Field theory approach to off critical SLE_2 and SLE_4

Luigi Cantini LPT-ENS

June 16, 2010

Renormalization: algebraic, geometric and probabilistic aspects

Based on work in collaboration with M. Bauer & D. Bernard

Outline

- 1 Introduction: Interfaces in Discrete Models in 2 D
- 2 Definition of SLE
- 3 SLE/CFT correspondence
- Off critical SLE
- **5** Conclusions & open problems

Introduction

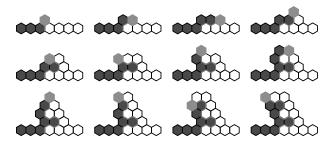
Percolation

Each site is colored: White with probability p Black with probability 1-p

The model is critical on the honeycomb lattice at p = 1/2

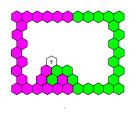
We want to look at the properties of the interface

Interface as a growth process



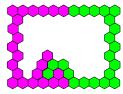
 At each step choose the color of the site with Bernoulli distribution.

Harmonic explorator



New rule for choosing the new color.

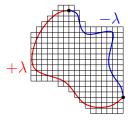
Start a random walk from "?" and stop it when it touches the boundary



Gaussian Free Field

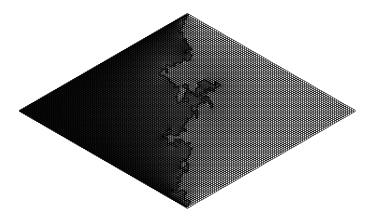
- On each site i of the exagonal lattice there is a variable h(i)
- Boltzmann weight $W(\lbrace h(i)\rbrace) = \exp(-\frac{1}{2}\sum_{\langle i,j\rangle}(h(i)-h(j))^2$.

Boundary conditions $\pm \lambda$



Consider an affinization and look at the Zero Level Line

Gaussian Free Field

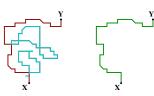


For $\lambda = \sqrt{2}$ the continuum limit of Harmonic explorator and GFF Zero level line are statistically the same SLE₄ [Schramm, Sheffield '03].

Loop Erased Random Walks |Lawler|

Let us consider a Random Walk w from X to Y

Erase the loops in an ordered way; call $\mathcal{L}(w)$ the Loop Erasure of w



Boltzmann weight of a simple walk

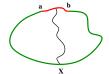
$$\omega_{\mathcal{L}}(\gamma) = \sum_{\mathbf{w} \mid \mathcal{L}(\mathbf{w}) = \gamma} \omega(\mathbf{p}) \qquad \omega(\mathbf{p}) = \mu^{|\mathbf{p}|}$$

Relations with Uniform Spanning Trees [Pemantle '91, Wilson '96] Continuum limit SLE₂[Schramm '99]

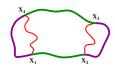
A few questions we can ask?

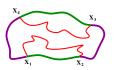
• Left passage

- ullet Fractal dimension \sim passage through a ball.
- Boundary hitting probabilities



- Crossing formulae
- Topology of interfaces





Definition of SLE

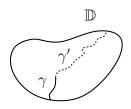
Two key properties of these models

- Domain Markov Property (often valid already in the discrete model)
- Conformal Invariance (valid in the continuum limit)

Domain Markov Property

Suppose we know part of our interface: what is the law of the remaining of the curve?

The conditioned law is the same as the one in the cut domain



$$P_{\mathbb{D}}[\gamma'|\gamma] = P_{\mathbb{D}\setminus\gamma}[\gamma]$$

Conformal Invariance: preliminaries

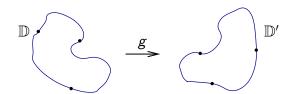
Conformal invariance is a statement about transport of probabilities under conformal mappings.

Conformal Invariance: preliminaries

Conformal invariance is a statement about transport of probabilities under conformal mappings.

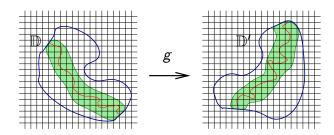
Consider two simply connected domains \mathbb{D} and \mathbb{D}' : Riemann Mapping Theorem:

 $\exists !$ a conformal map between g(z) from $\mathbb D$ to $\mathbb D'$ mapping the three marked points.



Conformal Invariance

The underlying lattice is **NOT** transformed under the mapping g(z)

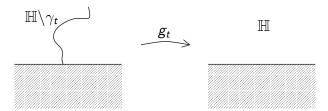


The statement of Conformal Invariance

$$P_{\mathbb{D}}[\gamma] = P_{g(\mathbb{D}) = \mathbb{D}'}[g(\gamma)]$$

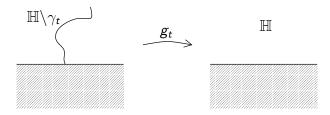
Idea: code the shape of the curve by a uniformizing map.

Chordal Löwner equation $\mathbb{H} \backslash \gamma_t \to \mathbb{H}$



Idea: code the shape of the curve by a uniformizing map.

Chordal Löwner equation $\mathbb{H} \backslash \gamma_t \to \mathbb{H}$



• Hydrodynamical normalization + time parametrization:

$$g_t(z) = z + \frac{2t}{z} + O(1/z^2)$$

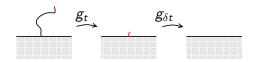
 $g_t(z)$ satisfies the equation

$$\dot{g}_t(z) = \frac{2}{g_t(z) - \xi_t}$$

 $g_t(z)$ satisfies the equation

$$\dot{g}_t(z) = \frac{2}{g_t(z) - \xi_t}$$

Sketch of the derivation: composition of infinitesimal maps



$$g_{\delta t}(z) = \sqrt{z^2 + 4\delta t} + O(\delta t^2)$$

$$g_{t+\delta t}(z) = g_{\delta t}(g_t(z) - \xi_t) + \xi_t$$

Schramm's idea [Schramm '99]

• If the curve γ is random then its measure induces a probability measure on the driving function ξ_t .

Schramm's idea [Schramm '99]

- If the curve γ is random then its measure induces a probability measure on the driving function ξ_t .
- ullet If the measure of γ has

Domain Markov Property + Conformal invariance

The driving function is proportional to a Brownian Motion

$$\xi_t = \sqrt{\kappa} B_t$$

Schramm's idea [Schramm '99]

- If the curve γ is random then its measure induces a probability measure on the driving function ξ_t .
- ullet If the measure of γ has

Domain Markov Property + Conformal invariance

The driving function is proportional to a Brownian Motion

$$\xi_t = \sqrt{\kappa} B_t$$

We are left with a single parameter κ

 $\kappa=$ 6: percolation; $\kappa=$ 4: Harmonic explorator; $\kappa=$ 2: LERW;

 $\kappa = 8$: UST; $\kappa = 3$: Ising (spin cluster); $\kappa = 8/3$ SAW.

Some results

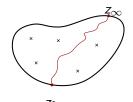
- It is always possible to define a continuous curve $\gamma_t = \lim_{z \to 0} g_t^{-1}(z + \xi_t)$ [Rhode & Schramm]
- There are three phases [RS]
 - $\kappa \leq$ 4: the curve γ_t is simple.
 - 4 < κ < 8: the curve γ_t can touch itself.
 - $\kappa \geq 8$: the curve γ_t is space filling.
- The fractal dimension of γ_t is min $\{1 + \kappa/8, 2\}$ [Beffara].
- Proof of Mandelbrot's conjecture. The boundary of 5 independent Brownian Excursions is the same as the boundary of 8 independent $SLE_{8/3}$ starting from the same point, its dimension is 4/3.

SLE/CFT correspondence

SLE/CFT correspondence I [Bernard, Bauer]

In Boundary Conformal Field theory

$$\langle \mathcal{O} \rangle_{\mathbb{D}} = \frac{\langle \mathcal{O} | \mathrm{BCOs} \rangle_{\mathbb{D}}}{\langle \mathrm{BCOs} \rangle_{\mathbb{D}}} = \frac{\langle \mathcal{O} \psi(\mathsf{z}_0) \psi(\mathsf{z}_\infty) \rangle_{\mathbb{D}}}{\langle \psi(\mathsf{z}_0) \psi(\mathsf{z}_\infty) \rangle_{\mathbb{D}}}$$



The ψ s are boundary Primary Fields

$$\langle \mathcal{O}\psi(z_0)\psi(z_\infty)\rangle_{\mathbb{D}} = |g'(z_0)|^h|g'(z_\infty)|^h\langle^g \mathcal{O}\psi(g(z_0))\psi(g(z_\infty))\rangle_{g(\mathbb{D})}$$

The Martingale Condition

$$\langle \mathcal{O} \rangle_{\mathbb{D} \setminus \gamma_t} = \frac{\langle^{g_t} \mathcal{O} \psi(g_t(z_0)) \psi(g_t(z_\infty)) \rangle_{\mathbb{D}}}{\langle \psi(g_t(z_0)) \psi(g_t(z_\infty)) \rangle_{\mathbb{D}}} = \text{ It is a (local) martingale}$$

imposes conditions on the fields ψ

SLE/CFT correspondence II

• The conformal weight of ψ is related to κ :

$$h_{1,2}=\frac{6-\kappa}{2\kappa}$$

 The correlation functions satisfy a differential equation which says that they must be degenerate at level -2

This fixes the value of the central charge

$$c = \frac{(6-\kappa)(3\kappa-8)}{2\kappa}$$

consistent with the previous identification of the statistical models: Percolation & SAW c=0, GFF c=1, Ising c=1/2, LERW & UST c=-2.

Off critical SLE

Naive considerations I

- We want to show how the off-critical measure on random curves is related to the critical one.
- One can still use the Löwner map: how does the the law of the driving function get modified?
- At scales smaller than the correlation length (but large w.r.t. the lattice spacing) the curve should look like a critical SLE

"
$$\lim_{\lambda \to 0^+} \frac{1}{\lambda} (\xi_{s+\lambda^2 t} - \xi_s) \sim \sqrt{\kappa} B_t$$
"

• Does something even stronger hold?

$$d\xi_t = \sqrt{\kappa}B_t + F_t dt$$

Naive considerations II

The probability of a piece of interface in a discrete model out of criticality is

$$\mathbb{P}[\gamma_t] = \frac{\sum_{\rho|\gamma_t} w_\rho}{\sum_{\rho} w_\rho} = \frac{Z_{\mathbb{D}}[\gamma_t]}{Z_D} = M_t \ \mathbb{P}^{(c)}[\gamma_t]$$

with

$$M_t = \frac{Z_{\mathbb{D}}[\gamma_t]/Z_{\mathbb{D}}^c[\gamma_t]}{Z_D/Z_{\mathbb{D}}^c}$$

By construction this is a martingale (= conserved in average).

Assume for the moment that it remains well defined in the continuum limit (need some precisation).

Girsanov's theorem

If B_t is a Brownian Motion w.r.t. \mathbb{P}^c , then how does it get modified by $\mathbb{P} = M_t \mathbb{P}^c$?

It gets a drift term

$$dB_t = d\tilde{B}_t + F_t dt$$

 $ilde{B}_t$ is Brownian Motion w.r.t. the off critical measure $\mathbb P$, while

$$M_t^{-1}dM_t = F_t dB_t$$

We shall apply this to the driving function of our favourite SLE, which is proportional to a Brownian Motion.

How to compute M_t and drift: field theory I

$$M_t \sim rac{Z_{\mathbb{D}}[\gamma_t]}{Z^c_{\mathbb{D}}[\gamma_t]} = e^{\mathcal{E}_{\mathbb{D}}[\gamma_t] - \mathcal{E}^c_{\mathbb{D}}[\gamma_t]} rac{Z_{\mathbb{D}}\setminus \gamma_t}{Z^c_{\mathbb{D}}\setminus \gamma_t}$$

R.G. arguments tells us when $E_{\mathbb{D}}[\gamma_t]$ & $E_{\mathbb{D}}^{c}[\gamma_t]$ are irrelevant: this holds for LERW and GFF.

Use field theory to compute
$$\frac{Z_{\mathbb{D}\setminus\gamma_t}}{Z_{\mathbb{D}\setminus\gamma_t}^c}$$

SLE₄ Massive free field

$$S_{FF}(\varphi) = \int \frac{dz^2}{8\pi} \partial \varphi \bar{\partial} \varphi + m^2 \varphi^2$$

SLE₂ Massive symplectic fermions

$$S_{sf}(\chi^{\pm}) = \int dz^2 (4\partial\chi^+ \bar{\partial}\chi^- + m^2\chi^+\chi^-)$$

How to compute M_t and drift II: gaussian free field

$$M_t = \frac{\int [D\varphi]_{DBC} e^{\int \frac{dz^2}{8\pi} \partial \varphi \bar{\partial} \varphi + m^2 \varphi^2}}{\int [D\varphi]_{DBC} e^{\int \frac{dz^2}{8\pi} \partial \varphi \bar{\partial} \varphi}} = e^{-\int \frac{dz^2}{8\pi} m^2 \phi_t \Phi_t^{[m]}} \left[\frac{\det[-\Delta + m^2]_{\mathbb{H}_t}}{\det[-\Delta]_{\mathbb{H}_t}} \right]^{-1/2}$$

$$\Delta\phi_t=0, \qquad \Delta\Phi_t-m^2\Phi_t=0$$

plus discontinuos Dirichlet BCs in \mathbb{H}_t .

The rigorous definition of the Laplacian determinant is through $\zeta-$ function regularization.

Task: Prove that this is a martingale.

The tricky part is to compute the derivative of the determinants ratio. Recast it in such a way one can use Hadamard formula.

How to compute M_t and drift II: gaussian free field

The result for the drift is

$$F_t = -2\sqrt{2} \int \frac{dz^2}{4\pi} m^2 \Phi_t(z) \theta_t(z)$$

 $heta_t(z) = -\Im \mathrm{m} rac{2}{g_t(z) - \xi_t}$ is related to the Poisson kernel in \mathbb{H}_t

Byproduct:

Decomposition of the field

$$\mathbb{E}[\langle e^{J_+\stararphi}
angle_{\mathbb{H}_+}\langle e^{J_-\stararphi}
angle_{\mathbb{H}_-}]=\langle e^{J\stararphi}
angle_{\mathbb{H}}$$

Drift for LERW

We consider so called Dipolar SLE on \mathbb{H}

Critical driving function

$$d\xi_t^c = \sqrt{2}dB_t + F_{t,[a,b]}^c dt$$

• Girsanov's martingale

$$M_t = \left[\frac{\det[-\Delta + m^2]_{\mathbb{H}_t}}{\det[-\Delta]_{\mathbb{H}_t}}\right] \frac{\langle \psi^+(\gamma_t) \int_a^b dx \psi^-(x) \rangle_{\mathbb{H}_t}^m}{\langle \psi^+(\gamma_t) \int_a^b dx \psi^-(x) \rangle_{\mathbb{H}_t}^{m=0}}$$

$$\psi^{\pm}(x) = \lim_{\delta \to 0} \delta^{-1} \chi^{\pm}(x + i\delta)$$

Off critical drift

$$F_{t,[a,b]} = 2\partial_{\xi_t} \log \langle \psi^+(\gamma_t) \int_a^b dx \psi^-(x) \rangle_{\mathbb{H}_t}^m$$

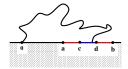
An application: boundary hitting probability

 Consistency check: ratios of correlation functions of symplectic fermions must be martingales

$$\frac{\langle \psi^+(\gamma_t) \prod_{j=1}^{N+1} \chi^-(z_j) \prod_{j=1}^N \chi^N(z_j) \rangle}{\langle \psi^+(\gamma_t) \int_a^b dx \psi^-(x) \rangle_{\mathbb{H}_t}^m}$$

Boundary Hitting Probability

$$P_{[a,b]}^{[c,d]} = \frac{\langle \psi^+(\gamma_t) \int_c^d dx \psi^-(x) \rangle_{\mathbb{H}_t}^m}{\langle \psi^+(\gamma_t) \int_a^b dx \psi^-(x) \rangle_{\mathbb{H}_t}^m}$$



Conclusions & open problems

Conclusions

- SLE techniques to describe interfaces in 2D models & relation to CFT approach.
- Girsanov's theorem to describe SLEs out of criticality.
- Application to SLE₂ and SLE₄: computation of the drift.
- Perspectives
 - Computation of other probabilities for LERW (left passage)
 - Off criticality for other values of κ and other kinds of perturbations (e.g. integrable perturbations): much more ambitious.