H-principe et intégration convexe

Vincent Borrelli

March 15, 2011

1 Qu'est-ce que le h-principe ?

Définition.— Soit $X \longrightarrow M^n$ une fibration. Une relation différentielle d'ordre r portant sur les sections $\Gamma^r(X)$ de classe C^r est un sous-ensemble \mathcal{R} de l'espace des jets $X^{(r)}$.

Exemple 1.— Un système d'équations aux dérivées partielles

$$\Phi(x, f, \partial^{\alpha} f) = 0$$

où $x \in \mathbb{R}^n$ et $f : \mathbb{R}^n \longrightarrow \mathbb{R}^q$ et où les dérivées partielles portent sur les $\alpha = (\alpha_1, ..., \alpha_n)$ tels que $|\alpha| = \alpha_1 + ... + \alpha_n \le r$ définit naturellement une relation différentielle \mathcal{R} par

$$\mathcal{R} = \{(x, y, z_{\alpha}) \mid \Phi(x, y, z_{\alpha}) = 0\}.$$

Ici X est le fibré trivial $\mathbb{R}^n \times \mathbb{R}^q \longrightarrow \mathbb{R}^n$ et $X^{(r)} = J^r(\mathbb{R}^n, \mathbb{R}^q)$.

Exemple 2.— Soit $X = \Lambda^p T^* M^n \longrightarrow M^n$ La condition de fermeture des p-formes différentielles $\alpha \in \Omega^p(M^n)$

$$d\alpha = 0$$

définit naturellement une relation différentielle $\mathcal{R} \subset X^{(1)}$.

Exemple 3.— Soit $X = M^n \times N^q \longrightarrow M^n$. On dit que $f: M^n \longrightarrow N^q$ est une immersion si, en tout point $p \in M^n$, on a $rg\ df_p = n$. Cette condition définit une relation différentielle

$$\mathcal{R} = Mono(TM, TN) \subset X^{(1)} = Hom(TM, TN).$$

Notation.— Soit $f \in \Gamma^r(X)$ une section de $X \longrightarrow M^n$. On note $J : \Gamma^r(X) \longrightarrow \Gamma^0(X^{(r)})$ l'application qui à $f \in \Gamma^r(X)$ associe son r-jet $j^r f$.

Définition.— Tout élément $\sigma \in \Gamma(\mathcal{R})$ est appelé solution formelle de \mathcal{R} . On dit qu'une solution formelle σ est holonome s'il existe $f \in \Gamma^r(X)$ telle que $\sigma = j^r f$. Une telle section f est dite solution de la relation différentielle \mathcal{R} . On note $Sol(\mathcal{R})$ l'espace des solutions de \mathcal{R} .

Les espaces $Sol(\mathcal{R})$ et $\Gamma(\mathcal{R})$ sont munis de la topologie des compacts-ouverts, autrement dit, de la topologie de la convergence uniforme des sections (et de leurs dérivées juqu'à l'ordre r pour $Sol(\mathcal{R})$) sur les compacts de M^n .

Définition.— On dit que \mathcal{R} satisfait au h-principe (ou au principe homotopique) si l'inclusion naturelle $J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})$ est induit une surjection sur les composantes connexes. On dit que une \mathcal{R} satisfait au h-principe paramétrique si J est équivalence d'homotopie faible.

Rappelons qu'une application $f:(X,x) \longrightarrow (Y,y)$ entre deux espaces topologiques est une équivalence d'homotopie faible si elle induit un isomorphisme au niveau de tous les groupes d'homotopie i. e.

$$\forall k \in \mathbb{N}, \quad \pi_k(f) : \pi_k(X, x) \simeq \pi_k(Y, y).$$

Si k = 0, il faut bien sûr comprendre que f induit une bijection entre les π_0 . L'application f est une équivalence d'homotopie s'il existe

$$g:(Y,y)\longrightarrow (X,x)$$

telle que $f \circ g$ est homotope à Id_Y et $g \circ f$ est homotope à Id_X .

Une remarque tirée de [3].— Une version en dimension infinie du théorème J.H.C. Whitehead (cf. [11] ou [2]) implique que pour les variétés de Fréchet ¹ métrisable l'équivalence d'homotopie faible implique l'équivalence d'homotopie. En particulier, les espaces $Sol(\mathcal{R})$ et $\Gamma(\mathcal{R})$ sont Fréchet métrisables et donc le h-principe pour \mathcal{R} implique que $J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})$ est une équivalence d'homotopie.

¹Rappelons qu'un espace de Fréchet est un e.v.t. réel complet dont la topologie est induite par une famille dénombrable et séparante de semi-normes $|.|_n$. Il est métrisable avec $d(x,y) := \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x-y|_n}{1+|x-y|_n}$

2 Exemples de h-principes

On peut trouver un condensé d'exemples divers sur la page de John Francis [5]. Voici mon propre choix, évidemment bien subjectif.

2.1 Le théorème de Whitney

On munit \mathbb{R}^2 et $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z} = [0,1]/\partial[0,1]$ d'une orientation. Si $\gamma: \mathbb{S}^1 \to \mathbb{R}^2$ est une immersion de classe C^1 alors son application tangente fournit une application continue

$$\gamma': \mathbb{S}^1 \to \mathbb{R}^2 \setminus \{(0,0)\}$$

dont on peut calculer le nombre de tours $N(\gamma')$. Rappelons que

$$N(\gamma') := \widetilde{t}(1) - \widetilde{t}(0) \in \mathbb{Z}$$

où $\widetilde{t}:[0,1]\longrightarrow\mathbb{R}$ est un relevé de

$$t := \frac{\gamma'}{\|\gamma'\|} : [0,1] \longrightarrow \mathbb{S}^1 = \mathbb{R}/\mathbb{Z}.$$

On définit l'indice $Ind(\gamma)$ de γ comme étant le nombre de tours $N(\gamma')$. Puisque $Ind(\gamma)$ est clairement invariant par homotopie régulière², on a une application :

$$\begin{array}{cccc} Ind: & \pi_0(I(\mathbb{S}^1,\mathbb{R}^2)) & \longrightarrow & \mathbb{Z} \\ & [\gamma] & \longmapsto & Ind(\gamma). \end{array}$$

Cette application est surjective comme le montre l'examen des exemples cidessous :

$$Ind(\gamma) = -1 \quad Ind(\gamma) = 0 \quad Ind(\gamma) = 1 \quad Ind(\gamma) = 2 \quad \quad Ind(\gamma) = 3$$

Cette application est en réalité une bijection.

Théorème de Whitney-Graustein (1937). – On $a: \pi_0(I(\mathbb{S}^1, \mathbb{R}^2)) \simeq \mathbb{Z}$, l'identification étant donnée par l'indice.

 $^{^2}$ J'appelle homotopie régulière un chemin continu dans $I(\mathbb{S}^1, \mathbb{R}^2)$.

Ici $X = \mathbb{S}^1 \times \mathbb{R}^2 \longrightarrow \mathbb{S}^1$ et $X^{(1)} = \mathbb{S}^1 \times \mathbb{R}^2 \times \mathbb{R}^2$. Si $\gamma : \mathbb{S}^1 \longrightarrow \mathbb{R}^2$ alors $j^1 \gamma(x) = (x, \gamma(x), \gamma'(x))$. et la relation différentielle est l'ensemble

$$\mathcal{R} = \mathbb{S}^1 \times \mathbb{R}^2 \times \mathbb{R}^2 \setminus \{(0,0)\}.$$

Enfin $\Gamma(\mathcal{R}) = C^0(\mathbb{S}^1, \mathcal{R})$ et $Sol(\mathcal{R}) = I(\mathbb{S}^1, \mathbb{R}^2)$. Le théorème de Whitney-Graustein affirme que $J : Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})$ induit une bijection au niveau du π_0 . En travaillant à peine plus la démonstration de ce théorème, on montre facilement que J est en fait une é. h. f. La relation différentielle des immersions de \mathbb{S}^1 dans \mathbb{R}^2 satisfait donc un h-principe paramétrique.

2.2 Théorèmes de Smale et Hirsch

Une immersion entre deux variétés est une application $f: M^n \longrightarrow N^m$ dont la différentiel est de rang n en tout point. L'espace I(M, N) des immersions est muni de la topologie faible C^1 .

Théorème de Smale-Hirsch (1958-59). – Soient M^n et N^q deux variétés lisses, q > n. On a : $\pi_0(I(M,N)) \simeq \pi_0(Mono(TM,TN))$ l'identification étant donnée par la différentielle.

La relation différentielle est celle de l'exemple 3 :

$$\mathcal{R} = Mono(TM, TN) \subset X^{(1)} = Hom(TM, TN)$$

où Hom(TM,TN) l'espace des morphismes de TM dans TN. En particulier, on a la fibration

$$\mathcal{L}(T_xM, T_yN) \longrightarrow Hom(TM, TN) \stackrel{p}{\longrightarrow} M \times N.$$

Une version à paramètre de ce théorème montre qu'en fait

$$J: Sol(\mathcal{R}) = I(M, N) \longrightarrow \Gamma(\mathcal{R}) = Mono(TM, TN)$$

est une é. h. f.

Corollaire.— L'espace $I(\mathbb{S}^2, \mathbb{R}^3)$ est connexe.

2.3 Théorèmes de Nash et Kuiper

Définition.— Une immersion $f:(M^n,g) \longrightarrow (N^q,h)$ entre deux variétés riemanniennes est dite (strictement) courte si

$$f^*h < g$$
.

Elle est dite isométrique si $f^*h = g$. Un plongement est une immersion qui réalise un difféomorphisme sur son image.

Théorème (Nash-Kuiper 54-55, Gromov 86). – Soient (M^n, g) et (N^q, h) deux variétés riemanniennes, q > n. Soit $f_0 : (M^n, g) \longrightarrow (N^q, h)$ une immersion strictement courte alors pour tout $\epsilon > 0$, il existe une immersion isométrique C^1 f tel que

$$||f - f_0||_{C^0} \le \epsilon.$$

Observation.— 1) En fait, si f_0 est un plongement, on peut même demander que l'immersion isométrique f soit également un plongement.

2) Puisque le but est un espace euclidien, toute immersion est régulièrement homotope à une immersion courte...

Ici, la relation différentielle est

$$\mathcal{R} = Mono_{iso}(TM, TN) \subset X^{(1)} = Hom(TM, TN)$$

et on a $Sol(\mathcal{R}) = I_{iso}(M, N)$ et $\Gamma(\mathcal{R}) = Mono_{iso}(TM, TN)$. Une version à paramètre de ce théorème montre qu'en fait

$$J: I_{iso}(M,N) \longrightarrow Mono_{iso}(TM,TN)$$

est une é. h. f.

Corollaire. On peut retourner la sphère \mathbb{S}^2 parmi les immersions isométriques \mathbb{C}^1 .

Voici deux autres résultats paradoxaux se déduisant du théorème :

- Il existe un plongement C^1 -isométrique de la sphère unité de \mathbb{R}^3 dans une boule de rayon arbitrairement petit.
- Soit Λ un réseau de \mathbb{E}^2 . Il existe un immersion isométrique C^1 du tore plat \mathbb{E}^2/Λ dans \mathbb{E}^3 .

2.4 Existence d'une forme symplectique

Définition.— Une variété est dite *fermée* si elle est compacte sans bord, elle est dite *ouverte* si aucune de ses composantes connexes n'est fermée. En particulier une variété connexe dont le bord est non vide est ouverte.

Définition.— Une 2-forme $\beta \in \Omega^2(M^{2n})$ est dite non dégénérée si, en tout point $p \in M^{2n}$, on a $\beta_p^n \neq 0$. Elle est dite symplectique si de plus $d\beta = 0$.

Théorème (Gromov 1969).— Soit M^{2n} une variété ouverte. Alors, toute 2-forme non dégénérée est homotope à une forme symplectique.

Ici, il serait naturel de choisir $X=\{\beta\in\Lambda^2T^*M\mid \beta^n\neq 0\}$ le fibré des formes bilinéaires antisymétriques non dégénérées, et $\mathcal{R}=\{\kappa\in X^{(1)}\mid d\kappa=0\}$. Mais en réalité, le h-principe va porter sur une autre relation différentielle définie sur l'espace des 1-jets du fibré $E=T^*M$:

$$\mathcal{R}_0 = \{ \kappa \in E^{(1)} \mid (d\kappa)^n \neq 0 \}$$

où $d: E^{(1)} \longrightarrow \Lambda^2 T^*M$. Bien sûr $Sol(\mathcal{R}_0) \subset Sol(\mathcal{R})$ et il se trouve que $\Gamma(\mathcal{R}_0)$ et $\Gamma(X)$ sont homotopiquement équivalents (car d est une fibration), d'où le théorème.

- Il existe des versions plus élaborées où l'on impose la classe de cohomologie de la forme symplectique.
 - Il existe aussi des versions en géométrie de contact.

2.5 Théorème de Lohkamp

Soient $\alpha \in \mathbb{R}$ et M^n est une variété compacte C^{∞} . On $\mathcal{M}(M^n)$ l'espace des métriques sur M^n , puis $Ricci^{<\alpha}(M^n)$ (resp. $Scal^{<\alpha}(M^n)$) le sous-espace des métriques dont la courbure de Ricci Ricci(g) (resp. la courbure scalaire Scal(g)) est en tout point plus strictement petite que α .

Théorème de Lohkamp (1995).— Soient $\alpha \in \mathbb{R}$, (M^n, g_0) une variété riemannienne compacte de dimension $n \geq 3$, alors g_0 est homotope à une métrique g telle que $Ricci(g) < \alpha$. En fait, les relations différentielles

$$Ricci(g) < \alpha \quad et \quad Scal(g) < \alpha$$

sur l'espace des 2-jets des métriques satisfont au h-principe paramétrique. De plus, $Ricci^{<\alpha}(M^n)$ et $Scal^{<\alpha}(M^n)$ sont C^0 -denses dans $\mathcal{M}(M^n)$.

- \bullet En particulier, si $n \geq 3,$ la contrainte Ricci(g) < 0 n'impose rien sur la topologie de la variété...
- La dernière phrase du théorème signifie que toute métrique sur M^n compacte, $n \geq 3$, peut être approchée C^0 (mais pas C^1) par des métriques à courbure de Ricci négative ; par exemple la métrique usuelle de \mathbb{S}^n ...

2.6 Théorème de Donaldson

Théorème de Donaldson (1996).— Soient (M^{2n}, ω) une variété symplectique compacte lisse avec $\omega \in H^2(M^{2n}, \mathbb{Z})/Torsion$, J une structure presque complexe compatible³, $L \longrightarrow M^{2n}$ un fibré en droites complexes tel que $c_1(L) = \omega$ et ∇ une connexion hermitienne sur L de courbure $-2i\pi\omega$. Alors il existe C > 0 et une suite $s_N \in \Gamma(L^{\otimes N})$ de sections tels

$$|\overline{\partial}_{\nabla} s_N(x)| \leq \frac{C}{\sqrt{N}} |\partial_{\nabla} s_N(x)|$$

pour tout x dans le lieu d'annulation de s_N .

Ainsi les sections s_N sont asymptotiquement holomorphes sur un voisinage de leurs lieux d'annulation puisque

$$\frac{|\overline{\partial}_{\nabla} s_N(x)|}{|\partial_{\nabla} s_N(x)|} \longrightarrow 0$$

Le lieu d'annulation de s_N définit une sous-variété de codimension deux (réelle), si N est assez grand cette sous-variété est symplectique car quasi-complexe.

Contrairement aux autres énoncés, le h-principe est un peu caché ici. Ce que démontre réellement Donaldson est un résultat plus fort : l'existence de deux constantes $C_1>0, C_2>0$ et d'une suite de sections $s_N\in\Gamma(L^{\otimes N})$ telles que

$$|s_N| \le C_2, \quad |\overline{\partial}_{\nabla} s_N| \le C_2, \quad |\nabla s_N| \le C_2 \sqrt{N}$$

et

$$|\partial_{\nabla} s_N(x)| \ge C_1 \sqrt{N}$$
 aux points x où $|s_N(x)| \le C_1$.

Ces contraintes définissent une suite de relations différentielles

$$\mathcal{R}_N \subset (L^{\otimes N})^{(1)}$$
.

Soit $\sigma \in \Gamma(\mathcal{R}_N)$, et $s_0 := bs \ \sigma$ la section de $L^{\otimes N}$ induite par σ . Donalson déforme $s_0 \in \Gamma(L^{\otimes N})$ en une solution s_N de \mathcal{R}_N au moyen de sections "pic" à la Hörmander. Cette déformation s'étend en une homotopie dans $\Gamma(\mathcal{R}_N)$ entre σ et j^1s_N .

 $^{^3}$ C'est-à-dire : $\overline{\omega(J,.)}$ est une métrique.

3 Méthodes pour démontrer un h-principe

On distingue classiquement quatre techniques générales qui couvrent à peu près tous les cas connus. Deux h-principes célèbres leur échappent toutefois, le théorème de Lohkamp et celui de Donaldson.

3.1 La résolution des singularités

A priori, c'est la façon la plus naturelle pour démontrer l'existence d'un h-principe. On note Σ le complémentaire de \mathcal{R} dans $X^{(r)}$ que l'on suppose être de codimension m au moins 1. On part d'une section holonomique $\sigma = j^r f \in \Gamma(X^{(r)})$ et il s'agit de déformer f en une section holonomique dont le r-jet évite Σ . Sauf miracle, si une telle déformation existe, elle ne se localise pas sur $\Sigma(f) = (j^r f)^{-1}(\Sigma)$. On est donc conduit à chercher des déformations localisées sur des sous-ensembles plus grands contenant $\Sigma(f)$ (penser à l'élimination des points doubles dans le lemme de Whitney).

Voici quelques théorèmes importants que l'on peut obtenir par cette technique :

- Théorèmes de classifications des immersions (Smale-Hirsh) et des submersions (Phillips).
- Classifications des applications singulières (Feit, Poénaru, Ando, Eliashberg).
 - Immersions holomorphes des variétés Stein⁴ (Gromov, Eliashberg).
 - Théorème de classification des plongements de Haefliger.

Cette dernière application mérite un commentaire. Si $f:M\longrightarrow N$ est une application, on peut lui associer son carré cartésien :

$$\begin{array}{cccc} f \times f : & M \times M & \longrightarrow & N \times N \\ & (x,y) & \longmapsto & (f(x),f(y)). \end{array}$$

Il y a une action évidente de \mathbb{Z}_2 sur M^2 et N^2 qui échange les facteurs. Notons que :

$$\forall p \in M^2, \ \forall \sigma \in \mathbb{Z}_2, \ f \times f(\sigma(p)) = \sigma(f \times f(p)),$$

⁴On appelle variété Stein toute sous-variété complexe d'un certain \mathbb{C}^N .

et que $(f \times f)^{-1}(\Delta N) \supset \Delta M$ avec l'égalité si et seulement si f est injective.

Définition. – Une application $F: M^2 \longrightarrow N^2$ est dite \mathbb{Z}_2 -équivariante si pour tout couple $(x_1, x_2) \in M^2$, on a :

$$F(x_1, x_2) = (y_1, y_2) \Rightarrow F(x_2, x_1) = (y_2, y_1).$$

Elle est dite \mathbb{Z}_2 -isovariante si de plus $F^{-1}(\Delta N) = \Delta M$.

Notons E(M, N) l'espace des plongements C^{∞} de M dans N. On a le diagramme commutatif suivant (avec des notations évidentes) :

$$f \stackrel{\times}{\mapsto} f \times f \qquad \downarrow \qquad \qquad \downarrow \qquad f \stackrel{\times}{\mapsto} f \times f \qquad \downarrow \qquad \qquad \downarrow \qquad f \stackrel{\times}{\mapsto} f \times f$$

$$\mathbb{Z}_2 - Iso(M^2, N^2) \stackrel{j}{\longrightarrow} \mathbb{Z}_2 - Equi(M^2, N^2).$$

Un corollaire du théorème de classification des plongements de Haefliger s'énonce ainsi :

Théorème (Haefliger 1962). – $Si\ N=\mathbb{R}^n\ et\ m=dim\ M>1\ alors$

$$\times_{\sharp}: \pi_0(E) \longrightarrow \pi_0(Iso)$$

est une bijection si $3m + 4 \le 2n$ et une surjection si 3m + 3 = 2n.

Ce théorème se lit comme un h-principe. Le jet d'une fonction f est remplacé par son carré cartésien $f \times f$, l'espace des sections des jets est Equi, l'espace des sections de la relation différentielle est $\Gamma(\mathcal{R}) = Iso \subset Equi$, les solutions de \mathcal{R} sont les plongements.

A ma connaissance, la technique d'élimination des singularités ne permet pas d'obtenir les résultats suivants :

- ullet Théorèmes des plongements C^1 -isométriques (Nash-Kuiper).
- Théorèmes des plongements C^{∞} -isométriques (Nash).
- Théorème de relaxation de Filippov (théorie du contrôle).

Je ne connais qu'un ouvrage qui propose un large panorama de ces techniques d'éliminations des singularités, le fameux [7] de Gromov ; pour des éclairages plus spécifiques, on peut lire Poénaru [12], Eliashberg-Mischachev [4] et Haefliger [8].

3.2 L'approximation holonomique

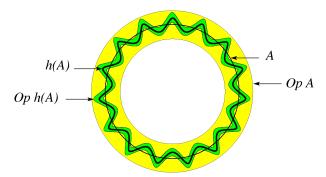
Dans [3], Y. Eliashberg et N. Mishachev mettent en évidence qu'un nombre considérable de h-principes découle d'une propriété générale des sections holonomes (et non directement de la relation différentielle). La question de départ est la suivante : soit $F_0: M \longrightarrow J^1(M,N)$ une section, peut-on approcher F_0 par une section holonomique F, c'est-à-dire, une section pour laquelle il existe $f: M \longrightarrow N$ telle que $F = j^1 f$? La réponse est non en général, mais, et à condition d'être un peu moins exigeant, on peut tout de même obtenir une réponse positive.

Théorème d'approximation holonomique (Eliashberg, Mishachev 2001). –Soit $A \subset M$ un polyèdre de codimension plus grande que 1, et soit $F_0: \mathcal{O}p\ A \longrightarrow J^1(M,N)$. Alors, $\forall \delta, \epsilon \in C^0(M,\mathbb{R}_+^*)$, il existe une difféotopie $h^\tau: M \longrightarrow M$ δ -petite $(h^0 = id_M, h := h^1)$ avec $h^1(A) \subset \mathcal{O}p\ A$ et une section holonomique $F: \mathcal{O}p\ h(A) \longrightarrow J^1(M,N)$ telle que :

$$\forall p \in \mathcal{O}p \, h(A), \, dist(F(p), F_0(p)) < \epsilon(p).$$

Voici quelques précisions sur les notations : $\mathcal{O}pA$ = voisinage ouvert de A; polyèdre = sous-complexe d'une triangulation de M; M, N, $J^1(M,N)$ sont munis de métriques afin de donner un sens à dist; une difféotopie h^{τ} est δ -petite si $h^0 = id$ et

$$\forall p \in M, \ \forall \tau \in [0,1], \ dist(h^{\tau}(p), p) < \delta(p).$$



Le théorème d'approximation holonomique permet de retrouver un théorème célèbre de Gromov portant sur les relations Diff(M)-invariantes :

Théorème (Gromov, 1969). – Soit M une variété ouverte, $\mathcal{R} \subset J^1(M, N)$ une relation ouverte et Diff(M)-invariante alors \mathcal{R} satisfait au h-principe

paramétrique.

La démonstration est si courte que je la fais figurer :

Démonstration.— Si M une variété ouverte, il existe un polyèdre $A \subset M$ de codimension plus grande que 1, tel que M puisse être compressée par une isotopie $\varphi_t : M \longrightarrow M$ dans un voisinage arbitrairement petit $\mathcal{O}p A$ de A. Soit $F_0 : \mathcal{O}p A \longrightarrow \mathcal{R} \subset J^1(M,N)$, d'après le théorème d'approximation holonomique il existe une section holonomique $F : \mathcal{O}p h(A) \longrightarrow J^1(M,N)$ arbitrairement proche de F_0 et puisque \mathcal{R} est ouverte, on peut supposer $F : \mathcal{O}p h(A) \longrightarrow \mathcal{R}$. Notons $f : \mathcal{O}p h(A) \longrightarrow N$ la fonction telle que $F = j^1 f$. Alors $j^1(f \circ h^{-1})$ est une section \mathcal{R} au dessus de $\mathcal{O}p A$ car \mathcal{R} est Diff(M)-invariante, pour la même raison $f \circ h^{-1} \circ \varphi_1^{-1}$ est une solution de \mathcal{R} définie sur tout M.

Observation.— 1) La condition d'invariance par le groupe de Lie des difféomorphismes G = Diff(M) peut être assouplie. On peut remplacer G par un sous groupe de Lie $U \subset G$ suffisamment large (voir [3], p. 139 ou [7], p. 83 pour une définition et plus de détails). Par exemple, on peut remplacer Diff(M) par la composante de l'identité du groupe des difféomorphismes de contact à support compact ou par le groupe des difféomorphismes hamiltonniens à support compact d'une variété symplectique

2) En dépit de l'hypothèse "M ouverte" ce théorème permet parfois d'obtenir des résultats sur des variétés fermées, l'idée consistant simplement à épaissir la variété fermée en une variété ouverte (c'est la micro-extension).

Voici quelques résultats qui découlent plus ou moins directement de la méthode de l'approximation holonomique 5 :

- Théorèmes de classifications des immersions (Smale-Hirsh) et des submersions (Phillips).
- Théorèmes de classifications des immersions lagrangiennes (Gromov, Lees) et legendriennes (Gromov, Duchamp)
 - h-principe pour les structures symplectiques et de contact sur les

⁵C'est moi qui donne ce nom à ce type de méthode. En fait, l'approximation holonomique est une version de la méthode dite des faisceaux continus ou encore de recouvrement des homotopies.

variétés ouvertes (Gromov).

• h-principe pour les feuilletages sur les variétés ouverte⁶ (Haefliger)

Voici quelques résultats qui lui échappent :

- Théorèmes des plongements C^1 -isométriques (Nash-Kuiper).
- Théorèmes des plongements C^{∞} -isométriques (Nash).
- Théorème de relaxation de Filippov (théorie du contrôle).

Pour en savoir plus sur cette méthode, on peut lire Haefliger [8], Poénaru [12], Gieges [6], Adachi [1], Eliashberg-Mischachev [3] et Gromov [7].

3.3 L'intégration convexe

Cette méthode, due à Gromov, est une généralisation des idées développées par Nash pour démontrer le théorème des plongements isométriques C^1 . La philosophie est la suivante : étant donnée une relation différentielle \mathcal{R} , on va s'intéresser à son enveloppe convexe $Conv(\mathcal{R})$ plutôt que de chercher à résoudre directement \mathcal{R} . Dans le langage de la théorie du contrôle, on dit que $Conv(\mathcal{R})$ est une relaxation de \mathcal{R} . Dans de nombreux cas $Conv(\mathcal{R})$ est considérablement plus facile à résoudre que \mathcal{R} et l'on obtient "facilement" des solutions. L'intégration convexe est un procédé permettant de passer d'une solution formelle de $Conv(\mathcal{R})$ à une véritable solution de \mathcal{R} .

Voici quelques résultats que l'on atteint avec cette méthode :

- Théorèmes de classifications des immersions⁷ (Smale-Hirsh)
- Théorèmes des plongements C^1 -isométriques (Nash-Kuiper).
- Théorème de relaxation de Filippov (théorie du contrôle).
- Classifications des immersions/plongements dirigées⁸(Gromov).

 $^{^6}$ Il y a aussi un h-principe pour les feuilletages sur les variétés ferm'ees (Thurston) mais je ne sais pas de quelle méthode il relève.

 $^{^7\}mathrm{Y}$ compris le cas où la dimension de la source et celle du but sont égales (cf. [7] p. 181).

⁸La méthode de l'approximation holonomique permet également, dans certains cas, d'obtenir des résultats de classifications de d'immersions/plongements dirigées pour des variétés fermées, cf. [3] p. 45.

Voici quelques résultats qui lui échappent :

- Théorèmes de classifications des submersions (Phillips).
- Théorèmes de classifications des immersions lagrangiennes (Gromov, Lees) et legendriennes (Gromov, Duchamp)

Pour en savoir plus sur cette méthode, on peut lire Geiges [6], Spring [13], Eliashberg-Mishachev [3] et Gromov [7].

Au delà des applications plus ou moins directes, l'intégration convexe est un formidable outil pour produire des contre-exemples en EDP (voir [10] pour un panorama). Parmi ceux-ci, le plus célèbre est probablement le paradoxe de Scheffer-Shnirelman :

Théorème (Scheffer 1993-Shnirelman 1997).— Il existe une solution faible (v, p) non nulle de l'équation d'Euler incompressible en dimension 2 sans forçage

(E)
$$\begin{cases} \frac{\partial v}{\partial t} + \nabla \cdot (v \otimes v) + \nabla p = 0 \\ \nabla \cdot v = 0 \end{cases}$$

à support compact en espace-temps.

Rappelons que le couple (v, p) est une solution faible de (E) s'il satisfait à (E) au sens des distributions \mathcal{D}' avec $v \in C(I, \mathcal{D}'(\mathbb{R}^2))^2 \cap L^2_{loc}(\mathbb{R}^2 \times I)^2$ et $p \in L^1_{loc}(\mathbb{R}^2 \times I)$.

Voici ce que l'on peut lire dans [14] sur ce paradoxe :

Du point de vue physique, cet énoncé est "évidemment" absurde : il décrit un fluide initialement au repos, qui tout à coup se met à s'agiter spontanément, sans qu'aucune force ait été exercée sur lui ; après quoi il revient au repos de lui-même, violant outrageusement le principe de conservation de l'énergie.

Il revient à De Lellis et Székelyhidi d'avoir mis en lumière tout récemment (2008) le lien entre le résultat de Scheffer-Schnirelman et l'intégration convexe. Une analogie frappante se fait alors jour entre ce résultat et le théorème des plongements isométriques C^1 de Nash. Toujours dans [14], on peut lire :

Une obstruction (rigidité liée à la conservation de la courbure ou de l'énergie) est contournée grâce à un défaut de régularité (C^1 ou L^∞), et l'on s'autorise en outre la petitesse dans un espace de régularité encore inférieure (C^0 où H^{-1}) [...] Pour caricaturer, ce qui dans la démonstration du théorème [de Scheffer-Schnirelman] joue le rôle des "zigzags" utilisés pour le théorème [de Nash], ce sont des solutions particulières de l'équation d'Euler, oscillant rapidemment entre deux valeurs constantes du champ de vitesses.

3.4 L'inversion des opérateurs différentiels

Cette méthode occupe une bonne partie de l'ouvrage [7]. Il s'agit, en gros, de pousser le procédé de Nash-Moser dans ses derniers retranchements pour obtenir un certain nombre de théorèmes sur les plongements isométriques C^{∞} . Je ne suis jamais rentré dans les détails. Donc, je m'abstiens ici d'écrire quoi que ce soit sur cette méthode.

References

- [1] M. Adachi, *Embeddings and immersions*, Translations of the Mathematical Monographs, Vol. 124, American Mathematical Society, 1993.
- [2] J. Eells, A setting for global analysis, Bull. A. M. S., 72 (1966), 751-807.
- [3] Y. ELIAHSBERG ET N. MISHACHEV, *Introduction to the h-principle*, Graduate Studies in Mathematics, vol. 48, A. M. S., Providence, 2002.
- [4] Y. ELIAHSBERG ET N. MISHACHEV, Wrinkling of smooth mappings and its applications, Inven. Math. 130 (1997), 345-369.
- [5] J. Francis, The h-principle, lectures 1 and 2: overview, http://math.northwestern.edu/jnkf/classes/hprin/
- [6] H. Geiges, h-Principle and Flexibility in Geometry, Mem. of the A.M.S, 779, vol. 164, July 2003.
- [7] M. Gromov, Partial Differential Relations, Springer-Verlag, 1986.
- [8] A. Haefliger, Lectures on the theorem of Gromov, Lecture Notes in Math., vol. 209 (1971), 128-141.

- [9] A. Haefliger, *Plongements différentiables dans le domaine stable*, Comm. Math. Helv. 37 (1962), 155-176.
- [10] B. KIRCHHEIM, S. MÜLLER ET V. SVERÁK, Studying nonlinear PDE by geometry in matrix space, Geometric analysis and nonlinear partial differential equations, Springer-Verlag, 2003, 347-395.
- [11] R. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16.
- [12] V. Poénaru, Homotopy theory and differentiable singularities, Lecture Notes in Math., 197 (1971), 106-132.
- [13] D. Spring, Convex Integration Theory, Monographs in Mathematics, Vol. 92, Birkhäuser Verlag, 1998.
- [14] C. VILLANI, Paradoxe de Scheffer-Shnirelman revu sous l'angle de l'intégration convexe, Séminaire Bourbaki, 61 année, 2008-2009, n. 1001.