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Introduction

Quantum field theory is an extremely ambitious and at the same
time incredibly successful theory.

Early successes: Renormalization theory of Tomonaga, Schwinger,
Feynman and Dyson made high precision predictions for QED (g-2,
Lamb shift etc.)

But: Treatment of divergences was inconsistent (overlapping
divergences).

After 2 decades of hard work by Stiickelberg, Bogoliubov and
others Hepp produced the first complete proof of renormalizability.
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Zimmermann's Forest Formula solved the combinatorial problems
and provided a closed expression for the renormalized scattering
amplitudes.

Incorporation of the locality principle by Epstein-Glaser and by
Steinmann.

Practical problems with gauge theory circumvented by dimensional
regularization ('t Hooft-Veltman, Bollini-Giambiagi).

Forest formula can be adapted to dimensional regularization
(Breitenlohner-Maison).
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Nowadays: Good, partially excellent understanding of elementary
particle physics.

But the perturbative framework continues to to be quite involved.

Recent developments:
e Combinatorial analysis of the Forest formula (Connes-Kreimer)

@ New methods for large order calculations, partially inspired
from String theory

@ New attempts for the strong coupling regime of QCD based
on AdS-CFT correspondence

@ Local construction of perturbative QFT, in particular for
curved spacetimes (Brunetti,Diitsch,F,Hollands,Wald)
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Epstein-Glaser Renormalization

Basic idea: Time ordered product of interaction Lagrangeans is
determined by operator product up to coinciding points.

| L(x)L(y) , if xisnotin the past of y
TL)Lly) = { L(y)L(x) , if xis not in the future of y

Singularities treated by the theory of distributions.

Main feature: Extension to coinciding points is always possible, but
unique only up to the addition of a §-function or its derivatives.

This corresponds directly to the freedom in the choice of
renormalization conditions.
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Equivalent: Additional finite counterterms can be added to the
Lagrangean in every order of perturbation theory (Main Theorem
of Renormalization (Stora-Popineau,Pinter,Diitsch-F)).

N

S§5=850Z7
5.8 generating functionals of time ordered products, Z € Ren

General feature of EG-Renormalization: Rigorous , conceptually
clear, but difficult for practical applications.

Experience: For every concrete calculation a new method has to be
found.
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Dimensional Regularization

Observation: In the calculation of Feynman integrals the dimension
d of spacetime appears as a parameter.

Formally, the dimension can assume any complex value.

For Re d sufficiently small the Feynman integrals converge to an
analytic function of d.

This function can be analytically continued to a meromorphic
function on the complex plane.

Subtraction of the principal part of the Laurent series around the
physical dimension delivers a well defined expression.
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Remaining problem: One has to prove that the subtractions are
compatible with the requirement of locality, i.e. the principal part
must be a polynomial in the external momenta.

Lower orders: by inspection

General case: Subtractions have to be done according to the Forest
Formula.

Connes-Kreimer: Description in terms of a Hopf algebra

Interesting connections to pure mathematics (Number theory,
Noncommutative geometry etc.)(Brouder, Frabetti, Marcolli .. .)
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Dimensional regularization versus EG renormalization

Question: Is it possible to combine the nice conceptual features of
the EG-method with the effective computational tools stemming
from Dimensional Regularization, combined with the Forest
Formula?

Difficulties: Different concepts
@ Position space vs momentum space (no curved spacetime
analog)
@ No divergences in EG vs poles of meromorphic functions

@ Inductive construction without counter terms vs closed
formula with counter terms
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Single graph:

EG: Feynman graph t with n vertices, renormalized up to order
n — 1 is a distribution on n — 1 independent difference variables
which is well defined outside of the origin.

Scaling degree (Steinmann):
sdt = inf{d € R, \°t(\x) — 0 for A — 0}
Consequence: t is uniquely determined on test functions
f € Daive(RH"Y)

which vanish up to order div(t) := sdt — 4(n — 1) at the origin.
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Extension to all test functions:
Choose a projection

W : DR D) = Dyiy e (RHT)

and set
t:=toW

All extensions are of this form for a suitable projection W, and W
can be explicitely given by

WF=f— Y wa0%f(0)

|or| <sdt—4(n—1)
with test functions w, which satisfy

aaWﬁ(O) = 504,8 .
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DimReg:

Feynman graph t , dimensionally regularized and renormalized at
lower orders (" prepared”), is a distribution valued meromorphic
function of the dimension d with a principal part at d = 4
consisting of J-functions and derivatives.

Renormalization (" Minimal Subtraction” (MS))

tMS:J@zL( Z/ 27TI 2 (4+z)>

where C denotes a little circle around z = 0.
Connection to EG: Choose W such that to W = tMS

Always possible for the prepared Feynman graph (pole terms are
local), but W depends on t(d).
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Remaining problem: EG induction requires decomposition of the
space of configurations into subsets C; such that the points
xi,1 € | are not in the past of x;,j & /.

No counter part exists in the Forest Formula; moreover, this
decomposition requires a C°°-decomposition of the unit and is not
constructive.

Way out: use regularization and the fact that

> (t(d), wa)(~1)*10*6(x)

«

is meromorphic in d with the same principal part as t(d).

Klaus Fredenhagen Epstein-Glaser Renormalization and Dimensional Regularizatio



Ansatz: Interpret the Main Theorem of Renormalization as a
relation between renormalized and regularized S-matrix

Sten = reg © Zcounter
At nth order by the chain rule (Faa di Bruno formula)
n )
- Y s (@)
PePart({1,...,n}) leP
Minimal subtraction: Use S(1) = id, set Z(1) =id and
i
o= S (@2 ).
PePart({1,...,n}),|P|>1 leP

for n > 1 (pp principal part of a Laurent series).
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Explicit form of Syee:

ip

by expoe 2

Sreg = e%
with 52
—)

D= <HF(d)7 5

At nth order (m, n-fold product)
58 = mnoexp(d_ Dy)
i<j

Ansatz for ZC(")

ounter-

Z(”)

_ n
counter — mp o Z( )

z{" functional differential operator for functionals of n
independent fields.
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Leibniz rule: .
) 1
Zomy=myo (Y o)
s " ! ,z_; dep;
Insertion into recursion formula for counter terms

2" = —pp Z exp(z Djj) H P

|P|>1 i<pj IeP

withi<pjifl<i<j<nandijé&l, I|€P.
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Solution of the recursion relation:

Definition of a EG-forest:

An EG-forest F € §, is a family of subsets / C {1,...,n}, [I| > 1
such that for I, J € F either | C J, JC [l or INJ =0 holds.
EG-Forest formula

s — I|m Z H R,Sre

FES,, IeF

Definition of R;: R, acts on the dimension variables associated to
pairs i,j € | as (—principal part), for | < J, R is performed
before R;.

Crucial: "dimensions” can be chosen independently for every pair
of indices.
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Question: The EG forests are special Zimmermann forests. Why
are the other subtractions irrelevant?

Answer (Zimmermann 1975): The other subtractions are spurious.

Example: ("setting sun") 3 lines connecting 2 vertices, no
derivatives.

: .+ — A3
Unrenormalized graph: t = Az

sdt = 6 = t is defined on test functions vanishing at 0 to 2nd
order.
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t"" = to W, W projects on space of admissible test functions

Subgraph t; = AZ ("fish") has scaling degree 4, hence is defined
on test functions which vanish at 0.

But the pointwise product Afg - (Wf) vanishes already at 0, since
the singularity of Afr is 712 hence if W, is the projection onto test
functions vanishing at the origin, we find

(A2 WhAF - (WF)) = (A2, Af - (WF)) = (A2, WF)
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Conclusions

@ Dimensional regularization can be understood as a
regularization of the Feynman propagator in 4 dimensional
position space. (Scheck et al.)

@ Techniques of distribution theory allow a unique determination
of Feynman graphs at dimensions near to, but different from
4,

@ Arising combinatorics similar, but much simpler than in the
BPHZ theory.

@ Description in terms of Hopf algebras possible in the case of
renormalizable theories (orbit of Ren contained in a finite
dimensional affine subspace)(see the talk of Kai Keller).
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