Topic 1 : Intégration convexe 1-dimensionnelle

Vincent Borrelli et Saïd Jabrane

May 9, 2011

1 L'intégration convexe

Notation.— Soit $A \subset \mathbb{R}^n$ et $a \in A$. On désigne par IntConv(A, a) l'intérieur de l'enveloppe convexe de la composante connexe par arcs contenant a.

Définition.— Un lacet $g:[0,1]\to\mathbb{R}^n,\ g(0)=g(1)$ entoure strictement $z\in\mathbb{R}^n$ si

$$IntConv(g([0,1])) \supset \{z\}.$$

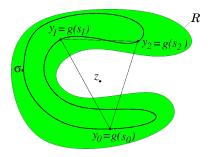
Lemme fondamental.— Soient $\mathcal{R} \subset \mathbb{R}^n$ une partie ouverte, $\sigma \in \mathcal{R}$ et $z \in IntConv(\mathcal{R}, \sigma)$ Il existe un lacet $h : [0,1] \xrightarrow{C^0} \mathcal{R}$ basé en σ entoure strictement z et tel que :

$$z = \int_0^1 h(s)ds.$$

Démonstration.— Puisque $z \in IntConv(\mathcal{R}, \sigma)$, il existe un n-simplexe Δ dont les sommets $y_0, ..., y_n$ sont inclus dans \mathcal{R} et tel que z soit dans l'intérieur de Δ . Par conséquent, il existe aussi

$$(\alpha_0, ..., \alpha_n) \in \left]0, 1\right[^{n+1}$$

tels que $\sum_{k=0}^{n} \alpha_k = 1$ et $z = \sum_{k=0}^{n} \alpha_k y_k$. Tout lacet $g : [0,1] \to \mathcal{R}$ basé en σ et passant par $y_0, ..., y_n$ vérifie $IntConv(g([0,1]) \supset \{z\} \text{ i. e. } g \text{ entoure } z.$



En général

$$z \neq \int_0^1 g(s)ds.$$

Notons $s_1,...,s_N$ les temps où $g(s_k)=y_k$ et soit $f_k:[0,1]\to\mathbb{R}_+^*$ telle que :

i)
$$f_k < \eta_1 \text{ sur } [0,1] \setminus [s_k - \eta_2, s_k + \eta_2],$$

ii)
$$\int_0^1 f_k = 1$$
,

avec η_1, η_2 deux nombres strictement positifs arbitraires. On pose :

$$z_k = \int_0^1 g(s) f_k(s) ds.$$

Etant donné $\epsilon > 0$, on peut choisir η_1 , η_2 tels que :

$$\forall k \in \{1, ..., n\}, \quad \|z_k - g(s_k)\| \le \epsilon.$$

Comme \mathcal{R} est ouverte et $z \in Int\Delta$, si ϵ est suffisamment petit on a

$$z \in IntConv(z_1, ..., z_n).$$

Par conséquent il existe $(p_1,...,p_n) \in]0,1[$ $^{n+1}$ tels que $\sum_{k=0}^{n} p_k = 1$ et :

$$z = \sum_{k=0}^{n} p_k z_k = \sum_{k=0}^{n} p_k \int_0^1 g(s) f_k(s) ds$$
$$= \int_0^1 g(s) \sum_{k=0}^{n} p_k f_k(s) ds = \int_0^1 g(s) \varphi'(s) ds$$

où on a posé

$$\varphi'(s) := \sum_{k=0}^{n} p_k f_k(s).$$

et

$$\varphi: [0,1] \longrightarrow [0,1]$$

$$s \longmapsto \int_0^s \varphi(u) du.$$

On a $\varphi'(s) > 0$, $\varphi(0) = 0$, $\varphi(1) = 1$. Donc φ est un difféomorphisme strictement croissant de [0,1] dans lui-même. Effectuons le changement de variable $s = \varphi^{-1}(t)$, c'est-à-dire $t = \varphi(s)$, on a

$$dt = \varphi'(s)ds$$

d'où:

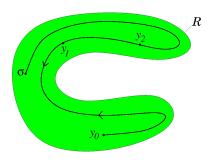
$$z = \int_0^1 g(s)\varphi'(s)ds = \int_0^1 g \circ \varphi^{-1}(t)dt.$$

Ainsi $h = g \circ \varphi^{-1}$ convient.

Remarque.— A priori $g \in \Omega_{\sigma}(\mathcal{R})$, mais il est bien évident que l'on peut choisir g parmi les "allers-retours" i. e. l'espace :

$$\Omega_{\sigma}^{AR}(\mathcal{R}) = \{ g \in \Omega_{\sigma}(\mathcal{R}) \mid \forall t \in [0, 1] \ g(t) = g(1 - t) \},$$

l'intérêt étant que maintenant on a affaire avec un espace contractible.



Définition.— Une partie $A \subset \mathbb{R}^n$ est ample si $A = \emptyset$ ou si pour tout $a \in A$ on a : $IntConv(A, a) = \mathbb{R}^n$.

A est non ample

A est ample

A est non ample.

Exemple.— Un sous-espace vectoriel F de \mathbb{R}^n est ample si et seulement si Codim $F \geq 2$.

Lemme fondamental (version paramétrique). – Soient P une variété compacte, $E = P \times \mathbb{R}^n \xrightarrow{\pi} P$ un fibré trivial, $\mathcal{R} \subset E$ une partie telle que

$$\forall p \in P, \quad \mathcal{R}_p := \pi^{-1}(p) \cap \mathcal{R} \quad est \ un \ ouvert \ de \ \mathbb{R}^n$$

Soient encore $\sigma \in \Gamma(\mathcal{R})$ et $z \in \Gamma(E)$ tel que :

$$\forall p \in P, \ z(p) \in IntConv(\mathcal{R}_p, \sigma(p)).$$

Alors il existe $h:[0,1] \xrightarrow{C^0} \Gamma(\mathcal{R})$ avec $h(0) = h(1) = \sigma$ telle que :

$$\forall p \in P, \ z(p) = \int_0^1 h(s, p) ds.$$

Démonstration.— Il suffit de rajouter le paramètre $p \in P$ dans la preuve précédente. On décide de plus, d'après la remarque, de choisir $g : [0,1] \longrightarrow \Gamma(\mathcal{R})$ telle que, pour tout $p \in P$, g_p soit dans $\Omega_{\sigma(p)}^{AR}(\mathcal{R}_p)$.

Définition.— Si $E = P \times \mathbb{R}^n \xrightarrow{\pi} P$ est un fibré, on dit que $\mathcal{R} \subset E$ est ample si, pour tout $p \in P$, $\mathcal{R}_p := \pi^{-1}(p) \cap \mathcal{R}$ est ample dans \mathbb{R}^n .

Remarque.— Si $\mathcal{R} \subset E$ est ample, alors, pour tout $p \in P$, la condition $z(p) \in Conv(\mathcal{R}_p, \sigma(p))$ est automatiquement vérifiée.

Lemme fondamental (version paramétrique C^{∞}). – Soient P une variété compacte, $E = P \times \mathbb{R}^n \xrightarrow{\pi} P$ un fibré trivial, $\mathcal{R} \subset E$ une partie telle que

$$\forall p \in P, \quad \mathcal{R}_p := \pi^{-1}(p) \cap \mathcal{R} \quad est \ un \ ouvert \ de \ \mathbb{R}^n$$

Soient encore $\sigma \in \Gamma^{\infty}(\mathcal{R})$ et $z \in \Gamma^{\infty}(E)$ tel que :

$$\forall p \in P, \ z(p) \in IntConv(\mathcal{R}_p, \sigma(p)).$$

Alors il existe $h:[0,1] \xrightarrow{C^{\infty}} \Gamma^{\infty}(\mathcal{R})$ avec $h(0) = h(1) = \sigma$ telle que :

$$\forall p \in P, \ z(p) = \int_0^1 h(s, p) ds.$$

Démonstration.— Soit $(\rho_{\epsilon}: [0,1] \longrightarrow \mathbb{R})_{\epsilon>0}$ une suite de fonctions régularisantes. Pour tout $p \in P$, on définit une application C^{∞} par

$$h_{\epsilon}(p,.): [0,1] \longrightarrow \mathbb{R}^n$$

 $t \longmapsto (h(p,.)*\rho_{\epsilon})(t).$

Posons

$$z_{\epsilon}(p) := \int_{0}^{1} h_{\epsilon}(p, t) dt$$

et soit $H_{\epsilon}: P \times \mathbb{R} \longrightarrow \mathbb{R}^n$ donnée par

$$H_{\epsilon}(p,t) := h_{\epsilon}(p,t) + z(p) - z_{\epsilon}(p).$$

On a

$$\int_0^1 H_{\epsilon}(p,t)dt = z(p)$$

et pour un choix suffisamment petit de ϵ l'application $t \mapsto H_{\epsilon}(p,t)$ est à valeur dans \mathcal{R}_p . La compacité de P permet de choisir ϵ indépendemment de $p \in P$.

2 C^0 -densité

Proposition 1.– Soit $\mathcal{R} \subset \mathbb{R}^n$ un ouvert connexe par arcs et I un intervalle de \mathbb{R} . Si $f_0 \in C^{\infty}(I, \mathbb{R}^n)$ est telle que

$$f_0'(I) \subset IntConv(\mathcal{R})$$

alors, pour tout $\epsilon > 0$ il existe $F \in C^{\infty}(I, \mathbb{R}^n)$ telle que

$$f'(I) \subset \mathcal{R}$$
 et $||f - f_0||_{C^0} < \epsilon$

Démonstration.— Soit $\epsilon > 0$ et $f_0 \in C^{\infty}(I, \mathbb{R}^n)$ telle que $f'_0(I) \subset IntConv(\mathcal{R})$. D'après le lemme fondamental, version lisse, il existe $h: I \times \mathbb{E}/\mathbb{Z} \longrightarrow \mathcal{R}$ de classe C^{∞} telle que

$$\forall t \in I, \ f_0'(t) = \int_0^1 h(t, u) du.$$

Définissons $F \in C^{\infty}(I, \mathbb{R}^n)$ par

$$F(t) := f_0(0) + \int_0^t h(s, Ns) ds$$

où N est un entier naturel non nul. D'une part, en dérivant, on obtient:

$$F'(t) = h(t, Nt) \in \mathcal{R}$$

et par conséquent, l'application f est donc solution de la relation différentielle \mathcal{R} . D'autre part

$$F(t) - f_0(t) = f_0(0) + \int_0^t h(s, Ns)ds - f_0(t)$$

$$= \int_0^t h(s, Ns)ds - (f_0(t) - f_0(0))$$

$$= \int_0^t h(s, Ns)ds - \int_0^t f_0'(s)ds$$

$$= \int_0^t h(s, Ns)ds - \int_0^t \left(\int_0^1 h(s, u)du\right)ds$$

$$= \int_0^1 \left(\int_0^t (h(s, Ns) - h(s, u))ds\right)du$$

$$= \frac{1}{N} \int_0^1 \left(\int_0^{Nt} \left(h(\frac{s}{N}, s) - h(\frac{s}{N}, u)\right)ds\right)du$$

$$= \frac{1}{N} \int_0^1 \left(\int_0^{Nt} \left(h(\frac{s}{N}, s) - h(\frac{s}{N}, u)\right)ds\right)du$$

$$+ \frac{1}{N} \int_0^1 \left(\int_{[Nt]}^{Nt} \left(h(\frac{s}{N}, s) - h(\frac{s}{N}, u)\right)ds\right)du$$

Avec des notations évidentes, posons

$$F(t) - f_0(t) = A + B$$

Nous allons traiter chacun de ces deux termes.

$$\begin{split} A &= \frac{1}{N} \int_{0}^{1} \left(\int_{0}^{[Nt]} \left(h(\frac{s}{N}, s) - h(\frac{s}{N}, u) \right) ds \right) du \\ &= \frac{1}{N} \sum_{k=0}^{[Nt]-1} \int_{0}^{1} \left(\int_{k}^{k+1} \left(h(\frac{s}{N}, s) - h(\frac{s}{N}, u) \right) ds \right) du \\ &= \frac{1}{N} \sum_{k=0}^{[Nt]-1} \int_{0}^{1} \left(\int_{k}^{k+1} \left(h(\frac{s}{N}, s) - h(\frac{s}{N}, u) \right) ds \right) du \\ &= \frac{1}{N} \sum_{k=0}^{[Nt]-1} \int_{0}^{1} \left(\int_{0}^{1} \left(h(\frac{s+k}{N}, s+k) - h(\frac{s+k}{N}, u) \right) ds \right) du \\ &= \frac{1}{N} \sum_{k=0}^{[Nt]-1} \int_{0}^{1} \left(\int_{0}^{1} \left(h(\frac{s+k}{N}, s) - h(\frac{s+k}{N}, u) \right) ds \right) du \\ &= \frac{1}{N} \sum_{k=0}^{[Nt]-1} \int_{0}^{1} \int_{0}^{1} \left(h(\frac{s+k}{N}, s) - h(\frac{k}{N}, s) \right) ds du \\ &- \frac{1}{N} \sum_{k=0}^{[Nt]-1} \int_{0}^{1} \int_{0}^{1} \left(h(\frac{s+k}{N}, u) - h(\frac{k}{N}, u) \right) ds du \\ &+ \frac{1}{N} \sum_{k=0}^{[Nt]-1} \int_{0}^{1} \int_{0}^{1} \left(h(\frac{k}{N}, s) - h(\frac{k}{N}, u) \right) ds du \\ &= C + D + E \end{split}$$

Le dernier terme est nul (s et u jouent des rôles symétriques). Les termes C et D vérifient les relations suivantes:

$$||C|| \le \frac{1}{2N} \left\| \frac{\partial h}{\partial x} \right\|_{C^0} \text{ et } ||D|| \le \frac{1}{2N} \left\| \frac{\partial h}{\partial x} \right\|_{C^0}.$$

Ainsi:

$$||A|| \leqslant ||C|| + ||D||$$
$$\leqslant \frac{1}{N} \left\| \frac{\partial h}{\partial x} \right\|_{C^0}$$

Quant au terme B, il vérifie

$$||B|| \leqslant \frac{2}{N} ||h||_{C^0}$$

et donc finalement:

$$||F - f_0||_{C^0} \le \frac{2}{N} \left(||h||_{C^0} + \left\| \frac{\partial h}{\partial x} \right\|_{C^0} \right).$$

Ce majorant peut être rendu arbitrairement petit en choisissant N suffisamment grand. \Box

Remarque.— Même si $f_0(0) = f_0(1)$, l'application F construite par intégration convexe ne vérifie pas en général F(0) = F(1). On peut néanmoins adapter le procédé de l'intégration convexe pour construire des solutions f telles que f(0) = f(1).

Proposition 2.— Soient $\mathcal{R} \subset \mathbb{R}^n$ un ouvert connexe par arcs et $f_0 \in C^{\infty}(\mathbb{R}/\mathbb{Z},\mathbb{R}^n)$ telle que

$$f_0'(\mathbb{R}/\mathbb{Z}) \subset IntConv(\mathcal{R}).$$

Alors pour tout $\epsilon > 0$, il existe $f \in C^{\infty}(\mathbb{R}/\mathbb{Z}, \mathbb{R}^n)$ telle que

$$f'(\mathbb{R}/\mathbb{Z}) \subset \mathcal{R}$$
 et $||f - f_0||_{C^0} < \epsilon$

Démonstration.— Reprenons $F \in C^{\infty}([0,1];\mathbb{R}^n)$ construite grâce à la première proposition et, pour tout $t \in [0,1]$, définissons f par

$$f(t) := F(t) - t (F(1) - F(0))$$
$$= f_0(0) + \int_0^t h(s, Ns) ds - t \int_0^t h(s, Ns) ds$$

En dérivant, on obtient:

$$\forall t \in [0,1] , f'(t) = F'(t) - (F(1) - F(0)).$$

Désignons par δ le réel strictement positif défini par:

$$\delta = dist(F'[0,1], \mathcal{R}^c)$$

et choisissons N tel que

$$||F(1) - F(0)|| < \frac{\delta}{2}$$

On a alors

$$||f' - F'||_{C^0} = ||F(1) - F(0)||$$

$$= ||F(1) - f_0(0)||$$

$$= ||F(1) - f_0(1)||$$

$$< \frac{\delta}{2}$$

Soit $x \in \mathcal{R}$. On a:

$$d(x, f'[0, 1]) \ge |d(x, F'[0, 1]) - d(f'[0, 1], F'[0, 1])|$$

Or $d(x, f'[0, 1]) \ge \delta$ et $d(f'[0, 1], F'[0, 1]) \leqslant \frac{\delta}{2}$ donc

$$d(x, f') \geqslant \frac{\delta}{2}.$$

On en déduit $d(\mathcal{R}^c, f'[0, 1]) > 0$, c'est-à-dire

$$f'(\mathbb{R}/\mathbb{Z}) \subset \mathcal{R}$$
.

L'application f est donc bien solution de la relation différentielle. En outre, de l'égalité

$$f(t) = F(t) - t (F(1) - F(0))$$

on déduit:

$$||f - f_0||_{C^0} \le ||F - f_0||_{C^0} + ||F(1) - F_0(1)|| \le 2 ||F - f_0||_{C^0}.$$

Remarque 1.— Dans les deux propositions précédentes, les paramétres libres de la construction de la solution de la relation différentielle sont la famille de lacets $(h(p,.))_{p\in P}$ et le choix du nombre d'oscillations N.

Remarque 2.— Evidemment, les propositions 1 et 2 ont des analogues "à paramètres".

3 Nash-Kuiper en dimension 1

Dans les lignes qui suivent, on va appliquer la démonstration de Nash-kuiper pour construire des immersions isométriques de courbes dans le plan. Le but de n'est évidemment pas de montrer l'existence de telles isométries (qui est un fait banal) mais plutôt la détermination la plus judicieuse possible de la famille de chemins nécessaire à la construction des immersions isométriques au moyen de l'intégration convexe.

3.1 Le procédé de Nash-Kuiper

Définition.— Soit (M, g) une variété iemannienne. On dit qu'application

$$f: (M,g) \longrightarrow \mathbb{E}^n = (\mathbb{R}^n, \langle ., . \rangle_{\mathbb{R}^n})$$

est strictement courte si

$$\Delta := q - f^*\langle ., . \rangle_{\mathbb{R}^n}$$

est une métrique sur M.

Soit $f_0: \mathbb{E}/\mathbb{Z} \xrightarrow{C^{\infty}} \mathbb{E}^2 \simeq \mathbb{C}$ un plongement strictement court. La démonstration de Nash-Kuiper construit, à partir de f_0 , une famille de plongements $(f_k)_{k \in \mathbb{N}^*}$ qui converge vers un plongement isométrique et où, à chaque étape, l'application f_k résout une relation différentielle \mathcal{R}_k . Détaillons ce procédé dans un cas où, pour simplifier, on suppose en outre que f_0 satisfait aux deux hypothèses ci-dessus :

- (H_1) : f_0 est paramétrée à vitesse constante,
- (H_2) : f_0 est radialement symétrique.

L'hypothèse (H1):

$$\forall t \in \mathbb{E}/\mathbb{Z}, \quad ||f_0'(t)|| = r_0$$

implique que

$$\Delta = (1 - r_0^2)\langle ., . \rangle_{\mathbb{R}^2}$$

et puisque f_0 est strictement courte, $r_0 < 1$. L'hypothèse (H2) signifie que

$$\forall t \in \mathbb{E}/\mathbb{Z}, \quad f_0'(t+1/2) = -f_0'(t).$$

Soit $(g_k)_{k\in\mathbb{N}^*}$ la suite de métriques définie par

$$g_k := f_0^* \langle ., . \rangle_{\mathbb{R}^2} + \delta_k \Delta$$

où $(\delta_k)_{k\in\mathbb{N}^*}$ est une suite strictement croissante de nombres réels strictement positifs de limite 1. Pour tout $k\in\mathbb{N}^*$, on pose

$$r_k := \sqrt{g_k(\partial_t, \partial_t)} = \sqrt{\delta_k + (1 - \delta_k)r_0^2}$$

Désignons par \mathcal{C}_k le cercle de \mathbb{E}^2 de centre l'origine et de rayon r_k défini cidessus et par \mathcal{R}_k un épaississement de \mathcal{C}_k , c'est-à-dire une couronne ouverte. On suppose que les épaississements sont choisis de façon à ce que

$$\forall k_1, k_2 \in \mathbb{N}^*, \quad k_1 \neq k_2 \quad ; \quad \mathcal{R}_{k_1} \cap \mathcal{R}_{k_2} = \emptyset.$$

Au moyen de l'intégration convexe, on va construire une suite d'applications $f_k : \mathbb{E}/\mathbb{Z} \longrightarrow \mathbb{E}^2$ telles que

- f_k est solution de \mathcal{R}_k
- $\sum ||f_k f_{k-1}||_{C^1} < +\infty.$

Ainsi

$$f_{iso} := \lim_{k \to +\infty} f_k$$

la limite C^1 des f_k , sera l'isométrie recherchée. Pour rendre complètement explicite la construction des f_k , il est nécessaire de déterminer à chaque étape la famille de lacets h_k choisie pour définir f_k . On pose :

$$h_k: [0,1] \times \mathbb{E}/\mathbb{Z} \longrightarrow \mathcal{C}_k \subset \mathcal{R}_k \subset \mathbb{C}$$

 $(t,u) \longmapsto h_k(t,u)$

οù

$$h_k(t, u) := r_k e^{i\psi_k(t, u)} t_{k-1}(t)$$

avec

$$t_{k-1} := \frac{f'_{k-1}}{\|f'_{k-1}\|}$$

et $\psi_k: [0,1] \times \mathbb{E}/\mathbb{Z} \longrightarrow \mathbb{R}$ est une application telle que

$$\int_0^1 e^{i\psi_k(t,u)} du = \frac{\|f'_{k-1}(t)\|}{r_k}.$$

Cette condition implique bien sûr que:

$$\forall t \in [0,1], \quad f'_{k-1}(t) = \int_0^1 h_k(t,u) du.$$

L'expression explicite de ψ_k sera déterminée ultérieurement. Pour tout $k \in \mathbb{N}^*$, on pose enfin

$$f_k:[0,1]\longrightarrow \mathbb{E}^2$$

définie par

$$f_k(t) := f_{k-1}(0) + \int_0^t h_k(s, N_k s) ds.$$

où $N_k \in 2\mathbb{N}^*$ est un paramètre libre de la construction.

Lemme. Soit f_0 satisfaisant à l'hypothèse (H_1) alors, pour tout $k \in \mathbb{N}^*$, f_k satisfait à (H_1) .

Démonstration.— Par récurrence. Supposons que :

$$\forall j \in \{0, ..., k-1\}, \text{ les } f_j \text{ vérifient } (H_1) \text{ et } (H_2).$$

On a

$$f_k(t) = f_{k-1}(0) + \int_0^t h_k(s, N_k s) ds$$
$$= f_{k-1}(0) + \int_0^t r_k e^{i\psi_k(N_k s)} t_{k-1}(s) ds$$

En dérivant, on obtient

$$f'_k(t) = r_k e^{i\psi_k(N_k t)} t_{k-1}(t)$$

et par conséquent $||f'_k(t)|| = r_k$. Ainsi f_k satisfait à (H_1) .

Observation.— La condition que doit satisfaire ψ_k s'écrit maintenant

$$\int_0^1 e^{i\psi_k(t,u)} du = \frac{r_{k-1}}{r_k}.$$

Cette condition étant indépendante de t, on suppose désormais que ψ_k est une fonction de u seulement i. e. $\psi_k : \mathbb{E}/\mathbb{Z} \longrightarrow \mathbb{R}$.

Lemme.— Soit f_0 satisfaisant aux hypothèses (H_1) et (H_2) , alors, pour tout $k \in \mathbb{N}^*$, f_k satisfait à (H_1) et (H_2) .

Démonstration.— Il suffit de montrer que (H_2) est héréditaire. On a

$$f'_k(t+\frac{1}{2}) = r_k e^{i\psi_k(N_k(s+\frac{1}{2}))} t_{k-1}\left(s+\frac{1}{2}\right) ds.$$

Or $N_k \in 2\mathbb{N}^*$ et ψ_k est 1-périodique on a donc :

$$\forall s \in \mathbb{R}, \quad \psi_k\left(N_k\left(s + \frac{1}{2}\right)\right) = \psi_k(N_k s).$$

Par hypothèse de récurrence

$$\forall s \in \mathbb{R}, \quad t_{k-1}\left(s + \frac{1}{2}\right) = -t_{k-1}(s).$$

Au bilan

$$f'_k(t + \frac{1}{2}) = -f'_k(t).$$

Remarque. Notons que sous les hypothèses (H_1) et (H_2) on a :

$$\forall k \in \mathbb{N}, \quad ||t_k|| = 1 \text{ et } ||h_k|| = r_k.$$

Lemme.— Les applications $f_k:[0,1] \longrightarrow \mathbb{E}^2$ passent au quotient en des applications $f_k:\mathbb{E}/\mathbb{Z} \xrightarrow{C^{\infty}} \mathbb{E}^2$.

Démonstration.— On a

$$f_k(1) - f_k(0) = f_k(1) - f_{k-1}(0) = \int_0^1 h_k(s, Ns) ds$$

et l'on vient de constater que

$$h_k(s+\frac{1}{2},N(s+\frac{1}{2}))=-h_k(s,Ns)$$

ainsi

$$\int_0^1 h_k(s, Ns) ds = 0.$$

Il est trivial de vérifier par récurrence que

$$\forall j \in \mathbb{N}^*, \quad f_k^{(j)}(1) = f_k^{(j)}(0).$$

3.2 Choisir ψ_k

Lemme. – Pour tout $k \in \mathbb{N}^*$ on a

$$r_k \ scal_k(t) = N_k \psi'_k(N_k t) + r_{k-1} \ scal_{k-1}(t)$$

où $scal_k(t)$ désigne la courbure scalaire de f_k en t.

Démonstration.— On a

$$f'_k(t) = r_k e^{i\psi_k(N_k t)} t_{k-1}(t)$$

= $\frac{r_k}{r_{k-1}} e^{i\psi_k(N_k t)} f'_{k-1}(t)$

d'où, en dérivant deux fois

$$f_k''(t) = \frac{r_k}{r_{k-1}} \left(iN_k \psi_k'(N_k t) f_{k-1}'(t) + f_{k-1}''(t) \right) e^{i\psi_k(N_k t)}$$

or

$$f_{k-1}''(t) = i||f_{k-1}'(t)||scal_{k-1}(t)f_{k-1}'(t) = ir_{k-1}scal_{k-1}(t)f_{k-1}'(t)$$

donc

$$f_k''(t) = \frac{r_k}{r_{k-1}} \left(N_k \psi_k'(N_k t) + r_{k-1} scal_{k-1}(t) \right) i e^{i\psi_k(N_k t)} f_{k-1}'(t).$$

Mais puisque

$$\begin{split} f_k''(t) &= i r_k scal_k(t) f_k'(t) \\ &= i r_k scal_k(t) \frac{r_k}{r_{k-1}} e^{i \psi_k(N_k t)} f_{k-1}'(t) \end{split}$$

on en déduit

$$r_k scal_k(t) = N_k \psi'_k(N_k t) + r_{k-1} scal_{k-1}(t).$$

Choix de ψ_k . Puisque $u \longmapsto \psi_k(u)$ est 1-périodique on peut donc écrire

$$\psi_k(u) = a_0 + \sum_{l=1}^{+\infty} a_l \cos(2\pi l u) + \sum_{l=1}^{+\infty} b_l \sin(2\pi l u)$$

Pour tout $u \in \mathbb{E}/\mathbb{Z}$ on pose

$$\psi_k(u) := \alpha_k \cos(2\pi u).$$

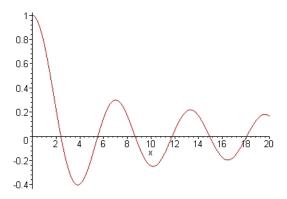
Ainsi, dans la série de de Fourier ci-dessus, tous les cœfficients sont choisis nuls sauf un. Il reste ensuite à déterminer α_k pour avoir

$$\int_0^1 e^{i\psi_k(u)} du = \frac{r_{k-1}}{r_k}.$$

Or

$$\int_0^1 e^{i\alpha_k \cos 2\pi u} du = J_0(\alpha_k)$$

où J_0 est la fonction de Bessel de première espèce d'ordre 0.



La fonction de Bessel J_0 , $\lambda_0(1) \approx 2.4$

Cette fonction réalise une bijection de $[0, \lambda_0(1)]$ sur [0, 1] où $\lambda_0(1)$ est le premier zéro strictement positif de J_0 . Notons, (un peu abusivement !) J_0^{-1} : $[0, 1] \longrightarrow [0, \lambda_0(1)]$ sa réciproque. On pose

$$\alpha_k := J_0^{-1} \left(\frac{r_{k-1}}{r_k} \right).$$

Proposition-bilan.— Soit $f_0: \mathbb{E}/\mathbb{Z} \longrightarrow \mathbb{E}^2$ un plongement court vérifiant (H1) et (H2) et soit $(f_k)_{k \in \mathbb{N}^*}: \mathbb{E}/\mathbb{Z} \longrightarrow \mathbb{E}^2 \simeq \mathbb{C}$ la suite d'applications définies récursivement par

$$\forall t \in [0,1], \quad f_k(t) = f_{k-1}(0) + \int_0^t \frac{r_k}{r_{k-1}} e^{i\alpha_k \cos(2\pi N_k s)} f'_{k-1}(s) ds$$

avec

$$r_k = \sqrt{\delta_k + (1 - \delta_k)r_0^2}, \quad \alpha_k = J_0^{-1} \left(\frac{r_{k-1}}{r_k}\right)$$

et $N_k \in 2\mathbb{N}^*$ arbitraires. Alors, pour tout $k \in \mathbb{N}^*$ on a

$$||f_k - f_{k-1}||_{C^0} \le \frac{2}{N_k} (||f'_{k-1}||_{C^0} + ||f''_{k-1}||_{C^0})$$

et, pour tout $t \in \mathbb{E}/\mathbb{Z}$,

$$r_k scal_k(t) = r_0 scal_0(t) - 2\pi \sum_{l=1}^{k-1} \alpha_l N_l \sin(2\pi N_l t).$$

4 Le lemme d'amplitude

Il s'avère que le comportement de la suite $(\alpha_k)_{k\in\mathbb{N}}$ dépend principalement de celui de la suite des $(\delta_k)_{k\in\mathbb{N}}$.

Lemme d'amplitude. – On a

$$\alpha_k \sim \sqrt{2\Delta(\partial_t, \partial_t)} \sqrt{\delta_k - \delta_{k-1}}.$$

Remarque. Rappelons que $\Delta(\partial_t, \partial_t) = 1 - r_0^2$.

Démonstration.— Par définition $\alpha_k = J_0^{-1}(\frac{r_{k-1}}{r_k})$. Le développement de Taylor de $J_0(\alpha)$ à l'ordre 2 est donné par

$$\xi = 1 - \frac{\alpha^2}{4} + o(\alpha^2).$$

Soient $y = 1 - \xi$ et $X = \alpha^2$, on a $y = \frac{X}{4} + o(X)$ ainsi X = 4y + o(y) et par conséquent $X \sim 4y$. Finalement, on obtient

$$\alpha \sim 2\sqrt{1-\xi}$$
 and $\alpha_k \sim 2\sqrt{1-\frac{r_{k-1}}{r_k}}$.

Puisque
$$||f_0'||_{\mathbb{E}^2}^2 + \Delta(\partial_t, \partial_t) = 1$$
, on a

$$r_k^2 = ||f_0'||_{\mathbb{R}^2}^2 + \delta_k \Delta(\partial_t, \partial_t) = 1 + (\delta_k - 1)\Delta(\partial_t, \partial_t)$$

ainsi

$$r_k^2 - r_{k-1}^2 = (\delta_k - \delta_{k-1})\Delta(\partial_t, \partial_t)$$

et

$$1 - \frac{r_{k-1}^2}{r_k^2} = \frac{(\delta_k - \delta_{k-1})\Delta(\partial_t, \partial_t)}{1 - (1 - \delta_k)\Delta(\partial_t, \partial_t)} \sim (\delta_k - \delta_{k-1})\Delta(\partial_t, \partial_t).$$

Or

$$1 - \frac{r_{k-1}^2}{r_k^2} = \left(1 - \frac{r_{k-1}}{r_k}\right) \left(1 + \frac{r_{k-1}}{r_k}\right) \sim 2\left(1 - \frac{r_{k-1}}{r_k}\right).$$

donc

$$\left(1 - \frac{r_{k-1}}{r_k}\right) \sim \frac{1}{2} (\delta_k - \delta_{k-1}) \Delta(\partial_t, \partial_t).$$

et

$$\alpha_k \sim 2\sqrt{1 - \frac{r_{k-1}}{r_k}} \sim \sqrt{2\Delta(\partial_t, \partial_t)}\sqrt{\delta_k - \delta_{k-1}}.$$

5 Régularité C^1 de f_{iso}

Proposition 3.— On a

$$||f'_k - f'_{k-1}||_{C^0} \le Cte_1\sqrt{\delta_k - \delta_{k-1}}$$

$$où Cte_1 = \sqrt{7\Delta(\partial_t, \partial_t)}.$$

Démonstration.— Pour tout point $t \in \mathbb{E}/\mathbb{Z}$, on a (Pythagore!) :

$$||f'_k - f'_{k-1}||^2 = ||f'_k||^2 + ||f'_{k-1}||^2 - 2||f'_k|| ||f'_{k-1}|| \cos(\alpha_k \cos 2\pi N_k t)$$

puisque $\alpha_k \cos(2\pi N_k t)$ est l'angle entre $f_k'(t)$ et $f_{k-1}'(t)$. Evidemment

$$\alpha_k \cos(2\pi N_k t) \le \alpha_k = J_0^{-1}(w)$$

où $w=u/r\in \]0,1[,\ r=\|f_k'(t)\|$ et $u=\|f_{k-1}'(t)\|.$ Et donc

$$||f_k' - f_{k-1}'||^2 \le ||f_k'||^2 + ||f_{k-1}'||^2 - 2||f_k'|| ||f_{k-1}'|| \cos \alpha_k.$$

La série de Taylor de $\alpha \mapsto J_0(\alpha)$ est alternée ainsi

$$w \le 1 - \frac{\alpha^2}{4} + \frac{\alpha^4}{64} = \left(1 - \frac{\alpha^2}{8}\right)^2$$

d'où

$$\frac{\alpha^2}{2} \le 4(1 - \sqrt{w}).$$

On a donc

$$||f'_k - f'_{k-1}||^2 \le r^2 + u^2 - 2ur\cos\alpha$$

 $\le r^2 - u^2 + 2u(u - r\cos\alpha).$

Puisque

$$\cos\alpha \ge 1 - \frac{\alpha^2}{2}$$

on a

$$u(u - r\cos\alpha) \leq u^2 - ru + ur\frac{\alpha^2}{2}$$

$$\leq u^2 - ru + 4ur\left(1 - \sqrt{\frac{u}{r}}\right)$$

$$\leq u^2 + 3ur - 4u\sqrt{ru}$$

$$\leq u^2 + 3r^2 - 4u\sqrt{u^2} \quad (\text{car } u < r)$$

$$\leq 3(r^2 - u^2).$$

Par conséquent

$$||f'_k - f'_{k-1}||^2 \le 7 (||f'_k||^2 - ||f'_{k-1}||^2).$$

Or

$$||f'_k||^2 - ||f'_{k-1}||^2 = g_k(\partial_t, \partial_t) - g_{k-1}(\partial_t, \partial_t) = (g_k - g_{k-1})(\partial_t, \partial_t).$$

donc

$$||f'_k - f'_{k-1}||_{C^0} \le Cte_1 \sqrt{\delta_k - \delta_{k-1}}$$

avec
$$Cte_1 = \sqrt{7\Delta(\partial_t, \partial_t)}$$
.

Soit $(A_k)_{k \in \mathbb{N}^*}$ la suite de fonctions définie par

$$\forall t \in \mathbb{E}/\mathbb{Z}, \quad A_k(t) := \sum_{l=1}^k \alpha_l \cos(2\pi N_l t).$$

Lemme. Pour tout $t \in \mathbb{E}/\mathbb{Z}$, on a

$$f'_k(t) = e^{iA_k(x)} \frac{r_k}{r_0} f'_0(t).$$

Démonstration.— Immédiat à partir de l'expression

$$f'_k(t) = r_k e^{i\alpha_k \cos(2\pi N_k t)} \frac{1}{r_{k-1}} f'_{k-1}.$$

Proposition 4.– Si

$$\sum \sqrt{\delta_k - \delta_{k-1}} < +\infty$$

alors la suite $(f_k)_{k\in\mathbb{N}^*}$ converge C^1 vers $f_{iso} := \lim_{k\to+\infty} f_k$ et

$$\forall \ t \in \mathbb{S}^1, \quad \ f'_{iso}(t) = e^{iA(t)} \frac{1}{r_0} f'_0(t).$$

Démonstration.— On déduit immédiatement de la proposition 3 que la suite $(f_k)_{k\in\mathbb{N}^*}$ est C^1 -convergeante vers f_{iso} . On déduit du lemme d'amplitude que

$$\sum \alpha_k < +\infty.$$

Par conséquent la suite $(A_k)_{k\in\mathbb{N}}$ converge normalement et

$$A := \lim_{k \to +\infty} A_k$$

est continue. La relation

$$f'_k(t) = e^{iA_k(x)} \frac{r_k}{r_0} f'_0(t)$$

permet de conclure que

$$f'_{iso} = e^{iA} \frac{1}{r_0} f'_0.$$

Corollaire. - Soit $\gamma > 0$ et

$$\delta_k := 1 - e^{-\gamma(k+1)}.$$

Alors la suite $(\delta_k)_{k\in\mathbb{N}^*}$ est strictement croissante et converge vers 1, de plus

$$\sqrt{\delta_k - \delta_{k-1}} \sim \sqrt{\delta_0} e^{-\frac{\gamma}{2}k}.$$

En particulier, $f_{iso} = \lim_{k \to \infty} f_k$ est C^1 .

6 $C^{1,\eta}$ et C^2 régularité de f_{iso}

Avertissement.— A partir de maintenant, on suppose que

$$\sum \sqrt{\delta_k - \delta_{k-1}} < +\infty.$$

Proposition 5.– $Si \sum_{k \in \mathbb{N}^*} \alpha_k N_k < +\infty \ alors \ f_{iso} \ est \ partout \ C^2 \ et$

$$\lim_{k \to +\infty} f_k'' = f_{iso}''.$$

Démonstration.— Puisque l'on suppose $\sum \sqrt{\delta_k - \delta_{k-1}} < +\infty$, et d'après la proposition 4, la suite $(f_k)_{k \in \mathbb{N}}$ converge C^1 . Il suffit donc de montrer que $(f_k'')_{k \in \mathbb{N}}$ est de Cauchy. De

$$f_k''(t) = ir_k scal_k(t) f_k''(t)$$

on tire

$$||f_k''(t) - f_{k-1}''(t)|| \leq ||r_k scal_k(t) f_k'(t) - r_{k-1} scal_{k-1}(t) \partial f_{k-1}'(t)||$$

$$\leq ||r_{k-1} scal_{k-1}(t) f_k'(t) - r_{k-1} scal_{k-1}(t) f_{k-1}'(t)||$$

$$+|r_k scal_k(x) - r_{k-1} scal_{k-1}(x)|||f_k'(t)||$$

$$\leq r_{k-1} ||scal_{k-1}(x)|||f_k'(t) - f_{k-1}'(t)||$$

$$+r_k ||r_k scal_k(t) - r_{k-1} scal_{k-1}(t)||.$$

D'après la proposition-bilan, pour tout $t \in \mathbb{E}/\mathbb{Z}$ on a

$$r_k scal_k(t) = r_0 scal_0(t) - 2\pi \sum_{l=1}^k \alpha_l N_l \sin(2\pi N_l t)$$

d'où

$$|r_k scal_k(t) - r_{k-1} scal_{k-1}(t)| \le 2\pi \alpha_k N_k$$

et

$$r_k|scal_k(t)| \le r_0|scal_0(t)| + 2\pi \sum_{k \subset \mathbb{N}^*} \alpha_k N_k.$$

Ainsi, $r_k|scal_k(t)|$ est majoré uniformément par la constante M donnée par

$$M:=\|r_0scal_0\|_{C^0}+2\pi\sum_{k\in\mathbb{N}^*}\alpha_kN_k.$$

Par conséquent

$$||f_k'' - f_{k-1}''||_{C^0} \le M||f_k' - f_{k-1}'||_{C^0} + 2\pi\alpha_k N_k.$$

Soit p < q, on a donc

$$||f_{q}'' - f_{p}''||_{C^{0}} \leq M \sum_{k=p}^{q} \sqrt{\delta_{k} - \delta_{k-1}} + 2\pi \sum_{k=p}^{q} \alpha_{k} N_{k}$$
$$\leq M \sum_{k=p}^{\infty} \sqrt{\delta_{k} - \delta_{k-1}} + 2\pi \sum_{k=p}^{\infty} \alpha_{k} N_{k}.$$

Ainsi $(f_k'')_{k\in\mathbb{N}}$ est de Cauchy.

Proposition 6.– Soient $\eta > 0$ et $S_k := \sum_{l=1}^k \alpha_l N_l$. Si

$$\sum (\delta_k - \delta_{k-1})^{\frac{1-\eta}{2}} S_k^{\eta} < +\infty$$

alors f_{iso} est $C^{1,\eta}$.

Remarque.- Evidemment ce théorème n'a d'intérêt que si

$$\sum \alpha_l N_l = +\infty.$$

Démonstration. Soit $0 < \eta < 1$. On va utiliser l'inégalité d'interpolation

$$||f||_{C^{1,\eta}} \le C^{te} ||f||_{C^1}^{1-\eta} ||f||_{C^2}^{\eta}$$

pour démontrer que

$$(\|f_k - f_{k-1}\|_{C^{1,\eta}})_{k \in \mathbb{N}^*}$$

est de Cauchy. D'après la proposition 3, on a

$$||f_k - f_{k-1}||_{C^1} \le 2Cte_1\sqrt{\delta_k - \delta_{k-1}}$$

et

$$\begin{array}{lcl} M_2(f_k-f_{k-1}) & \leq & M_2(f_k)+M_2(f_{k-1}) \\ & \leq & M_0(r_k \; scal_k) M_1(f_k) + M_0(r_{k-1} \; scal_{k-1}) M_1(f_k) \\ & \leq & M_0(scal_k) + M_0(scal_{k-1}) \\ & \leq & 2M_0(scal_0) + 4\pi \sum_{l=1}^k \alpha_l N_l \\ & \leq & 2M_0(scal_0) + 4\pi S_k. \end{array}$$

Par conséquent

$$||f_k - f_{k-1}||_{C^2} \le 2Cte_1\sqrt{\delta_k - \delta_{k-1}} + 2M_0(scal_0) + 4\pi S_k.$$

Puisque $\lim_{k\to+\infty} S_k = +\infty$, pour k suffisamment grand, on a

$$||f_k - f_{k-1}||_{C^2} \le Cte_2 S_k.$$

où Cte_2 est un nombre quelconque strictement plus grand que 4π . On a maintenant

$$||f_k - f_{k-1}||_{C^1}^{1-\eta} ||f_k - f_{k-1}||_{C^2}^{\eta} \le Cte_3(\delta_k - \delta_{k-1})^{\frac{1-\eta}{2}} S_k^{\eta}$$
avec $Cte_3 = (2Cte_1)^{1-\eta} Cte_2^{\eta}$.

Corollaire. – Soit $0 < \gamma < 1$ et $\delta_k := 1 - e^{-\gamma(k+1)}$. S'il existe $\beta > 0$ tel que

$$\forall k \in \mathbb{N}, \qquad N_k \le N_0 e^{\beta k}$$

alors f_{iso} est $C^{1,\eta}$ pour tout $\eta > 0$ tel que

$$\eta < \frac{\gamma}{2\beta}.$$

Démonstration.— De

$$\delta_k - \delta_{k-1} \sim \delta_0 e^{-\gamma k}$$

et du lemme d'amplitude

$$\alpha_k \sim \sqrt{2\Delta(\partial_x, \partial_x)} \sqrt{\delta_k - \delta_{k-1}}$$

on déduit l'existence d'une constante $Cte_4 > 0$ telle que, pour tout $k \in \mathbb{N}^*$,

$$0 < \alpha_k \le C t e_4 e^{-\frac{\gamma}{2}k}.$$

Ainsi

$$0 < N_k \alpha_k \le C t e_5 e^{\beta - \frac{\gamma}{2}k}.$$

et

$$S_k = \sum_{l=1}^k N_l \alpha_l \le Cte_5 \sum_{l=1}^k e^{(\beta - \frac{\gamma}{2})l} < Cte_5 e^{\beta - \frac{\gamma}{2}} \frac{1 - e^{\beta - \frac{\gamma}{2}(k+1)}}{1 - e^{\beta - \frac{\gamma}{2}}}$$

On suppose d'abord que $\beta > \frac{\gamma}{2}$. On a alors :

$$S_k \le Cte_6 e^{(\beta - \frac{\gamma}{2})k}$$

et donc

$$(\delta_k - \delta_{k-1})^{\frac{1-\eta}{2}} S_k^{\eta} \le Ct e_7 e^{-\gamma \frac{1-\eta}{2} k} e^{\eta(\beta - \frac{\gamma}{2})k}.$$

Or

$$-\gamma\frac{1-\eta}{2}+\eta\left(\beta-\frac{\gamma}{2}\right)<0$$

si et seulement si

$$\eta < \frac{\gamma}{2\beta}.$$

Par conséquent, sous cette dernière condition,

$$\sum (\delta_k - \delta_{k-1})^{\frac{1-\eta}{2}} S_k^{\eta} < +\infty.$$

D'où le corollaire dans le cas où $\beta > \frac{\gamma}{2}$. Le cas $\beta \leq \frac{\gamma}{2}$ se traite similairement.