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X: real Gaussian variable with law v(dx) = e~z

o
N
5if

Heat kernel operator
For f € L?(R) and z € R, we have

e32f(2) = E[f(X+2)] = (flv2)i2(mn).

N
N

(x=2)2

Jef(x)em 2 %: fRf(x+z)e‘%% :fRf(XWz(X)e_?%

22
where 1,(x) = e~ 2 T,

Questions: In large-N limit? In free probability? g-deformation? J

Results about the g-deformation in collaboration with Ching-Wei Ho
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Random matrices

Xpn: Gaussian matrix in the space Hy of Hermitian matrices,
normalized by the following covariance for the entries:

- 5;:0
IE[)<N(’a./))<N(k, /)] = JTM&J(;;{/

Yy: deterministic matrix in Hy.

Theorem (Wigner, 1958)
The empirical spectral distribution of Xy converges to the
semicircular measure

1
o(dx) = =V 4 — x21_p 4 g)dx.
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Free probability (N = c0)

The basic construct: a noncommutative algebra A of "random
variables" equipped with an "expectation functional" 7 : A — C.

Theorem (Voiculescu, 1991)

If the empirical spectral distribution of Yy converges to a
compactly supported measure, there exists x and y elements of
(A, T) such that, for any noncommmutative polynomial P,

S TP, Ya)) > T(P(x,y)).

The variables x and y are freely independent: the quantity
7(P(x,y)) can be deduced from the semi-circular law of x and the
law of y.
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Transition operator for N = oo

Theorem (Biane 1998)

If x has a semicircular law and y is freely independent from x in
(A, T), there is a kernel K, such that, for all bounded function f,

T[f(x + y)ly] = (K, F)(y)

Compare to the classical case: if X is Gaussian and Y independent
from X,

E[f(X + Y)|Y] = ez2£(Y).
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Transition kernel

Xy: Hermitian Gaussian matrix. Let f € L2(Hy). The function

Yy € Hy — E[f(x,v + YN)}

is given by e 8w f, the heat-kernel semigroup at time 1.

This transition operator extends to matrix-valued functions, by
applying it entrywise. If f : Hy — Hyp, then e3Bnf . Hpy — Hpy is
such that )

eFAVF(Yi) = B[ F(Xn + Vo))



Limit of transition operators
o] Yolelo)

Limit of e22% when N — 0o?

First step: Take a function f : Hp — Hpy which is defined from a
function f : R — R by functional calculus.

Example: f(Yn) = Y3. J

Second step: Apply e22% to f

Example: e%ANf( Yn)= Y3+ Yn+ ﬁ Tr(Yn). J

1 . . .
However, e2®Nf : Hy — Hy is not anymore a function given by
functional calculus.

1
Is it possible to make sense of limy e3ANF Hy — Hy as N — oo?J
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Limit of e22% when N — 0o?

1
Is it possible to make sense of limy €2V f : Hy — Hp? J

Yes, if we enlarge the space of functional calculus.

o Consider normalized trace tr = % Tr.
@ Consider trace polynomials, i.e. polynomials in Yy and
normalized traces of power of Yy.

Example :f(Yn) = Y5 + Yntr(Yn) + tr(Y32) tr(Y3). J
AN_

. . . 1
@ The trace polynomials form an invariant space for e2

Example : If f(Yn) = Y3,
then e2®VF(Yy) = Y3 + Vi + 5k tr(Ya).




Limit of transition operators
000e0

Limit of e22% when N — 0o?

C{X}: space of trace polynomials.

The action of Ay on C{X} decomposes as

1
Ay = Do+ 5L,

for operators A, and L whose actions are independent of N.

As a consequence, lim e2&n = @24 < C{X} — C{X}.
N—oo
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Convergence for Gaussian Hermitian matrices (Wigner)

@ Convergence of the mean

B[ THPOW))] = et24(te(P))(0) = X430 ur(P))(0)

— 28 (tr(P))(0) + O(1/N?).

N—o00

@ Concentration around the mean

Var[% THPOXW))] = [eéﬂw(tr(P) ~ (edBw tr(P))(O)ﬂ 0)

— [eéAw (tr(P) - (e%AOO tr(P))(O)) 2] (0) + O(1/N?).

N—oo

Check that €32 (tr(P) — (22~ tr(P))(0)) " is 0.
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Brownian motions on Lie group

A Brownian motion (g:):>0 on a matrix Lie group G is a Markov
process starting at 1, whose generator is the Laplacian %AG for
a certain metric.

In particular, the expectation can be computed by the action of the
semigroup of generator Ag:

E[ L TH(P()] = (e4¢(tr(P)) (1),

We will use exactly the same proof.
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Theorem (Biane, Rains, Xu 1997)

Convergence of the Brownian motion (Un(t))¢>0 on the unitary
group Uy (unitary matrices of size N x N): for all t > 0, and
polynomial P,

1
m Tr(P(Un(t))) converges almost surely as N — co.

Figure: The limiting distribution of the eigenangles of Uy(t)
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Demonstration

The action of Ay, on C{X} decomposes as Ay, = Ay + %DU,
from which we can deduce that

E %Tr(P(XN))} = e2%n (tr(P))(1) — e229(tr(P))(1)+0(1/N?)

N—oo

and
Var[% THPOW)| — 0(1/N?)
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The same proof gives similar results for Brownian motions on
others Lie groups.
@ Lévy (2011): for the orthogonal group Oy (and for the
symplectic group Sp(N))
1

1
A@N =Ag+ NC@) + WD@.

e C. (2013): for the general linear group GLy

o Kemp (2015): for a two-parameter family of Brownian
motions on GLy which interpolates between Uy and GLy

1
Agry = AgL + WDGL-



It is also possible to consider more general situations.
o Ulrich (2015): for the M2 blocks of size N x N of a
Brownian motion on Unp (when N — o0)

1
Ay, = Aym + WLIU,M'

C{X} must be replaced by the space C{Xj; : 1 <i,j < M} of
trace polynomials in the M? blocks.

e Gabriel (2015): for a random walk (Sn(t))e>0 on Sn with
generator
Ls, =L+ O(1/N)

C{X} must be replaced by a particular space of functions given by
traffic operations (in the sense of Male), and we have

Var |5 Ti(P(Sw(1))] {eﬁ(tr(P)—(eﬁtr(P))(O))z] (1) £0

N— oo
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Central limit theorems

1

The Taylor expansion in 4 can be used to prove central limit

theorems:

t
e%AUN _ e%(AU_FiDU) _ eéAU+2,]\./2/ e%AUDUe%AU-FO(l/NZ)
0

e Lévy-Maida (2010) : CLT for the Brownian motion on Uy

N %Tr(P(UN(t))) - E% Tr(P(UN(t)))] is asymptotically Gaussian

e Dahlqvist (2014) : CLT for the Brownian motion on Oy and
Spn + estimates of the Laplace transform

o C.-Kemp (2014) : CLT for the Brownian motion on GLy
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Back to N =

X: real Gaussian variable with law v(dx) = e™ 7 SX.

Heat kernel operator

For f € L2(R) and z € R, we have

2f(z) = Elf(X+2)] = (flYs)mq

_e=2? gy 2 gy 2 gy
Jrf(x)e 2 \;%: Jp f(x+ 2)e o = Jp F(x)z(x)e 2%

2
where 1,(x) = e~ 2%
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(f|Y2) 12w ) is the Segal-Bargmann transform

2 =
Set 1,(x) = e~ 272 and 4%(dz) the complex Gaussian variable of
complex variance 1.

Theorem (Bargmann, Segal - 1958)

We have the resolution of the identity

Iz = /C ) 2] 1C(2).

In the sense that
(1P = [ (Fadiage) (el o) 1)

Equivalently, the functional which maps f to z = (f|1;) 2 ) is
an isometry of Hilbert space.
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g-Gaussian variables (Bozejko and Speicher, 1991)

Interpolation between the Gaussian and the semicircular law
@ g = 1: Gaussian distribution dv;
e 0<g<1l:

1 . - n n 2i
dg(x) = L<a/yi=g - V1= qsin0 [ [ (1-¢")|1-q"e2dx
n=1

where 6 € [0, 7] is such that x = 2cos(0)/v/1 — ¢
@ g = 0: semicircular distribution d~g
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g-deformation of the Segal-Bargmann transform

For0<g<1, and|z| <1/y/1—q, set

O 1
PI(x) = kl:[() 1-(1-— q)qk2X+ (1-— q)q2k22’

and yg: a particular measure on C concentrated on a family of
concentric circles.

Theorem (van Leeuwen and Maassen, 1995)

We have the resolution of the identity

Iz gy = /C 09 (9] dvE ().
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g-deformation of the Segal-Bargmann transform

Between the Gaussian (g = 1) and the semicircular (¢ = 0):

Theorem (C.-Ho, 2017)

For any polynomial P, we have

°q=1: e32f(z) = E[f (X + 2)|2] = (Flz)i2(ay)

e 0<g<l: 777 = 7[P(x + 2)|2] = (PY3) 12(dv,)
for x ~ dvygq and z ~ dfyéc which are "g-independent”

1
e g=0: e28>P(z) = 7[P(x + z)|z] = <P|1/}(2)>L2(d'yo)
for x ~ dvyp and z ~ d’yg: which are freely independent
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Random matrices and g-deformation

In 2001, Sniady defines a random matrix model for the measure
dyg:
@ vy is a measure on Hy such that, if Xy ~ vy, then Xy
converges in noncommutative distribution to 7.

° y% is a measure on My such that, if Zy ~ vy, then Zy
converges in noncommutative distribution to vg.
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Because 7[P(x + z)|z] = <P|¢3>L2(d%) for x ~ dyq and z ~ d’yg
which are "g-independent", we have the following result.

Theorem (q=0 by Biane in 1997, 0<q<1 by C.-Ho in 2017)

The following classical Segal-Bargmann transform of a
polynomial P

M = (Plm) 12 (s, vm)
converges to the g-deformed Segal-Bargmann transform of the
same polynomial

z = (PlY2) 12(r )

in the following sense: if Zy is a random matrix of law 7%,

N— o0

2
E |:H<'D|¢ZN>L2(HN,7N) — (PlYzy) 2R vq) } — 0.
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Sketch of proof: If Xy is a random matrix with law Xy, we have
(PlYzy) 1281y ,7vy) = E[P(Xn + Zn)|Zn], and we can prove that

]

E [HE[P(XN + Zn)IZN] = (PlYzy) 12 )

converges to

2
HT[P(X +2)lz] = (PlYz) 2wag) | =

where x ~ dvyg and z ~ dfygc are "g-independent".
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Thank you!
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