
Epstein-Glaser Renormalization and Dimensional
Regularization

Klaus Fredenhagen
II. Institut für Theoretische Physik, Hamburg

(based on joint work with Romeo Brunetti, Michael Dütsch and
Kai Keller)

Klaus Fredenhagen Epstein-Glaser Renormalization and Dimensional Regularization



Klaus Fredenhagen Epstein-Glaser Renormalization and Dimensional Regularization



Introduction

Quantum field theory is an extremely ambitious and at the same
time incredibly successful theory.

Early successes: Renormalization theory of Tomonaga, Schwinger,
Feynman and Dyson made high precision predictions for QED (g-2,
Lamb shift etc.)

But: Treatment of divergences was inconsistent (overlapping
divergences).

After 2 decades of hard work by Stückelberg, Bogoliubov and
others Hepp produced the first complete proof of renormalizability.
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Zimmermann’s Forest Formula solved the combinatorial problems
and provided a closed expression for the renormalized scattering
amplitudes.

Incorporation of the locality principle by Epstein-Glaser and by
Steinmann.

Practical problems with gauge theory circumvented by dimensional
regularization (’t Hooft-Veltman, Bollini-Giambiagi).

Forest formula can be adapted to dimensional regularization
(Breitenlohner-Maison).
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Nowadays: Good, partially excellent understanding of elementary
particle physics.

But the perturbative framework continues to to be quite involved.

Recent developments:

Combinatorial analysis of the Forest formula (Connes-Kreimer)

New methods for large order calculations, partially inspired
from String theory

New attempts for the strong coupling regime of QCD based
on AdS-CFT correspondence

Local construction of perturbative QFT, in particular for
curved spacetimes (Brunetti,Dütsch,F,Hollands,Wald)
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Epstein-Glaser Renormalization

Basic idea: Time ordered product of interaction Lagrangeans is
determined by operator product up to coinciding points.

TL(x)L(y) =

{
L(x)L(y) , if x is not in the past of y
L(y)L(x) , if x is not in the future of y

Singularities treated by the theory of distributions.

Main feature: Extension to coinciding points is always possible, but
unique only up to the addition of a δ-function or its derivatives.

This corresponds directly to the freedom in the choice of
renormalization conditions.
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Equivalent: Additional finite counterterms can be added to the
Lagrangean in every order of perturbation theory (Main Theorem
of Renormalization (Stora-Popineau,Pinter,Dütsch-F)).

Ŝ = S ◦ Z

Ŝ , S generating functionals of time ordered products, Z ∈ Ren

General feature of EG-Renormalization: Rigorous , conceptually
clear, but difficult for practical applications.

Experience: For every concrete calculation a new method has to be
found.

Klaus Fredenhagen Epstein-Glaser Renormalization and Dimensional Regularization



Dimensional Regularization

Observation: In the calculation of Feynman integrals the dimension
d of spacetime appears as a parameter.

Formally, the dimension can assume any complex value.

For Re d sufficiently small the Feynman integrals converge to an
analytic function of d .

This function can be analytically continued to a meromorphic
function on the complex plane.

Subtraction of the principal part of the Laurent series around the
physical dimension delivers a well defined expression.
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Remaining problem: One has to prove that the subtractions are
compatible with the requirement of locality, i.e. the principal part
must be a polynomial in the external momenta.

Lower orders: by inspection

General case: Subtractions have to be done according to the Forest
Formula.

Connes-Kreimer: Description in terms of a Hopf algebra

Interesting connections to pure mathematics (Number theory,
Noncommutative geometry etc.)(Brouder, Frabetti, Marcolli . . . )
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Dimensional regularization versus EG renormalization

Question: Is it possible to combine the nice conceptual features of
the EG-method with the effective computational tools stemming
from Dimensional Regularization, combined with the Forest
Formula?

Difficulties: Different concepts

Position space vs momentum space (no curved spacetime
analog)

No divergences in EG vs poles of meromorphic functions

Inductive construction without counter terms vs closed
formula with counter terms
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Single graph:

EG: Feynman graph t with n vertices, renormalized up to order
n − 1 is a distribution on n − 1 independent difference variables
which is well defined outside of the origin.

Scaling degree (Steinmann):

sdt = inf{δ ∈ R, λδt(λx)→ 0 for λ→ 0}

Consequence: t is uniquely determined on test functions

f ∈ Ddivt(R4(n−1))

which vanish up to order div(t) := sdt − 4(n − 1) at the origin.
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Extension to all test functions:
Choose a projection

W : D(R4(n−1))→ Ddivt(R4(n−1)

and set
t̄ := t ◦W

All extensions are of this form for a suitable projection W , and W
can be explicitely given by

Wf = f −
∑

|α|≤sdt−4(n−1)

wα∂
αf (0)

with test functions wα which satisfy

∂αwβ(0) = δαβ .
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DimReg:

Feynman graph t , dimensionally regularized and renormalized at
lower orders (”prepared”), is a distribution valued meromorphic
function of the dimension d with a principal part at d = 4
consisting of δ-functions and derivatives.

Renormalization (”Minimal Subtraction” (MS))

tMS = lim
d→4

(
t(d)−

∞∑
n=1

∫
C

dz

2πi
(d − 4)−nzn−1t(4 + z)

)

where C denotes a little circle around z = 0.

Connection to EG: Choose W such that t ◦W = tMS

Always possible for the prepared Feynman graph (pole terms are
local), but W depends on t(d).
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Remaining problem: EG induction requires decomposition of the
space of configurations into subsets CI such that the points
xi , i ∈ I are not in the past of xj , j 6∈ I .

No counter part exists in the Forest Formula; moreover, this
decomposition requires a C∞-decomposition of the unit and is not
constructive.

Way out: use regularization and the fact that∑
α

〈t(d),wα〉(−1)|α|∂αδ(x)

is meromorphic in d with the same principal part as t(d).
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Ansatz: Interpret the Main Theorem of Renormalization as a
relation between renormalized and regularized S-matrix

Sren = Sreg ◦ Zcounter

At nth order by the chain rule (Faà di Bruno formula)

S (n)
ren =

∑
P∈Part({1,...,n})

S (|P|)
reg

(⊗
I∈P

Z
(|I |)
counter

)

Minimal subtraction: Use S (1) = id, set Z (1) = id and

Z
(n)
counter = −pp

∑
P∈Part({1,...,n}),|P|>1

S (|P|)
reg

(⊗
I∈P

Z
(|I |)
counter

)
,

for n > 1 (pp principal part of a Laurent series).
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Explicit form of Sreg:

Sreg = e
1
2
D ◦ exp ◦e−

1
2
D

with

D = 〈HF (d),
δ2

δϕ2
〉

At nth order (mn n-fold product)

S (n)
reg = mn ◦ exp(

∑
i<j

Dij)

Ansatz for Z
(n)
counter :

Z
(n)
counter = mn ◦ z(n)

z(n) functional differential operator for functionals of n
independent fields.
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Leibniz rule:
δ

δϕ
◦mn = mn ◦ (

n∑
i=1

δ

δϕi
)

Insertion into recursion formula for counter terms

z(n) = −pp
∑
|P|>1

exp(
∑
i<P j

Dij)
∏
I∈P

z(I )

with i <P j if 1 ≤ i < j ≤ n and i , j 6∈ I , I ∈ P.
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Solution of the recursion relation:
Definition of a EG-forest:
An EG-forest F ∈ Fn is a family of subsets I ⊂ {1, . . . , n}, |I | > 1
such that for I , J ∈ F either I ⊂ J, J ⊂ I or I ∩ J = ∅ holds.
EG-Forest formula

S (n)
ren = lim

d→4

∑
F∈Fn

∏
I∈F

RIS
(n)
reg (d)

Definition of RI : RI acts on the dimension variables associated to
pairs i , j ∈ I as (−principal part), for I < J, RI is performed
before RJ .

Crucial: ”dimensions” can be chosen independently for every pair
of indices.
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Question: The EG forests are special Zimmermann forests. Why
are the other subtractions irrelevant?

Answer (Zimmermann 1975): The other subtractions are spurious.

Example: (”setting sun”) 3 lines connecting 2 vertices, no
derivatives.

Unrenormalized graph: t = ∆3
F

sdt = 6 =⇒ t is defined on test functions vanishing at 0 to 2nd
order.
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tren = t ◦W , W projects on space of admissible test functions

Subgraph t2 = ∆2
F (”fish”) has scaling degree 4, hence is defined

on test functions which vanish at 0.

But the pointwise product ∆F · (Wf ) vanishes already at 0, since
the singularity of ∆F is 1

x2 , hence if W2 is the projection onto test
functions vanishing at the origin, we find

〈∆2
F ,W2∆F · (Wf )〉 = 〈∆2

F ,∆F · (Wf )〉 = 〈∆3
F ,Wf 〉
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Conclusions

Dimensional regularization can be understood as a
regularization of the Feynman propagator in 4 dimensional
position space. (Scheck et al.)

Techniques of distribution theory allow a unique determination
of Feynman graphs at dimensions near to, but different from
4.

Arising combinatorics similar, but much simpler than in the
BPHZ theory.

Description in terms of Hopf algebras possible in the case of
renormalizable theories (orbit of Ren contained in a finite
dimensional affine subspace)(see the talk of Kai Keller).
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