Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliographi

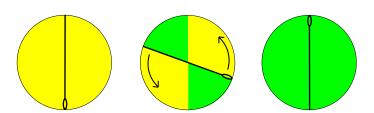
En cheminant avec Kakeya...

Vincent Borrelli

Université Ouverte-Université Lyon 1

Cycle 18 : Coups de théâtre en mathématiques

Une question anodine?

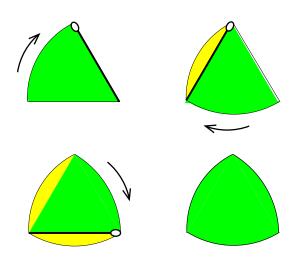

La conjectur de Kakeya

De Kakeya aux nombres premiers

Bibliographi

Une question anodine?

La question de Kakeya (1917).— Quelle est la plus petite surface à l'intérieur de laquelle il est possible de déplacer une aiguille de manière à la retourner complètement?

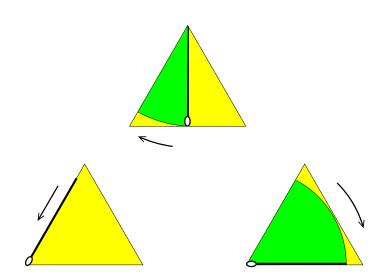

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliographie

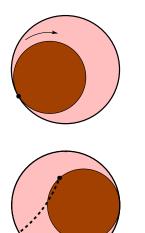
Le Reuleaux

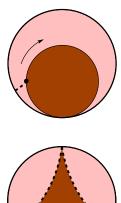

Une question anodine?

La conjecture de Kakeva

De Kakeya aux nombre

Ribliographic

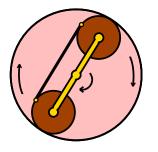

Le triangle équilatéral

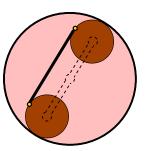


Une question anodine?

de Kakeya

La deltoïde I

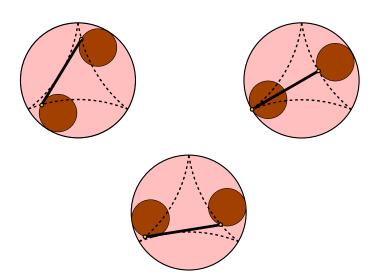

Une question anodine?


La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliographi

La deltoïde II

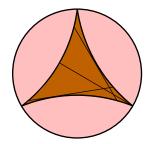

Une question anodine?

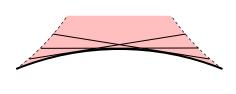
La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliographi

La deltoïde III

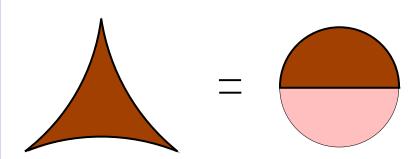

Une question anodine?


La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographie

La deltoïde IV


Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombres

Ribliographie

La deltoïde V

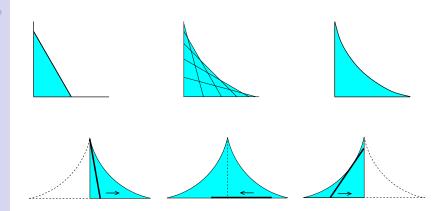
De Kakeya aux nombre premiers

Bibliographi

Une question célèbre

Problème. – Démontrer que la deltoïde est la plus petite surface permettant le retournement de l'aiguille.

En 1925, pour G. Birkhoff ce problème est la question non résolue des mathématiques la plus fascinante après le théorème des quatre couleurs...

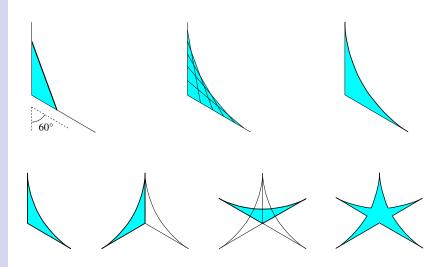

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliographi

Contre-exemple I

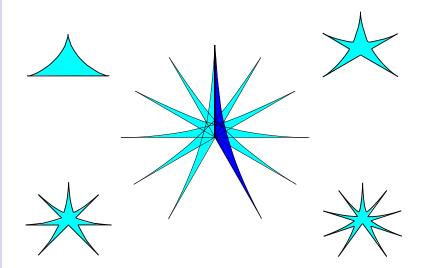

Une question anodine?

La conjecture

De Kakeya aux nombre premiers

Bibliographi

Contre-exemple II


Une question anodine?

La conjecture

De Kakeya aux nombre premiers

Bibliographic

Contre-exemple III

Une question anodine?

La conjectur de Kakeya

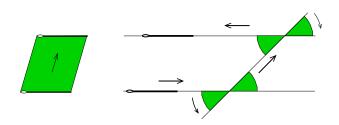
De Kakeya aux nombre premiers

Bibliographi

La solution de Besicovitch

Théorème de Besicovitch (1928). – Il est possible de retourner une aiguille dans une aire aussi petite que l'on veut!

Une question anodine?


La conjectur de Kakeya

De Kakeya aux nombre premiers

Bibliographie

Le problème de Kakeya pour les aiguilles parallèles

Enoncé. – Etant données deux positions parallèles d'une même aiguille, on se demande comment passer de l'une à l'autre en couvrant le moins d'espace possible.

De Kakeya aux nombre premiers

Bibliographi

Sa solution

Réponse. – Il est possible de passer deux positions parallèles d'une même aiguille dans une aire aussi petite que l'on veut.

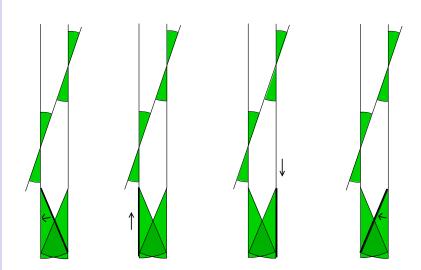
Une question anodine?

La conjecture

De Kakeya aux nombres

Bibliographic

La construction de Besicovitch I

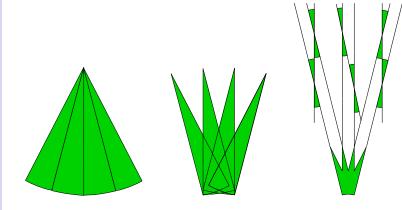

Une question anodine?

La conjecture

De Kakeya aux nombre premiers

Bibliographic

La construction de Besicovitch II

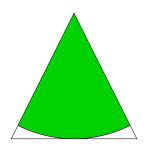

Une question anodine?

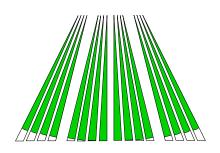
La conjecture de Kakeva

De Kakeya aux nombres

Ribliographie

La construction de Besicovitch III

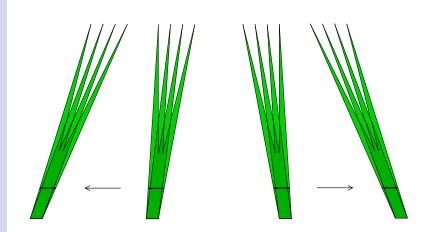

Une question anodine?


La conjecture de Kakeya

De Kakeya aux nombres

Bibliographie

L'arbre de Perron I

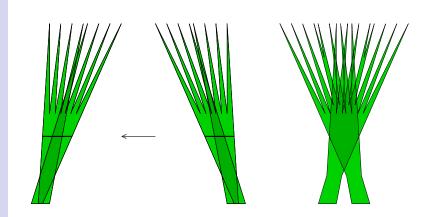

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre

Bibliographie

L'arbre de Perron II


Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliographic

L'arbre de Perron III

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre premiers

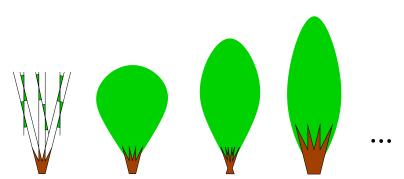
Bibliographi

L'arbre de Perron IV

Bilan. – Avec seize pièces et deux étages, l'arbre de Perron a une aire plus petite que la moitié de celle du triangle initial.

inférieur à

Une question anodine?


La conjecture

De Kakeya aux nombre premiers

Bibliographi

La peau de chagrin

Quelques chiffres. – Avec 24 117 248 pièces et 11 étages, l'arbre de Perron a une aire 5 fois plus petite que celle du triangle initial. Avec 12 393 906 174 523 604 992 pièces et 30 étages, l'aire est divisée par 10.

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliographic

La question de Kakeya pour les convexes

Théorème (Julius Pal, 1921). – Le plus petit convexe qui permet le retournement de l'aiguille est le triangle équilatéral ayant l'aiguille pour hauteur.

Convexe

Convexe

Non convexe

Non convexe

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliographie

L'énigme des domaines étoilés

Théorème (F. Cunningham, 1971). – Si un domaine étoilé permet le retournement de l'aiguille alors son aire est supérieure à $\pi/108 \simeq 0.02908...$

Etoilé

Non étoilé

Non étoilé

Une question anodine?

La conjecture de Kakeva

De Kakeya aux nombre premiers

Bibliographi

La construction de Bloom et Schoenberg (1965)

Nombre de branches	Aire de l'étoile
11	0.29044377
101	0.2843301
1001	0.2842589
÷	į.
∞	$0.284258224 = \frac{5-2\sqrt{2}}{24}\pi$

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliographi

Le mouvement brownien

Théorème (Paul Levy, 1948). – Une trajectoire brownienne est une surface sans aire.

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliographie

Le monde des objets d'aire nulle

Courbe de Péano (1890). – Il existe des courbes dont l'image est un carré plein.

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliographi

Le procédé d'évidement

Aire: 1

0.82498...

0.68059...

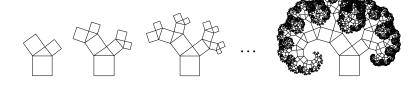
0.

Aire: 1

0.8125

0.66015...

0.


Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre premiers

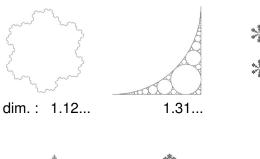
Bibliographie

Le procédé d'extension

L' arbre de Pythagore.

Une question

La conjecture de Kakeya


De Kakeya aux nombre premiers

Bibliographi

dim.:

1.72...

Ensembles d'aire nulle

1.80...

1.50...

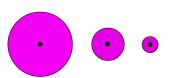
Une questior anodine?

La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographi

Epaississement et dimension


$$\mathit{Dim}(E) = 2 - \lim_{\delta \to 0} \frac{\ln \mathit{Aire}(E_{\delta})}{\ln \delta}$$

Le point : dimension 0

Epaississement divisé par 2

Aire divisée par 4

Le segment : dimension 1

Epaississement divisé par 2

Aire divisée par 2

La conjecture de Kakeya

De Kakeya aux nombre premiers

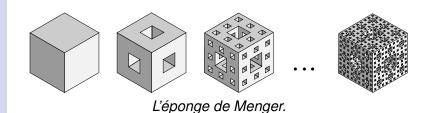

Bibliographie

Dimension fractale

$$\mathcal{H}^{s}_{\delta}(E) = \inf\{\sum r^{s}_{i} \mid r_{i} = \text{rayon du i}^{\text{ème}} \text{disque} \leq \delta\}$$

$$\mathcal{H}^{s}(E) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(E) \in [0, +\infty]$$

 $\textit{dim}_F(E) = s_0 = \text{point de discontinuit\'e de } s \mapsto \mathcal{H}^s(E).$


Une question anodine?

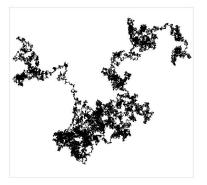
La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographi

Un exemple

Sa dimension fractale est égale à sa dimension de Minkowski et vaut environ 2.73.


Une questior anodine?

La conjecture de Kakeya

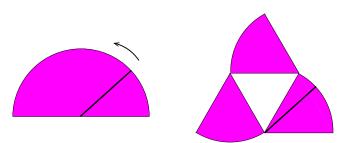
De Kakeya aux nombre premiers

Bibliographi

Retour sur le théorème de Levy

Une trajectoire brownienne est un objet d'aire nulle, sa dimension fractale est 2.

Une question anodine?


La conjecture de Kakeya

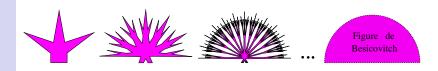
De Kakeya aux nombres premiers

Bibliographi

Nouveau problème de Kakeya...

Principe. – On abandonne le mouvement pour ne garder que la géométrie : on demande seulement que la figure contienne l'aiguille dans toutes ses directions.

Une questio anodine?


La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliograph

Sa solution

Enoncé. – Existe-t-il une figure de plus petite aire qui contient l'aiguille dans toutes ses directions?

Réponse (Besicovitch). – Il existe une figure d'aire nulle qui contient l'aiguille dans toutes ses directions.

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombre premiers

Bibliographi

La question de la dimension fractale

Définition. – On appelle *ensemble de Besicovitch* une figure qui contient l'aiguille dans toutes les directions.

Question. – Existe-t-il un ensemble de Besicovitch dont la dimension fractale soit (strictement) plus petite que deux?

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombres premiers

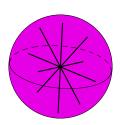
Bibliographi

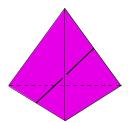
A la frontière de deux mondes

Théorème (Roy O. Davies, 1971). – La dimension fractale d'un ensemble de Besicovitch vaut deux.

Figure de Besicovitch

Une question anodine?


La conjecture de Kakeya


De Kakeya aux nombres premiers

Bibliograph

Et dans l'espace?

Question. – Dans l'espace, existe-t-il un ensemble de Besicovitch dont la dimension fractale soit (strictement) plus petite que trois ?

Conjecture de Kakeya. – Dans l'espace à n dimensions $(n \ge 3)$ la dimension fractale d'un ensemble de Besicovitch est n.

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographi

Une conjecture féconde I

En analyse : la "ball multiplier conjecture".

Charles Fefferman, médaille Fields en 1978

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographi

Une conjecture féconde II

A l'interface de l'**analyse** et de la **théorie des nombres** : la conjecture de Montgomery.

Jean Bourgain, médaille Fields en 1994

Une question anodine?

La conjecture de Kakeya

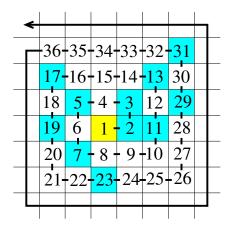
De Kakeya aux nombres premiers

Bibliograph

Une conjecture féconde III

A l'interface de la **théorie des nombres** et de la **combinatoire** : les progressions arithmétiques.

Timothy Gowers, médaille Fields en 1998


Une question anodine?

La conjecture de Kakeya

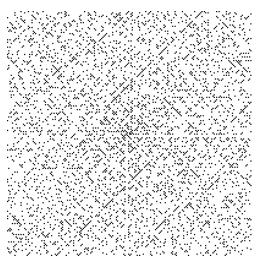
De Kakeya aux nombres premiers

Bibliographi

La spirale d'Ulam

En cheminant avec Kakeya...

V. Borrelli


Une questio

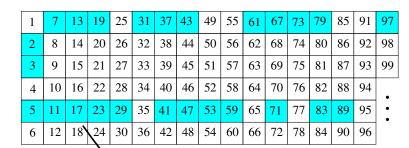
La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographi

Les nombres premiers

La spirale d'Ulam (1963)



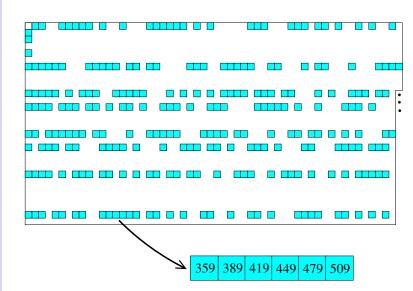
La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographi

Progressions arithmétiques I

5 11 17 23 29


Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographic

Progressions arithmétiques II

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographi

Progressions arithmétiques III

Question. – Existe-t-il des progressions arithmétiques de nombres premiers de toutes longueurs ?

Nik Lygeros

Michel Mizony

Records actuels. – On en connaît explicitement pour $L \le 24$ et seulement pour $L \le 10$ si on demande, en outre, que les nombres premiers soient *consécutifs*.

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographi

Densité d'un ensemble I

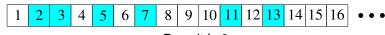
L'ensemble des nombres impairs :

L'ensemble des multiples de trois :

L'ensemble des puissances de 2 :

Densité=0

La conjecture de Kakeya


De Kakeya aux nombres premiers

Bibliographi

Densité d'un ensemble II

Théorème de Szémérédi (1975). – Si un ensemble a une densité qui n'est pas égale à zéro alors on peut y trouver des progressions arithmétiques aussi longues que l'on veut.

L'ensemble des nombres premiers :

Densité=0

Une question anodine?

La conjectur de Kakeya

De Kakeya aux nombres premiers

Bibliographi

Densité d'un ensemble III

Théorème (Roth 1956). – Etant donné un ensemble, on trouvera au moins une progression arithmétique de longueur 3 avant le nombre :

10¹⁰²⁰⁰⁰⁰ si sa densité entre 0 et ce nombre est 0.5,

10¹⁰¹⁰⁰⁰⁰⁰ si sa densité entre 0 et ce nombre est 0.1,

10¹⁰¹⁰⁰⁰⁰⁰⁰ si sa densité entre 0 et ce nombre est 0.01,

etc...

La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographi

Une application inattendue

Théorème (Bourgain 1999). – La dimension fractale d'un ensemble de Besicovitch dans un espace à n dimensions est plus grande ou égale à

$$0.52n + 0.48$$
.

	Conjecture	Résultat de Bourgain
Dimension 3	3	2.04
Dimension 4	4	2.56
Dimension 5	5	3.08
Dimension 10	10	5.68
Dimension 100	100	52.48

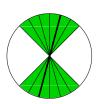
Une questior anodine?

La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographi

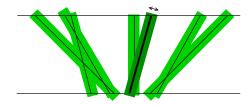
Le lien dévoilé


Invariance par homothétie

Invariance par découpage

Une question anodine?

La conjecture de Kakeya


De Kakeya aux nombres premiers

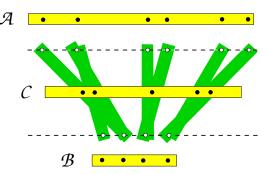
Bibliographie

Discrétisation

Epaississement

Approximation

Une questior anodine?

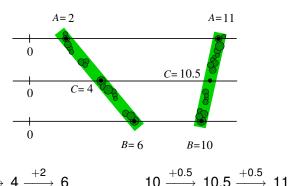

La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographie

Estimation de l'aire

Au plus la dimension fractale est grande, au plus \mathcal{A} , \mathcal{B} et \mathcal{C} vont grossir rapidement.



Question : Comment m'assurer que \mathcal{A} , \mathcal{B} et \mathcal{C} croissent rapidement ?

De Kakeya aux nombres premiers

Progressions arithmétiques

Réponse : En cherchant des suites arithmétiques de longueur 3!

$$2 \xrightarrow{+2} 4 \xrightarrow{+2} 6 \qquad \qquad 10 \xrightarrow{+0.5} 10.5 \xrightarrow{+0.5}$$

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliograph

La conjecture aujourd'hui

Les meilleurs résultats à l'heure actuelle :

	Résultat	de
Dimension 3	2.5	T. Wolff en 1995
Dimension 4	3	T. Wolff en 1995
Dimension 5	3.58	N. Katz et T. Tao en 2000
Dimension 10	6.51	N. Katz et T. Tao en 2000
Dimension 100	59.23	N. Katz et T. Tao en 2000

En 2003, Terence Tao a reçu le *prix Clay* pour ses travaux sur la conjecture de Kakeya.

Une question anodine?

La conjecture de Kakeya

De Kakeya aux nombres premiers

Bibliographie

Le résultat de Green et Tao

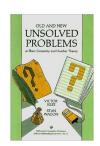
Théorème (Green-Tao 2004). – Soit $L \in \mathbb{N}^*$. Il existe une infinité de progressions arithmétiques de nombres premiers de longueur L.

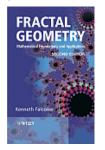
La longueur *L* étant donnée, il en existe une dont tous les termes sont plus petits que

2^{22²²²²²¹⁰⁰L}

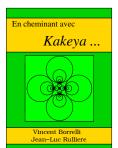
Une question anodine?

La conjecture de Kakeya


aux nombre premiers


Bibliographie

Recherche Strong Strong



Bibliographie

