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General Approach

Problem.– Let R ⊂ Rn be a path-connected subset (=our differential

relation) and f0 : [0,1]
C1
−→ Rn be a map such

∀t ∈ [0,1], f ′0(t) ∈ Conv(R).

Find F : [0,1]
C1
−→ Rn such that :

i) ∀t ∈ [0,1], F ′(t) ∈ R
ii) ‖F − f0‖C0 < δ

with δ > 0 given.
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How to build a solution?

 f ’ 
0

R
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Construction of the solution

Step 1.– Choose a continuous family of loops

γ : [0,1] −→ C0(R/Z,R)
u 7−→ γ(u, .)

such that
∀u ∈ [0,1],

∫
[0,1]

γ(u, s)ds = f ′0(u).
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Construction of the solution

Step 2.– We define F := CIγ(f0,N) to be the map obtained by a
convex integration from f0 :

F (t) := f0(0) +

∫ t

0
γ(u,Nu)du

where N ∈ N∗ is a free parameter.
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C0-Density
• Obviously F = CIγ(f0,N) fulfills condition i) since

F ′(t) = γ(t ,Nt) ∈ R

for all t ∈ [0,1]. The fact that F also fulfills condition ii) for N large
enough will ensue from the following proposition

Proposition (C0-density).– If γ is of class C1 and satisfies the
average condition

∀u ∈ [0,1],

∫
[0,1]

γ(u, s)ds = f ′0(u)

then
‖F − f0‖C0 ≤

1
N

(2‖γ‖C0 + ‖∂1γ‖C0)

where ‖γ‖C0 = sup(u,s)∈[0,1]2 ‖γ(u, s)‖E3 .
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C0-Density

Proof : Let t ∈ [0,1]. Put n = bNtc, Ij = [ j
N ,

j+1
N ] for 0 ≤ j ≤ n − 1,

In = [ n
N , t ]. Since

∀t ∈ I, F (t) := f0(0) +

∫ t

0
γ(s,Ns)ds

we obviously have

F (t)− f0(0) =
n∑

k=0

F [k ]

where
F [k ] =

∫
Ik
γ(s,Ns)ds.

Vincent Borrelli L3 -1D Convex Integration



C0-Density

Since

f0(t) = f0(0) +

∫ t

x=0

∂f0
∂x

(x)dx

= f0(0) +

∫ t

x=0

∫ 1

u=0
γ(x ,u)dudx

we also have

f0(t)− f0(0) =
n∑

j=0

f [j]

with
f [j] =

∫
Rj

γ(x ,u)dxdu

and Rj = Ij × [0,1].
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C0-Density
We consider j ∈ [0,n − 1]. By the change of variables u = Ns − j , we
get

F [j] =

∫ 1

0

1
N
γ

(
u + j

N
,u
)

du.

We now define
Hj : Rj → Rn

(x ,u) 7→ γ(u+j
N ,u).

In particular, Hj is constant over each horizontal segment in Rj . It
ensues that

F [j] =

∫
Rj

Hj(x ,u)dxdu

implying

|F [j] − f [j]0 | ≤
∫

Rj

‖γ(
u + j

N
,u)− γ(x ,u)‖dxdu ≤ 1

N2 ‖∂1γ‖∞.

The last inequality follows from the mean value theorem and the fact
that the area of Rj = [ j

N ,
j+1
N ]× [0,1] is 1/N.
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C0-Density

For j = n we can use a simpler upper bound :

‖F [n] − f [n]0 ‖ ≤ ‖F
[n]‖+ ‖f [n]0 ‖ ≤

2
N
‖γ‖∞.

We finally obtain

‖F (t)− f0(t)‖ ≤
n−1∑
j=0

‖F [j] − f [j]0 ‖+ ‖F [n] − f [n]0 ‖

≤ 1
N
‖∂1γ‖∞ +

2
N
‖γ‖∞.

�
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Summing up...

• To sum up, we are able to construct a solution of our initial problem
as long as we have found a family of loops

γ : [0,1] −→ C0(R/Z,R)
u 7−→ γ(u, .)

that satisfies the average condition i. e.

∀u ∈ [0,1],

∫
[0,1]

γ(u, s)ds = f ′0(u).

• The existence of such a family γ is the Fundamental Lemma of
Convex Integration Theory.
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Fundamental Lemma

Notation.– Let R ⊂ Rn be a subset of Rn (not necessarily path
connected) and σ ∈ R. We denote by IntConv(R, σ) the interior of the
convex hull of the component of R to which σ belongs.

Fundamental Lemma (Gromov, 1969).– Let R ⊂ Rn be an open set,
σ ∈ R and z ∈ IntConv(R, σ) There exists a loop γ : S1 −→ R with
base point σ such that :

z =

∫ 1

0
γ(s)ds.

Proof.– On the blackboard.
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Fundamental Lemma
Remark.– A priori γ ∈ Ωσ(R), but it is obvious that we can choose γ
among back and forth loops i .e the space :

ΩBF
σ (R) = {γ ∈ Ωσ(R) | ∀s ∈ [0,1] γ(s) = γ(1− s)}.

The point is that the above space is contractible. For every τ ∈ [0,1]
we then denote by γτ : R/Z −→ R the loop defined by

γτ (s) =

 γ(s) if s ∈
[
0,
τ

2

]
∪
[
1− τ

2

]
γ(τ) if s ∈

[τ
2
,1− τ

2

]
.

This homotopy induces a deformation retract of ΩBF
σ (R) to the

constant loop
σ̃ : R/Z −→ R

s 7−→ σ.
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Parametric Fundamental Lemma

Parametric version of the Fundamental Lemma. – Let
E = [a,b]×Rn π−→ [a,b] be a trivial bundle and R ⊂ E be an open set.
Let S ∈ Γ(R) and z ∈ Γ(E) such that :

∀p ∈ [a,b], z(p) ∈ IntConv(Rp,S(p))

where Rp := π−1(p) ∩R. Then, there exists γ : [a,b]× S1 C∞
−→ R such

that :
γ(.,0) = γ(.,1) = S ∈ Γ(R),

∀p ∈ [a,b], γ(p, .) ∈ Concat(ΩBF
S(p)(Rp))

and

∀p ∈ [a,b], z(p) =

∫ 1

0
γ(p, s)ds.
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Idea of Proof : concatenation of BF loops

Observation.– The parametric lemma still holds if the parameter
space [a,b] is replaced by a compact manifold P.
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Relative Parametric Fundamental Lemma

Parametric version of the Fundamental Lemma (continuation). –
Let K be a closed subset of [a,b]. If for some open neighborhood
V (K ) of K we have

∀p ∈ V (K ), z(p) = S(p)

then the family of loops γ : [a,b]× S1 −→ R can be chosen such that

γ(p, .) is the constant loop S(p)

for all p ∈ V1(K ) where V1(K ) ⊂ V (K ) is an open neighborhood K .

Vincent Borrelli L3 -1D Convex Integration



Summing up...

• If R is open then the problem of finding a map F solving R and C0

close to f0 can be solved by a convex integration. Indeed

Proposition.– Let f = CIγ(f0,N) then :

i) ∀t ∈ [0,1], ∂t f (t) = γ(t ,Nt) ∈ R

and if γ satisfy the average condition :

ii) ‖f − f0‖C0 = O( 1
N )

Corollary.– If N is large enough then f = CIγ(f0,N) is a solution of the
above 1D-problem
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Exercise : the case of closed curves

Exercise.– Let R ⊂ Rn be a connected open subset and

f0 : S1 C1
−→ Rn be a closed curve such that

∀t ∈ S1, f ′0(t) ∈ Conv(R).

Find a closed curve f : S1 C1
−→ Rn such that :

i) ∀t ∈ S1, f ′(t) ∈ R
ii) ‖f − f0‖C0 < δ

with δ > 0 given.
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Exercise : the case of closed curves (hints)
• Note that, even if f0 is a closed curve f0(0) = f0(1), the map
F = CIγ(f0,N) obtained by a convex integration from f0 does not
satisfy F (0) = F (1) in general.

• One natural choice for f is to take

∀t ∈ [0,1], f (t) := F (t)− t (F (1)− F (0)) .

Since f (0) = f (1) this defined a closed curve. Observe also that
γ(0, .) = γ(1, .) implies f ′(0) = f ′(1).

• From
f ′(f ) = γ(t ,Nt)− (F (1)− F (0))

we deduce

‖f ′(t)− γ(t ,Nt)‖ = O
(

1
N

)
Since R is assumed to be open, f ′(t) ∈ R if N is large enough.
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Exercise : the case of closed curves (hints)

• Condition ii) will follow from a C0-density result for the closed curve f .

Proposition (C0-density).– If γ is of class C1 and satisfies the
average condition

∀u ∈ [0,1],

∫
[0,1]

γ(u, s)ds = f ′0(u)

then
‖f − f0‖C0 ≤

C(‖γ‖C0 , ‖∂1γ‖C0)

N
for some function C (to be determined).
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C0 Density, N = 3
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C0 Density, N = 5
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C0 Density, N = 10
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C0 Density, N = 20
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Multi Variables Setting
• In a multi-variable setting, the convex integration formula takes the
following form :

F (c1, ..., cm) := f0(c1, ..., cm−1,0) +

∫ cm

0
γ(c1, ..., cm−1, s,Ns)ds

where (c1, ..., cm) ∈ [0,1]m.

A corrugated plane
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Multi Variables Setting
• The C0-density property can be enhanced to a C1,m̂-density property
where the notation C1,m̂ means that the closeness is measured with
the following norm

‖F‖C1,m̂ = max(‖F‖C0 , ‖
∂F
∂c1
‖C0 , ..., ‖

∂F
∂cm−1

‖C0).

Proposition (C1,m̂-density).– If γ is of class C1 and satisfies the
average condition

∀u ∈ [0,1],

∫
[0,1]

γ(c1, ..., cm−1,u, s)ds = f ′0(c1, ..., cm−1,u)

then we have

‖F − f0‖C1,m̂ = O
(

1
N

)
.

Proof : left as an exercise.
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Whitney-Graustein Theorem

Definition.– A C1 closed curve f : S1 → R2 is said to be regular (or to
be an immersion of the circle) if for every t ∈ S1 we have f ′(t) 6= 0.

Definition.– Let f0, f1 : S1 −→ R2 be two regular curves. A regular
homotopy between f0 and f1 is a C1 map

F : S1 × [0,1] −→ R2

(x , s) 7−→ Fs(x) = F (x , s)

such that F0 = f0, F1 = f1 and Fs is regular.

• The relation of regular homotopy is an equivalence relation whose
equivalence classes identify with path connected components of the
space of immersions I(S1,R2).
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Whitney-Graustein Theorem

Problem.– Classify regular curves up to regular homotopy.
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Whitney-Graustein Theorem

We assume that S1 = R/Z = [0,1]/∂[0,1] and R2 are endowed with an
orientation.

Definition.– Let f be a regular closed curve. The turning number
TN(f ) of f is the number of counterclockwise turns of f ′ around (0,0).

• Therefore the turning number of f is given by

TN(f ) = deg(t) = t̃(1)− t̃(0) ∈ Z

where t̃ : [0,1] −→ R is a lift of the loop

t :=
f ′

‖f ′‖
: [0,1] −→ S1 = R/Z.
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Whitney-Graustein Theorem
• Recall that

deg : π1(S1) −→ Z
[t] 7−→ deg(t)

is a bijection.

• Any regular homotopy (ft )t∈[0,1] induces a homotopy of the loops
(tt )t∈[0,1] in S1. Thus the turning number

t 7→ TN(ft )

is constant under regular homotopies.

• It ensues that the turning number induces a map

TN : π0(I(S1,R2)) −→ Z
[f ] 7−→ TN(f ).
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Whitney-Graustein Theorem

• As seen in the figures below, this map is onto :

TN(γ) = −1 TN(f ) = 0 TN(f ) = 1 TN(f ) = 2 TN(f ) = 3

• It turns out that this map is 1-to-1.
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Whitney-Graustein Theorem

Hassler Whitney

Whitney-Graustein Theorem (1937). – The turning number

TN : π0(I(S1,R2)) −→ Z

induces a bijective map
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Proof of the Whitney-Graustein Theorem

Proof.– It is enough to show the injectivity. Let f0 and f1 be two regular
closed curves having the same turning number. We consider the linear
interpolation between them :

ft := (1− t)f0 + t f1, t ∈ [0,1]

Unless you are extremely lucky, this interpolation will fail to be regular
for some t .

•We put R = R2 \ {(0,0)}. The subset R is connected, open and its
convex hull is R2.

• Observe that if ft is singular at some point x ∈ S1, i. e ; f ′t (x) = (0,0),
we obviously have

f ′t (x) ∈ IntConv(R) = R2
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Proof of the Whitney-Graustein Theorem
• Since f0 and f1 have the same TN, there exists a homotopy

S : [0,1] −→ C0(S1,R)
t 7−→ St

joining S0 = f ′0 to S1 = f ′1.

•We use the parametric version of the fundamental lemma with
P = [0,1]× S1 to build a family of loops (γt )t∈[0,1] such that for every
p = (t , x) ∈ P :

1) the average of the loop u 7→ γt (x ,u) is f ′t (x) i. e.∫ 1

0
γt (x ,u)du = f ′t (x)

2) the base point of the loop u 7→ γt (x ,u) is St (x).
3) γ0(x , .) = S0(x) and γ1(x , .) = S1(x).
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Whitney-Graustein Theorem

•We consider the family of closed curves gt : S1 → R2 given by

gt (x) := Gt (x)− x(Gt (1)−Gt (0)) with Gt := CIγt (ft ,N)

If N is large enough, gt is regular for every t ∈ [0,1].

• Since γ0(x , .) = S0(x) and γ1(x , .) = S1(x), we have

g0 = f0 and g1 = f1.

Thus gt is a regular homotopy joining f0 and f1.
�
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Whitney-Graustein Theorem

• An observation : assume that we do not use the relative version of
the Parametric Fundamental Lemma. Precisely, assume that
u 7→ γ0(x ,u) and u 7→ γ1(x ,u) are not constant map. Then the curve
g0 (resp. g1) is not equal to f0 (resp. to f1). An extra regular homotopy
is thus needed to join f0 to g0 and g1 to f1.

• This extra homotopy is for free by using the fact that each loop is
parametrized back and forth. Indeed...

• Let (gτ0 )τ∈ [0,1] be the homotopy defined by

gτ0 (x) := Gτ
0(x)− x(Gτ

0(1)−Gτ
0(0)) with Gτ

0 := CIγτ0 (f0,N)

where τ 7→ γτ0 is the retraction of γ0 to γ0(0) = σ0(0) = f ′0 described at
the end of the section Fundamental Lemma.
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Whitney-Graustein Theorem

• For all x ∈ S1 we have

(gτ0 )′(x) := (Gτ
0)′(x)− (Gτ

0(1)−Gτ
0(0))

with
(Gτ

0)′(x) = γτ0 (x ,Nx) ∈ R

• Since R is open, we deduce form the C0-property that gτ0 is a regular
homotopy joining f0 to g0 provided N is large enough.

• Obviously the same process also give a regular homotopy joining f1
to g1.
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Beyond the Whitney-Graustein Theorem
Definitions.– The subset R = R2 \ {(0,0} is called the differential
relation of regular curves.

• The space of all maps S : S1 → R is denoted Γ(R).

• A map S ∈ Γ(R) is called holonomic if there exists f : S1 → R2 such
that f ′ = S.

• In that case the map f is called a solution of R. The space of all
solutions is denoted by Sol(R). Observe that Sol(R) = I(S1,R2).

• There is an obvious inclusion J : Sol(R) ⊂ Γ(R) given by J(f ) = f ′.

Whitney-Graustein Theorem (1937). – The inclusion J induces a
bijective map at the π0-level :

π0(J) : π0(Sol(R)) −→ π0(Γ(R))
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Whitney-Graustein Theorem

• In fact more is true. By considering different parametric spaces P in
the proof of the Whitney-Graustein Theorem, we can prove the
following generalization.

Generalization of the Whitney-Graustein Theorem. – For every
k ∈ N the inclusion J induces a bijective map at the πk -level :

πk (J) : πk (Sol(R)) −→ πk (Γ(R))

In other words, J is a weak homotopy equivalence.
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Hassler Whitney
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