Epstein-Glaser Renormalization and Dimensional Regularization

Klaus Fredenhagen II. Institut für Theoretische Physik, Hamburg

(based on joint work with Romeo Brunetti, Michael Dütsch and Kai Keller)

(1日) (1日) (日)

Klaus Fredenhagen Epstein-Glaser Renormalization and Dimensional Regularization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Quantum field theory is an extremely ambitious and at the same time incredibly successful theory.

Early successes: Renormalization theory of Tomonaga, Schwinger, Feynman and Dyson made high precision predictions for QED (g-2, Lamb shift etc.)

But: Treatment of divergences was inconsistent (overlapping divergences).

After 2 decades of hard work by Stückelberg, Bogoliubov and others Hepp produced the first complete proof of renormalizability.

Zimmermann's Forest Formula solved the combinatorial problems and provided a closed expression for the renormalized scattering amplitudes.

Incorporation of the locality principle by Epstein-Glaser and by Steinmann.

Practical problems with gauge theory circumvented by dimensional regularization ('t Hooft-Veltman, Bollini-Giambiagi).

Forest formula can be adapted to dimensional regularization (Breitenlohner-Maison).

Nowadays: Good, partially excellent understanding of elementary particle physics.

But the perturbative framework continues to to be quite involved. Recent developments:

- Combinatorial analysis of the Forest formula (Connes-Kreimer)
- New methods for large order calculations, partially inspired from String theory
- New attempts for the strong coupling regime of QCD based on AdS-CFT correspondence
- Local construction of perturbative QFT, in particular for curved spacetimes (Brunetti,Dütsch,F,Hollands,Wald)

Epstein-Glaser Renormalization

Basic idea: Time ordered product of interaction Lagrangeans is determined by operator product up to coinciding points.

$$\mathcal{TL}(x)\mathcal{L}(y) = \begin{cases} \mathcal{L}(x)\mathcal{L}(y) &, & \text{if } x \text{ is not in the past of } y \\ \mathcal{L}(y)\mathcal{L}(x) &, & \text{if } x \text{ is not in the future of } y \end{cases}$$

Singularities treated by the theory of distributions.

Main feature: Extension to coinciding points is always possible, but unique only up to the addition of a δ -function or its derivatives.

This corresponds directly to the freedom in the choice of renormalization conditions.

Equivalent: Additional finite counterterms can be added to the Lagrangean in every order of perturbation theory (Main Theorem of Renormalization (Stora-Popineau,Pinter,Dütsch-F)).

 $\hat{S} = S \circ Z$

 \hat{S},S generating functionals of time ordered products, $Z\in\operatorname{Ren}$

General feature of EG-Renormalization: Rigorous , conceptually clear, but difficult for practical applications.

Experience: For every concrete calculation a new method has to be found.

Observation: In the calculation of Feynman integrals the dimension d of spacetime appears as a parameter.

Formally, the dimension can assume any complex value.

For $\operatorname{Re} d$ sufficiently small the Feynman integrals converge to an analytic function of d.

This function can be analytically continued to a meromorphic function on the complex plane.

Subtraction of the principal part of the Laurent series around the physical dimension delivers a well defined expression.

Remaining problem: One has to prove that the subtractions are compatible with the requirement of locality, i.e. the principal part must be a polynomial in the external momenta.

Lower orders: by inspection

General case: Subtractions have to be done according to the Forest Formula.

Connes-Kreimer: Description in terms of a Hopf algebra

Interesting connections to pure mathematics (Number theory, Noncommutative geometry etc.)(Brouder, Frabetti, Marcolli ...)

(日本)(日本)(日本)

Dimensional regularization versus EG renormalization

Question: Is it possible to combine the nice conceptual features of the EG-method with the effective computational tools stemming from Dimensional Regularization, combined with the Forest Formula?

Difficulties: Different concepts

- Position space vs momentum space (no curved spacetime analog)
- No divergences in EG vs poles of meromorphic functions
- Inductive construction without counter terms vs closed formula with counter terms

Single graph:

EG: Feynman graph t with n vertices, renormalized up to order n-1 is a distribution on n-1 independent difference variables which is well defined outside of the origin.

Scaling degree (Steinmann):

$$\mathrm{sd}t = \inf\{\delta \in \mathbb{R}, \lambda^{\delta}t(\lambda x) \to 0 \text{ for } \lambda \to 0\}$$

Consequence: t is uniquely determined on test functions

$$f \in \mathcal{D}_{\mathrm{div}t}(\mathbb{R}^{4(n-1)})$$

which vanish up to order $\operatorname{div}(t) := \operatorname{sd} t - 4(n-1)$ at the origin.

Extension to all test functions: Choose a projection

$$W: \mathcal{D}(\mathbb{R}^{4(n-1)})
ightarrow \mathcal{D}_{\operatorname{div} t}(\mathbb{R}^{4(n-1)})$$

and set

 $\overline{t} := t \circ W$

All extensions are of this form for a suitable projection W, and W can be explicitly given by

$$Wf = f - \sum_{|\alpha| \leq \operatorname{sd} t - 4(n-1)} w_{\alpha} \partial^{\alpha} f(0)$$

with test functions w_{α} which satisfy

$$\partial^{lpha} w_{eta}(\mathbf{0}) = \delta_{lphaeta} \; .$$

(4月) イヨト イヨト

DimReg:

Feynman graph t, dimensionally regularized and renormalized at lower orders ("prepared"), is a distribution valued meromorphic function of the dimension d with a principal part at d = 4 consisting of δ -functions and derivatives.

Renormalization ("Minimal Subtraction" (MS))

$$t^{\rm MS} = \lim_{d \to 4} \left(t(d) - \sum_{n=1}^{\infty} \int_{C} \frac{dz}{2\pi i} (d-4)^{-n} z^{n-1} t(4+z) \right)$$

where C denotes a little circle around z = 0.

Connection to EG: Choose W such that $t \circ W = t^{MS}$

Always possible for the prepared Feynman graph (pole terms are local), but W depends on t(d).

Remaining problem: EG induction requires decomposition of the space of configurations into subsets C_I such that the points $x_i, i \in I$ are not in the past of $x_j, j \notin I$.

No counter part exists in the Forest Formula; moreover, this decomposition requires a C^{∞} -decomposition of the unit and is not constructive.

Way out: use regularization and the fact that

$$\sum_{\alpha} \langle t(d), w_{\alpha} \rangle (-1)^{|\alpha|} \partial^{\alpha} \delta(x)$$

is meromorphic in d with the same principal part as t(d).

Ansatz: Interpret the Main Theorem of Renormalization as a relation between renormalized and regularized S-matrix

$$S_{\rm ren} = S_{\rm reg} \circ Z_{\rm counter}$$

At *n*th order by the chain rule (Faà di Bruno formula)

$$S_{\text{ren}}^{(n)} = \sum_{P \in \text{Part}(\{1, \dots, n\})} S_{\text{reg}}^{(|P|)} \left(\bigotimes_{I \in P} Z_{\text{counter}}^{(|I|)} \right)$$

Minimal subtraction: Use $S^{(1)} = id$, set $Z^{(1)} = id$ and

$$Z_{\text{counter}}^{(n)} = -\text{pp} \sum_{P \in \text{Part}(\{1, \dots, n\}), |P| > 1} S_{\text{reg}}^{(|P|)} \left(\bigotimes_{I \in P} Z_{\text{counter}}^{(|I|)} \right),$$

for n > 1 (pp principal part of a Laurent series).

Explicit form of S_{reg} :

$$S_{\mathrm{reg}} = e^{\frac{1}{2}D} \circ \exp \circ e^{-\frac{1}{2}D}$$

with

$${\it D}=\langle {\it H_F}(d), rac{\delta^2}{\delta arphi^2}
angle$$

At *n*th order $(m_n n - fold product)$

$$S_{\mathrm{reg}}^{(n)} = m_n \circ \exp(\sum_{i < j} D_{ij})$$

Ansatz for $Z_{counter}^{(n)}$:

$$Z^{(n)}_{counter} = m_n \circ z^{(n)}$$

 $z^{(n)}$ functional differential operator for functionals of n independent fields.

(4月) イヨト イヨト

Leibniz rule:

$$\frac{\delta}{\delta\varphi} \circ m_n = m_n \circ \left(\sum_{i=1}^n \frac{\delta}{\delta\varphi_i}\right)$$

Insertion into recursion formula for counter terms

$$z^{(n)} = -\operatorname{pp} \sum_{|P|>1} \exp(\sum_{i <_P j} D_{ij}) \prod_{l \in P} z^{(l)}$$

with $i <_P j$ if $1 \le i < j \le n$ and $i, j \notin I$, $I \in P$.

・ロト ・回ト ・ヨト ・ヨト

Solution of the recursion relation: Definition of a EG-forest: An EG-forest $F \in \mathfrak{F}_n$ is a family of subsets $I \subset \{1, \ldots, n\}$, |I| > 1such that for $I, J \in F$ either $I \subset J, J \subset I$ or $I \cap J = \emptyset$ holds. EG-Forest formula

$$S_{\mathrm{ren}}^{(n)} = \lim_{d \to 4} \sum_{F \in \mathfrak{F}_n} \prod_{I \in F} R_I S_{\mathrm{reg}}^{(n)}(d)$$

Definition of R_I : R_I acts on the dimension variables associated to pairs $i, j \in I$ as (-principal part), for I < J, R_I is performed before R_J .

Crucial: "dimensions" can be chosen independently for every pair of indices.

Question: The EG forests are special Zimmermann forests. Why are the other subtractions irrelevant?

Answer (Zimmermann 1975): The other subtractions are spurious.

Example: ("setting sun") 3 lines connecting 2 vertices, no derivatives.

Unrenormalized graph: $t = \Delta_F^3$

 $sdt = 6 \implies t$ is defined on test functions vanishing at 0 to 2nd order.

 $t^{\text{ren}} = t \circ W$, W projects on space of admissible test functions

Subgraph $t_2 = \Delta_F^2$ ("fish") has scaling degree 4, hence is defined on test functions which vanish at 0.

But the pointwise product $\Delta_F \cdot (Wf)$ vanishes already at 0, since the singularity of Δ_F is $\frac{1}{\chi^2}$, hence if W_2 is the projection onto test functions vanishing at the origin, we find

$$\langle \Delta_F^2, W_2 \Delta_F \cdot (Wf) \rangle = \langle \Delta_F^2, \Delta_F \cdot (Wf) \rangle = \langle \Delta_F^3, Wf \rangle$$

化间面 化压力 化压力 一压

Conclusions

- Dimensional regularization can be understood as a regularization of the Feynman propagator in 4 dimensional position space. (Scheck et al.)
- Techniques of distribution theory allow a unique determination of Feynman graphs at dimensions near to, but different from 4.
- Arising combinatorics similar, but much simpler than in the BPHZ theory.
- Description in terms of Hopf algebras possible in the case of renormalizable theories (orbit of Ren contained in a finite dimensional affine subspace)(see the talk of Kai Keller).

(4回) (注) (注) (注) (注)