V.Borrelli

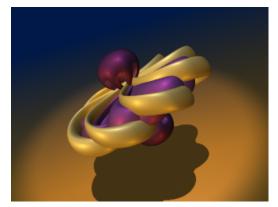
Ample Differential Relations

H-principle for ample relations

The *H*-principle for Ample Relations

Vincent Borrelli

Université Lyon 1



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

V.Borrelli

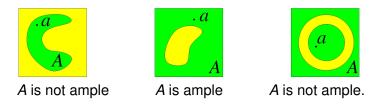
Ample Differential Relations

H-principle for ample relations

Ample Relations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition.– A subset $A \subset \mathbb{R}^n$ is *ample* if for every $a \in A$ the interior of the convex hull of the connected component to which *a* belongs is \mathbb{R}^n *i. e.* : *IntConv*(A, a) = \mathbb{R}^n (in particular $A = \emptyset$ is ample).



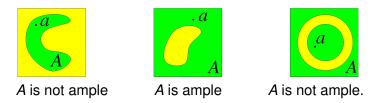
V.Borrelli

Ample Differential Relations

H-principle for ample relations

Ample Relations

Definition.– A subset $A \subset \mathbb{R}^n$ is *ample* if for every $a \in A$ the interior of the convex hull of the connected component to which *a* belongs is \mathbb{R}^n *i. e.* : $IntConv(A, a) = \mathbb{R}^n$ (in particular $A = \emptyset$ is ample).



Example. The complement of a linear subspace $F \subset \mathbb{R}^n$ is ample if and only if Codim $F \ge 2$.

Ample Relations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

V.Borrelli Ample Differential Relations

H-principle for ample relations

Definition.– Let $E = P \times \mathbb{R}^n \xrightarrow{\pi} P$ be a fiber bundle, a subset $\mathcal{R} \subset E$ is said to be *ample* if, for every $p \in P$, $\mathcal{R}_p := \pi^{-1}(p) \cap \mathcal{R}$ is ample in \mathbb{R}^n .

Remark.– If $\mathcal{R} \subset E$ is ample and $z : P \longrightarrow E$ is a section, then, for every $p \in P$, the condition $z(p) \in Conv(\mathcal{R}_p, \sigma(p))$ necessarily holds.

V.Borrelli

Ample Differential Relations

H-principle for ample relations

One Jet Space

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• The 1-jet space of maps

 $J^{1}(M,N) = \{(x,y,L) \mid x \in M, y \in N, L \in \mathcal{L}(T_{x}M,T_{y}N)\}$

is a natural fiber bundle over $M \times N$

$$\mathcal{L}(T_{x}M, T_{y}N) \longrightarrow J^{1}(M, N) \stackrel{\rho}{\longrightarrow} M \times N$$

and over M

$$\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)\times N\longrightarrow J^1(M,N)\stackrel{\pi}{\longrightarrow} M$$

V.Borrelli

Ample Differential Relations

H-principle for ample relations

One Jet Space

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• The 1-jet space of maps

 $J^{1}(M,N) = \{(x,y,L) \mid x \in M, y \in N, L \in \mathcal{L}(T_{x}M,T_{y}N)\}$

is a natural fiber bundle over $M \times N$

$$\mathcal{L}(T_{X}M, T_{Y}N) \longrightarrow J^{1}(M, N) \stackrel{p}{\longrightarrow} M \times N$$

and over M

$$\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)\times N\longrightarrow J^1(M,N)\stackrel{\pi}{\longrightarrow} M$$

• A differential relation of order 1 is a subset $\mathcal{R} \subset J^1(M, N)$.

V.Borrelli

Ample Differential Relations

H-principle for ample relations

Ample Relations in $J^1(M, N)$

• Locally, we identify $J^1(M, N)$ with

$$\begin{aligned} J^{1}(\mathcal{U},\mathcal{V}) &= \mathcal{U}\times\mathcal{V}\times\mathcal{L}(\mathbb{R}^{m},\mathbb{R}^{n}) = \mathcal{U}\times\mathcal{V}\times\prod_{i=1}^{m}\mathbb{R}^{n}. \\ &= \{(x,y,v_{1},...,v_{m})\} \end{aligned}$$

where \mathcal{U} and \mathcal{V} are charts of M and N.

• We set :

$$J^{1}(\mathcal{U},\mathcal{V})^{\perp} := \{(x,y,v_{1},...,v_{m-1})\}.$$

• We have

$$egin{array}{rcl} \mathcal{R}_{\mathcal{U},\mathcal{V}} & \longrightarrow & J^1(\mathcal{U},\mathcal{V}) \ & \downarrow \mathcal{p}^\perp \ & J^1(\mathcal{U},\mathcal{V})^\perp. \end{array}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

V.Borrelli

Ample Differential Relations

H-principle for ample relations

Ample Relations in $J^1(M, N)$

• Let $z \in J^1(\mathcal{U}, \mathcal{V})^{\perp}$, we set

$$\mathcal{R}_z^{\perp} = (p^{\perp})^{-1}(z) \cap \mathcal{R}_{\mathcal{U},\mathcal{V}}.$$

 $\bullet \ \mathcal{R}^{\perp}$ is a differential relation of the bundle

$$J^1(\mathcal{U},\mathcal{V}) \xrightarrow{p^{\perp}} J^1(\mathcal{U},\mathcal{V})^{\perp}.$$

Definition. – A differential relation $\mathcal{R} \subset J^1(M, N)$ is *ample* if for every local identification $J^1(\mathcal{U}, \mathcal{V})$ and for every $z \in J^1(\mathcal{U}, \mathcal{V})^{\perp}$, the space \mathcal{R}_z^{\perp} is ample in $(p^{\perp})^{-1}(z) \simeq \mathbb{R}^n$.

V.Borrelli

Ample Differential Relations

H-principle for ample relations

Ample Relations in $J^1(M, N)$

Example. – The differential relation \mathcal{I} of immersions from M^m to N^n is ample if n > m.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

V.Borrelli

Ample Differential Relations

H-principle for ample relations

Formal solutions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• A formal solution of a differential relation $\mathcal{R} \subset J^1(M, N)$ is any section $\sigma \in \Gamma(\mathcal{R})$.

V.Borrelli

Ample Differential Relations

H-principle for ample relations

Formal solutions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• A formal solution of a differential relation $\mathcal{R} \subset J^1(M, N)$ is any section $\sigma \in \Gamma(\mathcal{R})$.

• A solution of \mathcal{R} is a map $f : M \longrightarrow N$ such that $j^1 f \in \Gamma(\mathcal{R})$.

We denote by $Sol(\mathcal{R})$ the space of solutions of \mathcal{R} .

V.Borrelli

Ample Differential Relations

H-principle for ample relations

Formal solutions

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• A formal solution of a differential relation $\mathcal{R} \subset J^1(M, N)$ is any section $\sigma \in \Gamma(\mathcal{R})$.

A solution of *R* is a map *f* : *M* → *N* such that *j*¹*f* ∈ Γ(*R*).
We denote by *Sol*(*R*) the space of solutions of *R*.

• The natural inclusion

$$\begin{array}{rccc} J: & C^1(M,N) & \longrightarrow & J^1(M,N) \\ & f & \longmapsto & j^1 f. \end{array}$$

induces a map

 $J: \mathcal{Sol}(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R}).$

V.Borrelli

Ample Differential Relations

H-principle for ample relations

Definition. A differential relation \mathcal{R} satisfies the *h*-**principle** if every formal solution $\sigma : M \longrightarrow \mathcal{R}$ is homotopic in $\Gamma(\mathcal{R})$ to the 1-jet of a solution of \mathcal{R} .

H-principle

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

V.Borrelli

Ample Differential Relations

H-principle for ample relations

H-principle

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition. A differential relation \mathcal{R} satisfies the *h*-**principle** if every formal solution $\sigma : M \longrightarrow \mathcal{R}$ is homotopic in $\Gamma(\mathcal{R})$ to the 1-jet of a solution of \mathcal{R} .

This is asking the map *J* to induce an onto mapping between the components of $Sol(\mathcal{R})$ and $\Gamma(\mathcal{R})$

 $\pi_0 J : \pi_0 \mathcal{Sol}(\mathcal{R}) \twoheadrightarrow \pi_0 \Gamma(\mathcal{R}).$

V.Borrelli

Ample Differential Relations

H-principle for ample relations

Definition. A differential relation \mathcal{R} satisfies the *h*-principle if every formal solution $\sigma : M \longrightarrow \mathcal{R}$ is homotopic in $\Gamma(\mathcal{R})$ to the 1-jet of a solution of \mathcal{R} .

This is asking the map *J* to induce an onto mapping between the components of $Sol(\mathcal{R})$ and $\Gamma(\mathcal{R})$

 $\pi_0 J : \pi_0 \mathcal{Sol}(\mathcal{R}) \twoheadrightarrow \pi_0 \Gamma(\mathcal{R}).$

Definition.– A differential relation \mathcal{R} satisfies the parametric *h*-principle if the map

 $J: Sol(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})$

is a weak homotopy equivalence.

H-principle

V.Borrelli

Ample Differential Relations

H-principle for ample relations

H-principle for Ample Relations

Theorem (Gromov 69-73). – Let $\mathcal{R} \subset J^1(M, N)$ be an open and ample differential relation. Then \mathcal{R} satisfies the parametric *h*-principle *i*. *e*.

$$J:\mathcal{Sol}(\mathcal{R})\longrightarrow \Gamma(\mathcal{R})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

is a weak homotopy equivalence.

Immersions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Relations V.Borrelli

The *H*-principle for

Ample

Ample Differential Relations

H-principle for ample relations

Smale Paradox (1958).— The parametric *h*-principle holds for the differential relation of immersions of M^m into N^n with n > m. A homotopic computation shows that if $M^m = \mathbb{S}^2$ and $N^n = \mathbb{R}^3$ then

$$\pi_0(I(\mathbb{S}^2,\mathbb{R}^3)) = \pi_2(GI_+(3,\mathbb{R})) = 0.$$

Thus there is only one class of immersions of the sphere inside the three dimensional space and in particular, the sphere can be everted among immersions.

V.Borrelli

Ample Differential Relations

H-principle for ample relations

Eversion of the Sphere

Thurston eversion, 1994

V.Borrelli

Ample Differential Relations

H-principle for ample relations

Thurston Corrugations

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Thurston eversion introduces oscillations to avoid the creation of singular points.

V.Borrelli

Ample Differential Relations

H-principle for ample relations

Thurston Corrugations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Thurston eversion introduces oscillations to avoid the creation of singular points.

• These oscillations, called by Thurston *corrugations*, soon proved to be a powerful tool to generate regular homotopies between two given immersions.

V.Borrelli

Ample Differential Relations

H-principle for ample relations

Thurston Corrugations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Thurston eversion introduces oscillations to avoid the creation of singular points.

• These oscillations, called by Thurston *corrugations*, soon proved to be a powerful tool to generate regular homotopies between two given immersions.

• Thurston corrugations are quite similar to the oscillations created by a convex integration. In fact, it now appears that the Theory of Corrugations can be seen as a simplified version of the Convex Integration Theory (all quantitative aspects are ignored).

V.Borrelli

Ample Differential Relations

H-principle for ample relations

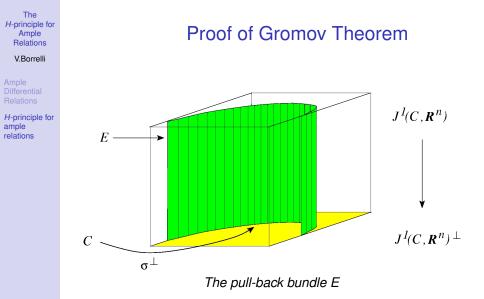
Thurston Corrugations

• Thurston eversion introduces oscillations to avoid the creation of singular points.

• These oscillations, called by Thurston *corrugations*, soon proved to be a powerful tool to generate regular homotopies between two given immersions.

• Thurston corrugations are quite similar to the oscillations created by a convex integration. In fact, it now appears that the Theory of Corrugations can be seen as a simplified version of the Convex Integration Theory (all quantitative aspects are ignored).

• It is likely that, at that time, Thurston was unaware of the Convex Integration Theory.



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

C⁰-density

(ロ) (同) (三) (三) (三) (○) (○)

The *H*-principle for Ample Relations

V.Borrelli

Ample Differential Relations

H-principle for ample relations

A C^0 -dense *h*-principle holds for $\mathcal{R} \subset J^1(M, N)$ if the (usual) *h*-principle holds and if for every formal solution $\sigma : M \longrightarrow \mathcal{R}$ and every arbitrarily small neighborhood $U \subset N$ of the image of the underlying map $f_0 = bs \sigma : M \longrightarrow N$, the homotopy $\sigma_t : M \longrightarrow \mathcal{R}$ joining f_0 to a solution $f := bs \sigma_1$ can be chosen such that $bs \sigma_t(M) \subset U$, for all $t \in [0, 1]$.

Similar definition for the C^0 -dense parametric *h*-principle.

Theorem (Gromov). – Let $\mathcal{R} \subset J^1(M, N)$ be open and ample, then \mathcal{R} satisfies to the C^0 -dense parametric *h*-principle.

V.Borrelli

Ample Differential Relations

H-principle for ample relations

William Thurston

That's all Folks!