L3: 1D Convex Integration
Vincent Borrelli
Institut Camille Jordan - Université Claude Bernard Lyon 1

General Approach

Problem.- Let $\mathcal{R} \subset \mathbb{R}^{n}$ be a path-connected subset (=our differential relation) and $f_{0}:[0,1] \xrightarrow{C^{1}} \mathbb{R}^{n}$ be a map such

$$
\forall t \in[0,1], \quad f_{0}^{\prime}(t) \in \operatorname{Conv}(\mathcal{R})
$$

Find $F:[0,1] \xrightarrow{C^{1}} \mathbb{R}^{n}$ such that :
i) $\forall t \in[0,1], \quad F^{\prime}(t) \in \mathcal{R}$
ii) $\left\|F-f_{0}\right\|_{C^{0}}<\delta$
with $\delta>0$ given.

How to build a solution?

How to build a solution?

How to build a solution?

Construction of the solution

Step 1.- Choose a continuous family of loops

$$
\begin{aligned}
\gamma:[0,1] & \longrightarrow C^{0}(\mathbb{R} / \mathbb{Z}, \mathcal{R}) \\
u & \longmapsto
\end{aligned} \gamma(u, .)
$$

such that

$$
\forall u \in[0,1], \quad \int_{[0,1]} \gamma(u, s) d s=f_{0}^{\prime}(u)
$$

Construction of the solution

Step 2.- We define $F:=C l_{\gamma}\left(f_{0}, N\right)$ to be the map obtained by a convex integration from f_{0} :

$$
F(t):=f_{0}(0)+\int_{0}^{t} \gamma(u, N u) d u
$$

where $N \in \mathbb{N}^{*}$ is a free parameter.

C^{0}-Density

- Obviously $F=C l_{\gamma}\left(f_{0}, N\right)$ fulfills condition i) since

$$
F^{\prime}(t)=\gamma(t, N t) \in \mathcal{R}
$$

for all $t \in[0,1]$. The fact that F also fulfills condition ii) for N large enough will ensue from the following proposition

C^{0}-Density

- Obviously $F=C l_{\gamma}\left(f_{0}, N\right)$ fulfills condition i) since

$$
F^{\prime}(t)=\gamma(t, N t) \in \mathcal{R}
$$

for all $t \in[0,1]$. The fact that F also fulfills condition ii) for N large enough will ensue from the following proposition

Proposition (C^{0}-density).- If γ is of class C^{1} and satisfies the average condition

$$
\forall u \in[0,1], \quad \int_{[0,1]} \gamma(u, s) d s=f_{0}^{\prime}(u)
$$

then

$$
\left\|F-f_{0}\right\|_{C^{0}} \leq \frac{1}{N}\left(2\|\gamma\|_{C^{0}}+\left\|\partial_{1} \gamma\right\|_{C^{0}}\right)
$$

where $\|\gamma\|_{C^{0}}=\sup _{(u, s) \in[0,1]^{2}}\|\gamma(u, s)\|_{\mathbb{E}^{3}}$.

C^{0}-Density

Proof : Let $t \in[0,1]$. Put $n=\lfloor N t\rfloor, l_{j}=\left[\frac{j}{N}, \frac{j+1}{N}\right]$ for $0 \leq j \leq n-1$, $I_{n}=\left[\frac{n}{N}, t\right]$. Since

$$
\forall t \in I, \quad F(t):=f_{0}(0)+\int_{0}^{t} \gamma(s, N s) d s
$$

we obviously have

$$
F(t)-f_{0}(0)=\sum_{k=0}^{n} F^{[k]}
$$

where

$$
F^{[k]}=\int_{I_{k}} \gamma(s, N s) \mathrm{d} s .
$$

C^{0}-Density

Since

$$
\begin{aligned}
f_{0}(t) & =f_{0}(0)+\int_{x=0}^{t} \frac{\partial f_{0}}{\partial x}(x) \mathrm{d} x \\
& =f_{0}(0)+\int_{x=0}^{t} \int_{u=0}^{1} \gamma(x, u) \mathrm{d} u \mathrm{~d} x
\end{aligned}
$$

we also have

$$
f_{0}(t)-f_{0}(0)=\sum_{j=0}^{n} f^{[j]}
$$

with

$$
f^{[]]}=\int_{R_{j}} \gamma(x, u) \mathrm{d} x \mathrm{~d} u
$$

and $R_{j}=I_{j} \times[0,1]$.

C^{0}-Density

We consider $j \in[0, n-1]$. By the change of variables $u=N s-j$, we get

$$
F^{[]]}=\int_{0}^{1} \frac{1}{N} \gamma\left(\frac{u+j}{N}, u\right) \mathrm{d} u .
$$

C^{0}-Density

We consider $j \in[0, n-1]$. By the change of variables $u=N s-j$, we get

$$
F^{[]]}=\int_{0}^{1} \frac{1}{N} \gamma\left(\frac{u+j}{N}, u\right) \mathrm{d} u .
$$

We now define

$$
\begin{array}{cccc}
H_{j}: & R_{j} & \rightarrow & \mathbb{R}^{n} \\
(x, u) & \mapsto & \mapsto\left(\frac{u+j}{N}, u\right) .
\end{array}
$$

In particular, H_{j} is constant over each horizontal segment in R_{j}. It ensues that

$$
F^{[]]}=\int_{R_{j}} H_{j}(x, u) \mathrm{d} x \mathrm{~d} u
$$

implying

$$
\left|F^{[]]}-f_{0}^{[]]}\right| \leq \int_{R_{j}}\left\|\gamma\left(\frac{u+j}{N}, u\right)-\gamma(x, u)\right\| \mathrm{d} x \mathrm{~d} u \leq \frac{1}{N^{2}}\left\|\partial_{1} \gamma\right\|_{\infty} .
$$

The last inequality follows from the mean value theorem and the fact that the area of $R_{j}=\left[\frac{j}{N}, \frac{j+1}{N}\right] \times[0,1]$ is $1 / N$.

C^{0}-Density

For $j=n$ we can use a simpler upper bound :

$$
\left\|F^{[n]}-f_{0}^{[n]}\right\| \leq\left\|F^{[n]}\right\|+\left\|f_{0}^{[n]}\right\| \leq \frac{2}{N}\|\gamma\|_{\infty} .
$$

We finally obtain

$$
\begin{aligned}
\left\|F(t)-f_{0}(t)\right\| & \leq \sum_{j=0}^{n-1}\left\|F^{[j]}-f_{0}^{[j]}\right\|+\left\|F^{[n]}-f_{0}^{[n]}\right\| \\
& \leq \frac{1}{N}\left\|\partial_{1} \gamma\right\|_{\infty}+\frac{2}{N}\|\gamma\|_{\infty} .
\end{aligned}
$$

Summing up...

- To sum up, we are able to construct a solution of our initial problem as long as we have found a family of loops

$$
\begin{aligned}
\gamma:[0,1] & \longrightarrow C^{0}(\mathbb{R} / \mathbb{Z}, \mathcal{R}) \\
u & \longmapsto
\end{aligned}
$$

that satisfies the average condition i. e.

$$
\forall u \in[0,1], \quad \int_{[0,1]} \gamma(u, s) d s=f_{0}^{\prime}(u)
$$

Summing up...

- To sum up, we are able to construct a solution of our initial problem as long as we have found a family of loops

$$
\begin{aligned}
\gamma:[0,1] & \longrightarrow C^{0}(\mathbb{R} / \mathbb{Z}, \mathcal{R}) \\
u & \longmapsto
\end{aligned}
$$

that satisfies the average condition i. e.

$$
\forall u \in[0,1], \quad \int_{[0,1]} \gamma(u, s) d s=f_{0}^{\prime}(u)
$$

- The existence of such a family γ is the Fundamental Lemma of Convex Integration Theory.

Fundamental Lemma

Notation.- Let $\mathcal{R} \subset \mathbb{R}^{n}$ be a subset of \mathbb{R}^{n} (not necessarily path connected) and $\sigma \in \mathcal{R}$. We denote by $\operatorname{Int} \operatorname{Conv}(\mathcal{R}, \sigma)$ the interior of the convex hull of the component of \mathcal{R} to which σ belongs.

Fundamental Lemma (Gromov, 1969).- Let $\mathcal{R} \subset \mathbb{R}^{n}$ be an open set, $\sigma \in \mathcal{R}$ and $z \in \operatorname{Int} \operatorname{Conv}(\mathcal{R}, \sigma)$ There exists a loop $\gamma: \mathbb{S}^{1} \longrightarrow \mathcal{R}$ with base point σ such that:

$$
z=\int_{0}^{1} \gamma(s) d s .
$$

Fundamental Lemma

Notation.- Let $\mathcal{R} \subset \mathbb{R}^{n}$ be a subset of \mathbb{R}^{n} (not necessarily path connected) and $\sigma \in \mathcal{R}$. We denote by $\operatorname{Int} \operatorname{Conv}(\mathcal{R}, \sigma)$ the interior of the convex hull of the component of \mathcal{R} to which σ belongs.

Fundamental Lemma (Gromov, 1969).- Let $\mathcal{R} \subset \mathbb{R}^{n}$ be an open set, $\sigma \in \mathcal{R}$ and $z \in \operatorname{Int} \operatorname{Conv}(\mathcal{R}, \sigma)$ There exists a loop $\gamma: \mathbb{S}^{1} \longrightarrow \mathcal{R}$ with base point σ such that:

$$
z=\int_{0}^{1} \gamma(s) d s .
$$

Proof.- On the blackboard.

Fundamental Lemma

Remark.- A priori $\gamma \in \Omega_{\sigma}(\mathcal{R})$, but it is obvious that we can choose γ among back and forth loops i.e the space :

$$
\Omega_{\sigma}^{B F}(\mathcal{R})=\left\{\gamma \in \Omega_{\sigma}(\mathcal{R}) \mid \forall s \in[0,1] \gamma(s)=\gamma(1-s)\right\} .
$$

The point is that the above space is contractible. For every $\tau \in[0,1]$ we then denote by $\gamma^{\tau}: \mathbb{R} / \mathbb{Z} \longrightarrow \mathcal{R}$ the loop defined by

$$
\gamma^{\tau}(s)=\left\{\begin{array}{lll}
\gamma(s) & \text { if } & s \in\left[0, \frac{\tau}{2}\right] \cup\left[1-\frac{\tau}{2}\right] \\
\gamma(\tau) & \text { if } & s \in\left[\frac{\tau}{2}, 1-\frac{\tau}{2}\right] .
\end{array}\right.
$$

This homotopy induces a deformation retract of $\Omega_{\sigma}^{B F}(\mathcal{R})$ to the constant loop

$$
\begin{aligned}
\tilde{\sigma}: \mathbb{R} / \mathbb{Z} & \longrightarrow \mathcal{R} \\
s & \longmapsto \sigma .
\end{aligned}
$$

Parametric Fundamental Lemma

Parametric version of the Fundamental Lemma. - Let
$E=[a, b] \times \mathbb{R}^{n} \xrightarrow{\pi}[a, b]$ be a trivial bundle and $\mathcal{R} \subset E$ be an open set. Let $\mathfrak{S} \in \Gamma(\mathcal{R})$ and $z \in \Gamma(E)$ such that :

$$
\forall p \in[a, b], z(p) \in \operatorname{Int} \operatorname{Conv}\left(\mathcal{R}_{p}, \mathfrak{S}(p)\right)
$$

where $\mathcal{R}_{p}:=\pi^{-1}(p) \cap \mathcal{R}$. Then, there exists $\gamma:[a, b] \times \mathbb{S}^{1} \xrightarrow{C^{\infty}} \mathcal{R}$ such that :

$$
\begin{gathered}
\gamma(., 0)=\gamma(., 1)=\mathfrak{S} \in \Gamma(\mathcal{R}), \\
\forall p \in[a, b], \gamma(p, .) \in \operatorname{Concat}\left(\Omega_{\mathfrak{S}(p)}^{B F}\left(\mathcal{R}_{p}\right)\right)
\end{gathered}
$$

and

$$
\forall p \in[a, b], z(p)=\int_{0}^{1} \gamma(p, s) d s .
$$

Idea of Proof : concatenation of BF loops

Idea of Proof : concatenation of BF loops

Observation.- The parametric lemma still holds if the parameter space $[a, b]$ is replaced by a compact manifold P.

Relative Parametric Fundamental Lemma

Parametric version of the Fundamental Lemma (continuation). Let K be a closed subset of $[a, b]$. If for some open neighborhood $V(K)$ of K we have

$$
\forall p \in V(K), \quad z(p)=\mathfrak{S}(p)
$$

then the family of loops $\gamma:[a, b] \times \mathbb{S}^{1} \longrightarrow \mathcal{R}$ can be chosen such that

$$
\gamma(p, .) \text { is the constant loop } \mathfrak{S}(p)
$$

for all $p \in V_{1}(K)$ where $V_{1}(K) \subset V(K)$ is an open neighborhood K.

Summing up...

- If \mathcal{R} is open then the problem of finding a map F solving \mathcal{R} and C^{0} close to f_{0} can be solved by a convex integration. Indeed

Proposition.- Let $f=\operatorname{Cl}_{\gamma}\left(f_{0}, N\right)$ then :

$$
\text { i) } \forall t \in[0,1], \partial_{t} f(t)=\gamma(t, N t) \in \mathcal{R}
$$

and if γ satisfy the average condition :

$$
\text { ii) }\left\|f-f_{0}\right\|_{C^{0}}=O\left(\frac{1}{N}\right)
$$

Corollary.- If N is large enough then $f=\operatorname{Cl}_{\gamma}\left(f_{0}, N\right)$ is a solution of the above 1D-problem

Exercise : the case of closed curves

Exercise.- Let $\mathcal{R} \subset \mathbb{R}^{n}$ be a connected open subset and $f_{0}: \mathbb{S}^{1} \xrightarrow{C^{1}} \mathbb{R}^{n}$ be a closed curve such that

$$
\forall t \in \mathbb{S}^{1}, \quad f_{0}^{\prime}(t) \in \operatorname{Conv}(\mathcal{R})
$$

Find a closed curve $f: \mathbb{S}^{1} \xrightarrow{C^{1}} \mathbb{R}^{n}$ such that :

$$
\begin{aligned}
& \text { i) } \forall t \in \mathbb{S}^{1}, \quad f^{\prime}(t) \in \mathcal{R} \\
& \text { ii) }\left\|f-f_{0}\right\|_{C^{0}}<\delta
\end{aligned}
$$

with $\delta>0$ given.

Exercise : the case of closed curves (hints)

- Note that, even if f_{0} is a closed curve $f_{0}(0)=f_{0}(1)$, the map $F=C l_{\gamma}\left(f_{0}, N\right)$ obtained by a convex integration from f_{0} does not satisfy $F(0)=F(1)$ in general.

Exercise : the case of closed curves (hints)

- Note that, even if f_{0} is a closed curve $f_{0}(0)=f_{0}(1)$, the map $F=C l_{\gamma}\left(f_{0}, N\right)$ obtained by a convex integration from f_{0} does not satisfy $F(0)=F(1)$ in general.
- One natural choice for f is to take

$$
\forall t \in[0,1], \quad f(t):=F(t)-t(F(1)-F(0)) .
$$

Since $f(0)=f(1)$ this defined a closed curve. Observe also that $\gamma(0,)=.\gamma(1,$.$) implies f^{\prime}(0)=f^{\prime}(1)$.

Exercise : the case of closed curves (hints)

- Note that, even if f_{0} is a closed curve $f_{0}(0)=f_{0}(1)$, the map $F=C l_{\gamma}\left(f_{0}, N\right)$ obtained by a convex integration from f_{0} does not satisfy $F(0)=F(1)$ in general.
- One natural choice for f is to take

$$
\forall t \in[0,1], \quad f(t):=F(t)-t(F(1)-F(0)) .
$$

Since $f(0)=f(1)$ this defined a closed curve. Observe also that $\gamma(0,)=.\gamma(1,$.$) implies f^{\prime}(0)=f^{\prime}(1)$.

- From

$$
f^{\prime}(f)=\gamma(t, N t)-(F(1)-F(0))
$$

we deduce

$$
\left\|f^{\prime}(t)-\gamma(t, N t)\right\|=O\left(\frac{1}{N}\right)
$$

Since \mathcal{R} is assumed to be open, $f^{\prime}(t) \in \mathcal{R}$ if N is large enough.

Exercise : the case of closed curves (hints)

- Condition ii) will follow from a C^{0}-density result for the closed curve f. Proposition (C^{0}-density).- If γ is of class C^{1} and satisfies the average condition

$$
\forall u \in[0,1], \quad \int_{[0,1]} \gamma(u, s) d s=f_{0}^{\prime}(u)
$$

then

$$
\left\|f-f_{0}\right\|_{C^{0}} \leq \frac{C\left(\|\gamma\|_{C^{0}},\left\|\partial_{1} \gamma\right\|_{C^{0}}\right)}{N}
$$

for some function C (to be determined).

C^{0} Density, $N=3$

C^{0} Density, $N=5$

C^{0} Density, $N=10$

C^{0} Density, $N=20$

Multi Variables Setting

- In a multi-variable setting, the convex integration formula takes the following form :

$$
F\left(c_{1}, \ldots, c_{m}\right):=f_{0}\left(c_{1}, \ldots, c_{m-1}, 0\right)+\int_{0}^{c_{m}} \gamma\left(c_{1}, \ldots, c_{m-1}, s, N s\right) d s
$$

where $\left(c_{1}, \ldots, c_{m}\right) \in[0,1]^{m}$.

A corrugated plane

Multi Variables Setting

- The C^{0}-density property can be enhanced to a $C^{1, \widehat{m}}$-density property where the notation $C^{1, \widehat{m}}$ means that the closeness is measured with the following norm

$$
\|F\|_{C^{1, \hat{m}}}=\max \left(\|F\|_{C^{0}},\left\|\frac{\partial F}{\partial c_{1}}\right\|_{C^{0}}, \ldots,\left\|\frac{\partial F}{\partial c_{m-1}}\right\|_{C^{0}}\right)
$$

Multi Variables Setting

- The C^{0}-density property can be enhanced to a $C^{1, \widehat{m}}$-density property where the notation $C^{1, \tilde{m}}$ means that the closeness is measured with the following norm

$$
\|F\|_{C^{1}, \tilde{m}}=\max \left(\|F\|_{C^{0}},\left\|\frac{\partial F}{\partial c_{1}}\right\|_{C^{0}}, \ldots,\left\|\frac{\partial F}{\partial c_{m-1}}\right\|_{C^{0}}\right) .
$$

Proposition ($C^{1, \hat{m}_{-}}$density).- If γ is of class C^{1} and satisfies the average condition

$$
\forall u \in[0,1], \quad \int_{[0,1]} \gamma\left(c_{1}, \ldots, c_{m-1}, u, s\right) d s=f_{0}^{\prime}\left(c_{1}, \ldots, c_{m-1}, u\right)
$$

then we have

$$
\left\|F-f_{0}\right\|_{C_{1}, \hat{m}}=O\left(\frac{1}{N}\right) .
$$

Proof : left as an exercise.

Whitney-Graustein Theorem

Definition.- A C^{1} closed curve $f: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ is said to be regular (or to be an immersion of the circle) if for every $t \in \mathbb{S}^{1}$ we have $f^{\prime}(t) \neq 0$.

Whitney-Graustein Theorem

Definition.- A C^{1} closed curve $f: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ is said to be regular (or to be an immersion of the circle) if for every $t \in \mathbb{S}^{1}$ we have $f^{\prime}(t) \neq 0$.

Definition.- Let $f_{0}, f_{1}: \mathbb{S}^{1} \longrightarrow \mathbb{R}^{2}$ be two regular curves. A regular homotopy between f_{0} and f_{1} is a C^{1} map

$$
\begin{array}{rlc}
F: \mathbb{S}^{1} \times[0,1] & \longrightarrow & \mathbb{R}^{2} \\
(x, s) & \longmapsto & F_{s}(x)=F(x, s)
\end{array}
$$

such that $F_{0}=f_{0}, F_{1}=f_{1}$ and F_{s} is regular.

Whitney-Graustein Theorem

Definition.- A C^{1} closed curve $f: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ is said to be regular (or to be an immersion of the circle) if for every $t \in \mathbb{S}^{1}$ we have $f^{\prime}(t) \neq 0$.

Definition.- Let $f_{0}, f_{1}: \mathbb{S}^{1} \longrightarrow \mathbb{R}^{2}$ be two regular curves. A regular homotopy between f_{0} and f_{1} is a C^{1} map

$$
\begin{array}{rlc}
F: \mathbb{S}^{1} \times[0,1] & \longrightarrow & \mathbb{R}^{2} \\
(x, s) & \longmapsto & F_{s}(x)=F(x, s)
\end{array}
$$

such that $F_{0}=f_{0}, F_{1}=f_{1}$ and F_{s} is regular.

- The relation of regular homotopy is an equivalence relation whose equivalence classes identify with path connected components of the space of immersions $I\left(\mathbb{S}^{1}, \mathbb{R}^{2}\right)$.

Whitney-Graustein Theorem

Problem.- Classify regular curves up to regular homotopy.

Whitney-Graustein Theorem

We assume that $\mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}=[0,1] / \partial[0,1]$ and \mathbb{R}^{2} are endowed with an orientation.

Definition.- Let f be a regular closed curve. The turning number $T N(f)$ of f is the number of counterclockwise turns of f^{\prime} around $(0,0)$.

Whitney-Graustein Theorem

We assume that $\mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}=[0,1] / \partial[0,1]$ and \mathbb{R}^{2} are endowed with an orientation.

Definition.- Let f be a regular closed curve. The turning number $T N(f)$ of f is the number of counterclockwise turns of f^{\prime} around $(0,0)$.

- Therefore the turning number of f is given by

$$
T N(f)=\operatorname{deg}(\mathbf{t})=\widetilde{\mathbf{t}}(1)-\widetilde{\mathbf{t}}(0) \in \mathbb{Z}
$$

where $\tilde{\mathbf{t}}:[0,1] \longrightarrow \mathbb{R}$ is a lift of the loop

$$
\mathbf{t}:=\frac{f^{\prime}}{\left\|f^{\prime}\right\|}:[0,1] \longrightarrow \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}
$$

Whitney-Graustein Theorem

- Recall that

is a bijection.

Whitney-Graustein Theorem

- Recall that

$$
\begin{array}{cccc}
\operatorname{deg}: & \pi_{1}\left(\mathbb{S}^{1}\right) & \longrightarrow & \mathbb{Z} \\
{[\mathbf{t}]} & \longmapsto & \operatorname{deg}(\mathbf{t})
\end{array}
$$

is a bijection.

- Any regular homotopy $\left(f_{t}\right)_{t \in[0,1]}$ induces a homotopy of the loops $\left(\mathbf{t}_{t}\right)_{t \in[0,1]}$ in \mathbb{S}^{1}. Thus the turning number

$$
t \mapsto T N\left(f_{t}\right)
$$

is constant under regular homotopies.

Whitney-Graustein Theorem

- Recall that

$$
\begin{array}{cccc}
\operatorname{deg}: & \pi_{1}\left(\mathbb{S}^{1}\right) & \longrightarrow & \mathbb{Z} \\
{[\mathbf{t}]} & \longmapsto \operatorname{deg}(\mathbf{t})
\end{array}
$$

is a bijection.

- Any regular homotopy $\left(f_{t}\right)_{t \in[0,1]}$ induces a homotopy of the loops $\left(\mathbf{t}_{t}\right)_{t \in[0,1]}$ in \mathbb{S}^{1}. Thus the turning number

$$
t \mapsto T N\left(f_{t}\right)
$$

is constant under regular homotopies.

- It ensues that the turning number induces a map

$$
\begin{array}{ccc}
T N: & \pi_{0}\left(I\left(\mathbb{S}^{1}, \mathbb{R}^{2}\right)\right) & \longrightarrow \\
{[f]} & \longmapsto & \mathbb{Z} \\
{[N(f) .}
\end{array}
$$

Whitney-Graustein Theorem

- As seen in the figures below, this map is onto :
$T N(\gamma)=-1 \quad T N(f)=0 \quad T N(f)=1 \quad T N(f)=2 \quad T N(f)=3$

Whitney-Graustein Theorem

- As seen in the figures below, this map is onto :

$T N(\gamma)=-1 \quad T N(f)=0 \quad T N(f)=1 \quad T N(f)=2 \quad T N(f)=3$
- It turns out that this map is 1-to-1.

Whitney-Graustein Theorem

Hassler Whitney
Whitney-Graustein Theorem (1937). - The turning number

$$
T N: \pi_{0}\left(I\left(\mathbb{S}^{1}, \mathbb{R}^{2}\right)\right) \longrightarrow \mathbb{Z}
$$

induces a bijective map

Proof of the Whitney-Graustein Theorem

Proof.- It is enough to show the injectivity. Let f_{0} and f_{1} be two regular closed curves having the same turning number. We consider the linear interpolation between them :

$$
f_{t}:=(1-t) f_{0}+t f_{1}, \quad t \in[0,1]
$$

Unless you are extremely lucky, this interpolation will fail to be regular for some t.

Proof of the Whitney-Graustein Theorem

Proof.- It is enough to show the injectivity. Let f_{0} and f_{1} be two regular closed curves having the same turning number. We consider the linear interpolation between them :

$$
f_{t}:=(1-t) f_{0}+t f_{1}, \quad t \in[0,1]
$$

Unless you are extremely lucky, this interpolation will fail to be regular for some t.

- We put $\mathcal{R}=\mathbb{R}^{2} \backslash\{(0,0)\}$. The subset \mathcal{R} is connected, open and its convex hull is \mathbb{R}^{2}.

Proof of the Whitney-Graustein Theorem

Proof.- It is enough to show the injectivity. Let f_{0} and f_{1} be two regular closed curves having the same turning number. We consider the linear interpolation between them :

$$
f_{t}:=(1-t) f_{0}+t f_{1}, \quad t \in[0,1]
$$

Unless you are extremely lucky, this interpolation will fail to be regular for some t.

- We put $\mathcal{R}=\mathbb{R}^{2} \backslash\{(0,0)\}$. The subset \mathcal{R} is connected, open and its convex hull is \mathbb{R}^{2}.
- Observe that if f_{t} is singular at some point $x \in \mathbb{S}^{1}$, i. e; $f_{t}^{\prime}(x)=(0,0)$, we obviously have

$$
f_{t}^{\prime}(x) \in \operatorname{Int} \operatorname{Conv}(\mathcal{R})=\mathbb{R}^{2}
$$

Proof of the Whitney-Graustein Theorem

- Since f_{0} and f_{1} have the same TN, there exists a homotopy

$$
\begin{aligned}
\mathfrak{S}:[0,1] & \longrightarrow C^{0}\left(\mathbb{S}^{1}, \mathcal{R}\right) \\
t & \longmapsto
\end{aligned} \mathfrak{S}_{t}
$$

joining $\mathfrak{S}_{0}=f_{0}^{\prime}$ to $\mathfrak{S}_{1}=f_{1}^{\prime}$.

Proof of the Whitney-Graustein Theorem

- Since f_{0} and f_{1} have the same TN, there exists a homotopy

$$
\begin{aligned}
& \mathfrak{S}:[0,1] \longrightarrow \\
& t \longmapsto C^{0}\left(\mathbb{S}^{1}, \mathcal{R}\right) \\
& \mathfrak{S}_{t}
\end{aligned}
$$

joining $\mathfrak{S}_{0}=f_{0}^{\prime}$ to $\mathfrak{S}_{1}=f_{1}^{\prime}$.

- We use the parametric version of the fundamental lemma with $P=[0,1] \times \mathbb{S}^{1}$ to build a family of loops $\left(\gamma_{t}\right)_{t \in[0,1]}$ such that for every $p=(t, x) \in P$:

1) the average of the loop $u \mapsto \gamma_{t}(x, u)$ is $f_{t}^{\prime}(x)$ i. e.

$$
\int_{0}^{1} \gamma_{t}(x, u) d u=f_{t}^{\prime}(x)
$$

2) the base point of the loop $u \mapsto \gamma_{t}(x, u)$ is $\mathfrak{S}_{t}(x)$.
3) $\gamma_{0}(x,)=.\mathfrak{S}_{0}(x)$ and $\gamma_{1}(x,)=.\mathfrak{S}_{1}(x)$.

Whitney-Graustein Theorem

- We consider the family of closed curves $g_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ given by

$$
g_{t}(x):=G_{t}(x)-x\left(G_{t}(1)-G_{t}(0)\right) \text { with } G_{t}:=C l_{\gamma_{t}}\left(f_{t}, N\right)
$$

If N is large enough, g_{t} is regular for every $t \in[0,1]$.

Whitney-Graustein Theorem

- We consider the family of closed curves $g_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ given by

$$
g_{t}(x):=G_{t}(x)-x\left(G_{t}(1)-G_{t}(0)\right) \text { with } G_{t}:=C l_{\gamma_{t}}\left(f_{t}, N\right)
$$

If N is large enough, g_{t} is regular for every $t \in[0,1]$.

- Since $\gamma_{0}(x,)=.\mathfrak{S}_{0}(x)$ and $\gamma_{1}(x,)=.\mathfrak{S}_{1}(x)$, we have

$$
g_{0}=f_{0} \quad \text { and } \quad g_{1}=f_{1}
$$

Whitney-Graustein Theorem

- We consider the family of closed curves $g_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ given by

$$
g_{t}(x):=G_{t}(x)-x\left(G_{t}(1)-G_{t}(0)\right) \text { with } G_{t}:=C l_{\gamma_{t}}\left(f_{t}, N\right)
$$

If N is large enough, g_{t} is regular for every $t \in[0,1]$.

- Since $\gamma_{0}(x,)=.\mathfrak{S}_{0}(x)$ and $\gamma_{1}(x,)=.\mathfrak{S}_{1}(x)$, we have

$$
g_{0}=f_{0} \quad \text { and } \quad g_{1}=f_{1}
$$

Thus g_{t} is a regular homotopy joining f_{0} and f_{1}.

Whitney-Graustein Theorem

- An observation : assume that we do not use the relative version of the Parametric Fundamental Lemma. Precisely, assume that $u \mapsto \gamma_{0}(x, u)$ and $u \mapsto \gamma_{1}(x, u)$ are not constant map. Then the curve g_{0} (resp. g_{1}) is not equal to f_{0} (resp. to f_{1}). An extra regular homotopy is thus needed to join f_{0} to g_{0} and g_{1} to f_{1}.

Whitney-Graustein Theorem

- An observation : assume that we do not use the relative version of the Parametric Fundamental Lemma. Precisely, assume that $u \mapsto \gamma_{0}(x, u)$ and $u \mapsto \gamma_{1}(x, u)$ are not constant map. Then the curve g_{0} (resp. g_{1}) is not equal to f_{0} (resp. to f_{1}). An extra regular homotopy is thus needed to join f_{0} to g_{0} and g_{1} to f_{1}.
- This extra homotopy is for free by using the fact that each loop is parametrized back and forth. Indeed...

Whitney-Graustein Theorem

- An observation : assume that we do not use the relative version of the Parametric Fundamental Lemma. Precisely, assume that $u \mapsto \gamma_{0}(x, u)$ and $u \mapsto \gamma_{1}(x, u)$ are not constant map. Then the curve g_{0} (resp. g_{1}) is not equal to f_{0} (resp. to f_{1}). An extra regular homotopy is thus needed to join f_{0} to g_{0} and g_{1} to f_{1}.
- This extra homotopy is for free by using the fact that each loop is parametrized back and forth. Indeed...
- Let $\left(g_{0}^{\tau}\right)_{\tau \in[0,1]}$ be the homotopy defined by

$$
g_{0}^{\tau}(x):=G_{0}^{\tau}(x)-x\left(G_{0}^{\tau}(1)-G_{0}^{\tau}(0)\right) \text { with } G_{0}^{\tau}:=C l_{\gamma_{0}^{\tau}}\left(f_{0}, N\right)
$$

where $\tau \mapsto \gamma_{0}^{\tau}$ is the retraction of γ_{0} to $\gamma_{0}(0)=\sigma_{0}(0)=f_{0}^{\prime}$ described at the end of the section Fundamental Lemma.

Whitney-Graustein Theorem

- For all $x \in \mathbb{S}^{1}$ we have

$$
\left(g_{0}^{\tau}\right)^{\prime}(x):=\left(G_{0}^{\tau}\right)^{\prime}(x)-\left(G_{0}^{\tau}(1)-G_{0}^{\tau}(0)\right)
$$

with

$$
\left(G_{0}^{\tau}\right)^{\prime}(x)=\gamma_{0}^{\tau}(x, N x) \in \mathcal{R}
$$

Whitney-Graustein Theorem

- For all $x \in \mathbb{S}^{1}$ we have

$$
\left(g_{0}^{\tau}\right)^{\prime}(x):=\left(G_{0}^{\tau}\right)^{\prime}(x)-\left(G_{0}^{\tau}(1)-G_{0}^{\tau}(0)\right)
$$

with

$$
\left(G_{0}^{\tau}\right)^{\prime}(x)=\gamma_{0}^{\tau}(x, N x) \in \mathcal{R}
$$

- Since \mathcal{R} is open, we deduce form the C^{0}-property that g_{0}^{τ} is a regular homotopy joining f_{0} to g_{0} provided N is large enough.

Whitney-Graustein Theorem

- For all $x \in \mathbb{S}^{1}$ we have

$$
\left(g_{0}^{\tau}\right)^{\prime}(x):=\left(G_{0}^{\tau}\right)^{\prime}(x)-\left(G_{0}^{\tau}(1)-G_{0}^{\tau}(0)\right)
$$

with

$$
\left(G_{0}^{\tau}\right)^{\prime}(x)=\gamma_{0}^{\tau}(x, N x) \in \mathcal{R}
$$

- Since \mathcal{R} is open, we deduce form the C^{0}-property that g_{0}^{τ} is a regular homotopy joining f_{0} to g_{0} provided N is large enough.
- Obviously the same process also give a regular homotopy joining f_{1} to g_{1}.

Beyond the Whitney-Graustein Theorem

Definitions.- The subset $\mathcal{R}=\mathbb{R}^{2} \backslash\{(0,0\}$ is called the differential relation of regular curves.

- The space of all maps $\mathfrak{S}: \mathbb{S}^{1} \rightarrow \mathcal{R}$ is denoted $\Gamma(\mathcal{R})$.
- A map $\mathfrak{S} \in \Gamma(\mathcal{R})$ is called holonomic if there exists $f: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ such that $f^{\prime}=\mathfrak{S}$.
- In that case the map f is called a solution of \mathcal{R}. The space of all solutions is denoted by $\operatorname{Sol}(\mathcal{R})$. Observe that $\operatorname{Sol}(\mathcal{R})=I\left(\mathbb{S}^{1}, \mathbb{R}^{2}\right)$.

Beyond the Whitney-Graustein Theorem

Definitions.- The subset $\mathcal{R}=\mathbb{R}^{2} \backslash\{(0,0\}$ is called the differential relation of regular curves.

- The space of all maps $\mathfrak{S}: \mathbb{S}^{1} \rightarrow \mathcal{R}$ is denoted $\Gamma(\mathcal{R})$.
- A map $\mathfrak{S} \in \Gamma(\mathcal{R})$ is called holonomic if there exists $f: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ such that $f^{\prime}=\mathfrak{S}$.
- In that case the map f is called a solution of \mathcal{R}. The space of all solutions is denoted by $\operatorname{Sol}(\mathcal{R})$. Observe that $\operatorname{Sol}(\mathcal{R})=I\left(\mathbb{S}^{1}, \mathbb{R}^{2}\right)$.
- There is an obvious inclusion $J: S o l(\mathcal{R}) \subset \Gamma(\mathcal{R})$ given by $J(f)=f^{\prime}$.

Beyond the Whitney-Graustein Theorem

Definitions.- The subset $\mathcal{R}=\mathbb{R}^{2} \backslash\{(0,0\}$ is called the differential relation of regular curves.

- The space of all maps $\mathfrak{S}: \mathbb{S}^{1} \rightarrow \mathcal{R}$ is denoted $\Gamma(\mathcal{R})$.
- A map $\mathfrak{S} \in \Gamma(\mathcal{R})$ is called holonomic if there exists $f: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ such that $f^{\prime}=\mathfrak{S}$.
- In that case the map f is called a solution of \mathcal{R}. The space of all solutions is denoted by $\operatorname{Sol}(\mathcal{R})$. Observe that $\operatorname{Sol}(\mathcal{R})=I\left(\mathbb{S}^{1}, \mathbb{R}^{2}\right)$.
- There is an obvious inclusion $J: \operatorname{Sol}(\mathcal{R}) \subset \Gamma(\mathcal{R})$ given by $J(f)=f^{\prime}$.

Whitney-Graustein Theorem (1937). - The inclusion J induces a bijective map at the π_{0}-level :

$$
\pi_{0}(\mathcal{J}): \pi_{0}(S o l(\mathcal{R})) \longrightarrow \pi_{0}(\Gamma(\mathcal{R}))
$$

Whitney-Graustein Theorem

- In fact more is true. By considering different parametric spaces P in the proof of the Whitney-Graustein Theorem, we can prove the following generalization.

Generalization of the Whitney-Graustein Theorem. - For every $k \in \mathbb{N}$ the inclusion J induces a bijective map at the π_{k}-level :

$$
\pi_{k}(J): \pi_{k}(\operatorname{Sol}(\mathcal{R})) \longrightarrow \pi_{k}(\Gamma(\mathcal{R}))
$$

In other words, J is a weak homotopy equivalence.

Hassler Whitney

