egin{array}{rcl} F: & \mathbb{S}^1 imes [0,1] & \longrightarrow & \mathbb{R}^2 \ & (x,s) & \longmapsto & F_s(x) = F(x,s) \end{array}$$

such that $F_0 = f_0$, $F_1 = f_1$ and F_s is regular.

• The relation of regular homotopy is an equivalence relation whose equivalence classes identify with path connected components of the space of immersions $I(\mathbb{S}^1, \mathbb{R}^2)$.

Problem.- Classify regular curves up to regular homotopy.

We assume that $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}=[0,1]/\partial[0,1]$ and \mathbb{R}^2 are endowed with an orientation.

Definition.– Let *f* be a regular closed curve. The *turning number* TN(f) of *f* is the number of counterclockwise turns of f' around (0,0).

We assume that $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}=[0,1]/\partial[0,1]$ and \mathbb{R}^2 are endowed with an orientation.

Definition.– Let *f* be a regular closed curve. The *turning number* TN(f) of *f* is the number of counterclockwise turns of *f'* around (0,0).

• Therefore the turning number of *f* is given by

$$\mathit{TN}(f) = \mathit{deg}(t) = \widetilde{t}(1) - \widetilde{t}(0) \in \mathbb{Z}$$

where $\widetilde{t}:[0,1]\longrightarrow \mathbb{R}$ is a lift of the loop

$$\mathbf{t} := rac{f'}{\|f'\|} : [0,1] \longrightarrow \mathbb{S}^1 = \mathbb{R}/\mathbb{Z}.$$

• Recall that

$$\begin{array}{cccc} deg: & \pi_1(\mathbb{S}^1) & \longrightarrow & \mathbb{Z} \\ & [\mathbf{t}] & \longmapsto & deg(\mathbf{t}) \end{array}$$

is a bijection.

Recall that

$$egin{array}{cccc} deg: & \pi_1(\mathbb{S}^1) & \longrightarrow & \mathbb{Z} \ & [\mathbf{t}] & \longmapsto & deg(\mathbf{t}) \end{array}$$

is a bijection.

• Any regular homotopy $(f_t)_{t \in [0,1]}$ induces a homotopy of the loops $(\mathbf{t}_t)_{t \in [0,1]}$ in \mathbb{S}^1 . Thus the turning number

 $t \mapsto TN(f_t)$

is constant under regular homotopies.

Recall that

$$egin{array}{cccc} \textit{deg}: & \pi_1(\mathbb{S}^1) & \longrightarrow & \mathbb{Z} \ & [\mathbf{t}] & \longmapsto & \textit{deg}(\mathbf{t}) \end{array}$$

is a bijection.

• Any regular homotopy $(f_t)_{t \in [0,1]}$ induces a homotopy of the loops $(\mathbf{t}_t)_{t \in [0,1]}$ in \mathbb{S}^1 . Thus the turning number

 $t \mapsto TN(f_t)$

is constant under regular homotopies.

• It ensues that the turning number induces a map

$$TN: \ \pi_0(I(\mathbb{S}^1, \mathbb{R}^2)) \longrightarrow \mathbb{Z} \ [f] \longmapsto TN(f).$$

• As seen in the figures below, this map is onto :

 $TN(\gamma) = -1$ TN(f) = 0 TN(f) = 1 TN(f) = 2 TN(f) = 3

• As seen in the figures below, this map is onto :

 $TN(\gamma) = -1$ TN(f) = 0 TN(f) = 1 TN(f) = 2 TN(f) = 3

• It turns out that this map is 1-to-1.

Hassler Whitney

Whitney-Graustein Theorem (1937). - The turning number

 $TN: \pi_0(I(\mathbb{S}^1, \mathbb{R}^2)) \longrightarrow \mathbb{Z}$

induces a bijective map

Proof.— It is enough to show the injectivity. Let f_0 and f_1 be two regular closed curves having the same turning number. We consider the linear interpolation between them :

$$f_t := (1-t)f_0 + tf_1, \quad t \in [0,1]$$

Unless you are extremely lucky, this interpolation will fail to be regular for some t.

Proof.— It is enough to show the injectivity. Let f_0 and f_1 be two regular closed curves having the same turning number. We consider the linear interpolation between them :

$$f_t := (1-t)f_0 + tf_1, \quad t \in [0,1]$$

Unless you are extremely lucky, this interpolation will fail to be regular for some t.

• We put $\mathcal{R} = \mathbb{R}^2 \setminus \{(0,0)\}$. The subset \mathcal{R} is connected, open and its convex hull is \mathbb{R}^2 .

Proof.— It is enough to show the injectivity. Let f_0 and f_1 be two regular closed curves having the same turning number. We consider the linear interpolation between them :

$$f_t := (1-t)f_0 + tf_1, \quad t \in [0,1]$$

Unless you are extremely lucky, this interpolation will fail to be regular for some t.

• We put $\mathcal{R} = \mathbb{R}^2 \setminus \{(0,0)\}$. The subset \mathcal{R} is connected, open and its convex hull is \mathbb{R}^2 .

• Observe that if f_t is singular at some point $x \in \mathbb{S}^1$, i. e; $f'_t(x) = (0, 0)$, we obviously have

$$f_t'(x) \in \mathit{IntConv}(\mathcal{R}) = \mathbb{R}^2$$

• Since f_0 and f_1 have the same TN, there exists a homotopy

$$\begin{array}{cccc} \mathfrak{S}: & [0,1] & \longrightarrow & \mathcal{C}^0(\mathbb{S}^1,\mathcal{R}) \\ & t & \longmapsto & \mathfrak{S}_t \end{array}$$

joining $\mathfrak{S}_0 = f'_0$ to $\mathfrak{S}_1 = f'_1$.

• Since f_0 and f_1 have the same TN, there exists a homotopy

$$\begin{array}{cccc} \mathfrak{S}: & [0,1] & \longrightarrow & \mathcal{C}^0(\mathbb{S}^1,\mathcal{R}) \\ & t & \longmapsto & \mathfrak{S}_t \end{array}$$

joining $\mathfrak{S}_0 = f'_0$ to $\mathfrak{S}_1 = f'_1$.

• We use the parametric version of the fundamental lemma with $P = [0, 1] \times S^1$ to build a family of loops $(\gamma_t)_{t \in [0, 1]}$ such that for every $p = (t, x) \in P$:

1) the average of the loop $u \mapsto \gamma_t(x, u)$ is $f'_t(x)$ i. e.

$$\int_0^1 \gamma_t(x,u) du = f_t'(x)$$

2) the base point of the loop $u \mapsto \gamma_t(x, u)$ is $\mathfrak{S}_t(x)$. 3) $\gamma_0(x, .) = \mathfrak{S}_0(x)$ and $\gamma_1(x, .) = \mathfrak{S}_1(x)$.

• We consider the family of closed curves $g_t : \mathbb{S}^1 \to \mathbb{R}^2$ given by

$$g_t(x) := G_t(x) - x(G_t(1) - G_t(0))$$
 with $G_t := CI_{\gamma_t}(f_t, N)$

If *N* is large enough, g_t is regular for every $t \in [0, 1]$.

• We consider the family of closed curves $g_t : \mathbb{S}^1 \to \mathbb{R}^2$ given by

$$g_t(x) := G_t(x) - x(G_t(1) - G_t(0))$$
 with $G_t := CI_{\gamma_t}(f_t, N)$

If *N* is large enough, g_t is regular for every $t \in [0, 1]$.

• Since $\gamma_0(x,.) = \mathfrak{S}_0(x)$ and $\gamma_1(x,.) = \mathfrak{S}_1(x)$, we have

$$g_0 = f_0$$
 and $g_1 = f_1$.

• We consider the family of closed curves $g_t : \mathbb{S}^1 \to \mathbb{R}^2$ given by

$$g_t(x) := G_t(x) - x(G_t(1) - G_t(0))$$
 with $G_t := CI_{\gamma_t}(f_t, N)$

If *N* is large enough, g_t is regular for every $t \in [0, 1]$.

• Since $\gamma_0(x,.) = \mathfrak{S}_0(x)$ and $\gamma_1(x,.) = \mathfrak{S}_1(x)$, we have

$$g_0 = f_0$$
 and $g_1 = f_1$.

Thus g_t is a regular homotopy joining f_0 and f_1 .

• An observation : assume that we do not use the relative version of the Parametric Fundamental Lemma. Precisely, assume that $u \mapsto \gamma_0(x, u)$ and $u \mapsto \gamma_1(x, u)$ are not constant map. Then the curve g_0 (resp. g_1) is not equal to f_0 (resp. to f_1). An extra regular homotopy is thus needed to join f_0 to g_0 and g_1 to f_1 .

• An observation : assume that we do not use the relative version of the Parametric Fundamental Lemma. Precisely, assume that $u \mapsto \gamma_0(x, u)$ and $u \mapsto \gamma_1(x, u)$ are not constant map. Then the curve g_0 (resp. g_1) is not equal to f_0 (resp. to f_1). An extra regular homotopy is thus needed to join f_0 to g_0 and g_1 to f_1 .

• This extra homotopy is for free by using the fact that each loop is parametrized back and forth. Indeed...

• An observation : assume that we do not use the relative version of the Parametric Fundamental Lemma. Precisely, assume that $u \mapsto \gamma_0(x, u)$ and $u \mapsto \gamma_1(x, u)$ are not constant map. Then the curve g_0 (resp. g_1) is not equal to f_0 (resp. to f_1). An extra regular homotopy is thus needed to join f_0 to g_0 and g_1 to f_1 .

• This extra homotopy is for free by using the fact that each loop is parametrized back and forth. Indeed...

ullet Let $(g_0^ au)_{ au\in [0,1]}$ be the homotopy defined by

 $g_0^{\tau}(x) := G_0^{\tau}(x) - x(G_0^{\tau}(1) - G_0^{\tau}(0)) \text{ with } G_0^{\tau} := CI_{\gamma_0^{\tau}}(f_0, N)$

where $\tau \mapsto \gamma_0^{\tau}$ is the retraction of γ_0 to $\gamma_0(0) = \sigma_0(0) = f'_0$ described at the end of the section *Fundamental Lemma*.

• For all $x \in \mathbb{S}^1$ we have

$$(g_0^{\tau})'(x) := (G_0^{\tau})'(x) - (G_0^{\tau}(1) - G_0^{\tau}(0))$$

with

$$(G_0^{\tau})'(x) = \gamma_0^{\tau}(x, Nx) \in \mathcal{R}$$

• For all $x \in \mathbb{S}^1$ we have

$$(g_0^{\tau})'(x) := (G_0^{\tau})'(x) - (G_0^{\tau}(1) - G_0^{\tau}(0))$$

with

$$(G_0^{\tau})'(x) = \gamma_0^{\tau}(x, Nx) \in \mathcal{R}$$

• Since \mathcal{R} is open, we deduce form the C^0 -property that g_0^{τ} is a regular homotopy joining f_0 to g_0 provided N is large enough.

• For all $x \in \mathbb{S}^1$ we have

$$(g_0^{\tau})'(x) := (G_0^{\tau})'(x) - (G_0^{\tau}(1) - G_0^{\tau}(0))$$

with

$$(G_0^{\tau})'(x) = \gamma_0^{\tau}(x, Nx) \in \mathcal{R}$$

• Since \mathcal{R} is open, we deduce form the C^0 -property that g_0^{τ} is a regular homotopy joining f_0 to g_0 provided N is large enough.

• Obviously the same process also give a regular homotopy joining f_1 to g_1 .

Beyond the Whitney-Graustein Theorem

Definitions.– The subset $\mathcal{R} = \mathbb{R}^2 \setminus \{(0,0)\}$ is called the *differential* relation of regular curves.

• The space of all maps $\mathfrak{S} : \mathbb{S}^1 \to \mathcal{R}$ is denoted $\Gamma(\mathcal{R})$.

• A map $\mathfrak{S} \in \Gamma(\mathcal{R})$ is called *holonomic* if there exists $f : \mathbb{S}^1 \to \mathbb{R}^2$ such that $f' = \mathfrak{S}$.

• In that case the map *f* is called a *solution* of \mathcal{R} . The space of all solutions is denoted by $Sol(\mathcal{R})$. Observe that $Sol(\mathcal{R}) = I(\mathbb{S}^1, \mathbb{R}^2)$.

Beyond the Whitney-Graustein Theorem

Definitions.– The subset $\mathcal{R} = \mathbb{R}^2 \setminus \{(0,0)\}$ is called the *differential* relation of regular curves.

• The space of all maps $\mathfrak{S} : \mathbb{S}^1 \to \mathcal{R}$ is denoted $\Gamma(\mathcal{R})$.

• A map $\mathfrak{S} \in \Gamma(\mathcal{R})$ is called *holonomic* if there exists $f : \mathbb{S}^1 \to \mathbb{R}^2$ such that $f' = \mathfrak{S}$.

- In that case the map *f* is called a *solution* of \mathcal{R} . The space of all solutions is denoted by $Sol(\mathcal{R})$. Observe that $Sol(\mathcal{R}) = I(\mathbb{S}^1, \mathbb{R}^2)$.
- There is an obvious inclusion $J : Sol(\mathcal{R}) \subset \Gamma(\mathcal{R})$ given by J(f) = f'.

Beyond the Whitney-Graustein Theorem

Definitions.– The subset $\mathcal{R} = \mathbb{R}^2 \setminus \{(0,0)\}$ is called the *differential relation* of regular curves.

• The space of all maps $\mathfrak{S} : \mathbb{S}^1 \to \mathcal{R}$ is denoted $\Gamma(\mathcal{R})$.

• A map $\mathfrak{S} \in \Gamma(\mathcal{R})$ is called *holonomic* if there exists $f : \mathbb{S}^1 \to \mathbb{R}^2$ such that $f' = \mathfrak{S}$.

- In that case the map *f* is called a *solution* of \mathcal{R} . The space of all solutions is denoted by $Sol(\mathcal{R})$. Observe that $Sol(\mathcal{R}) = I(\mathbb{S}^1, \mathbb{R}^2)$.
- There is an obvious inclusion $J : Sol(\mathcal{R}) \subset \Gamma(\mathcal{R})$ given by J(f) = f'.

Whitney-Graustein Theorem (1937). – The inclusion J induces a bijective map at the π_0 -level :

$$\pi_0(J): \pi_0(\mathcal{Sol}(\mathcal{R})) \longrightarrow \pi_0(\Gamma(\mathcal{R}))$$

• In fact more is true. By considering different parametric spaces *P* in the proof of the Whitney-Graustein Theorem, we can prove the following generalization.

Generalization of the Whitney-Graustein Theorem. – *For every* $k \in \mathbb{N}$ *the inclusion J induces a bijective map at the* π_k *-level :*

$$\pi_k(J):\pi_k(\operatorname{Sol}(\mathcal{R}))\longrightarrow \pi_k(\Gamma(\mathcal{R}))$$

In other words, J is a weak homotopy equivalence.

Hassler Whitney

Vincent Borrelli

L3 -1D Convex Integration