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Introduction

X : real Gaussian variable with law γ(dx) = e− x2
2 dx√

2π .

Heat kernel operator
For f ∈ L2(R) and z ∈ R, we have

e 1
2 ∆f (z) = E[f (X + z)] = 〈f |ψz〉L2(R,γ).∫

R f (x)e−
(x−z)2

2 dx√
2π =

∫
R f (x + z)e− x2

2 dx√
2π =

∫
R f (x)ψz(x)e− x2

2 dx√
2π

where ψz(x) = e− z2
2 +zx .

Questions: In large-N limit? In free probability? q-deformation?

Results about the q-deformation in collaboration with Ching-Wei Ho
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Random matrices

XN : Gaussian matrix in the space HN of Hermitian matrices,
normalized by the following covariance for the entries:

E[XN(i , j)XN(k, l)] = δijδkl
N δijδkl .

YN : deterministic matrix in HN .

Theorem (Wigner, 1958)
The empirical spectral distribution of XN converges to the
semicircular measure

σ(dx) = 1
4π
√
4− x21[−2,+2]dx .
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Free probability (N =∞)

The basic construct: a noncommutative algebra A of "random
variables" equipped with an "expectation functional" τ : A → C.

Theorem (Voiculescu, 1991)
If the empirical spectral distribution of YN converges to a
compactly supported measure, there exists x and y elements of
(A, τ) such that, for any noncommmutative polynomial P,

1
N Tr(P(XN ,YN)) −→

N→∞
τ(P(x , y)).

The variables x and y are freely independent: the quantity
τ(P(x , y)) can be deduced from the semi-circular law of x and the
law of y .
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Transition operator for N =∞

Theorem (Biane 1998)
If x has a semicircular law and y is freely independent from x in
(A, τ), there is a kernel Ky such that, for all bounded function f ,

τ [f (x + y)|y ] = (Ky f )(y).

Compare to the classical case: if X is Gaussian and Y independent
from X ,

E[f (X + Y )|Y ] = e
1
2 ∆f (Y ).
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Transition kernel

XN : Hermitian Gaussian matrix. Let f ∈ L2(HN). The function

YN ∈ HN 7→ E
[
f (XN + YN)

]
is given by e 1

2 ∆N f , the heat-kernel semigroup at time 1.

This transition operator extends to matrix-valued functions, by
applying it entrywise. If f : HN → HN , then e 1

2 ∆N f : HN → HN is
such that

e
1
2 ∆N f (YN) = E

[
f (XN + YN)

]
.



Introduction Limit of transition operators Processes on Lie groups Segal-Bargmann coherent state transform

Limit of e 1
2 ∆N when N →∞?

First step: Take a function f : HN → HN which is defined from a
function f : R→ R by functional calculus.

Example: f (YN) = Y 3
N .

Second step: Apply e 1
2 ∆N to f .

Example: e 1
2 ∆N f (YN) = Y 3

N + YN + 1
2N Tr(YN).

However, e 1
2 ∆N f : HN → HN is not anymore a function given by

functional calculus.

Is it possible to make sense of limN e 1
2 ∆N f : HN → HN as N →∞?
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Limit of e 1
2 ∆N when N →∞?

Is it possible to make sense of limN e 1
2 ∆N f : HN → HN?

Yes, if we enlarge the space of functional calculus.
Consider normalized trace tr = 1

N Tr.
Consider trace polynomials, i.e. polynomials in YN and
normalized traces of power of YN .

Example :f (YN) = Y 3
N + YN tr(YN) + tr(Y 2

N) tr(Y 3
N).

The trace polynomials form an invariant space for e 1
2 ∆N .

Example : If f (YN) = Y 3
N ,

then e 1
2 ∆N f (YN) = Y 3

N + YN + 1
2N tr(YN).
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Limit of e 1
2 ∆N when N →∞?

C{X}: space of trace polynomials.

Fact
The action of ∆N on C{X} decomposes as

∆N = ∆∞ + 1
N2 L,

for operators ∆∞ and L whose actions are independent of N.

As a consequence, lim
N→∞

e 1
2 ∆N = e 1

2 ∆∞ : C{X} → C{X}.
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Convergence for Gaussian Hermitian matrices (Wigner)

Convergence of the mean

E
[ 1

N Tr(P(XN))
]

= e
1
2 ∆N (tr(P))(0) = e

1
2 (∆∞+ 1

N2 L)(tr(P))(0)

−→
N→∞

e
1
2 ∆∞(tr(P))(0) + O(1/N2).

Concentration around the mean

Var
[ 1

N Tr(P(XN))
]

=
[
e

1
2 ∆N

(
tr(P)− (e

1
2 ∆N tr(P))(0)

)2
]

(0)

−→
N→∞

[
e

1
2 ∆∞

(
tr(P)− (e

1
2 ∆∞ tr(P))(0)

)2
]

(0) + O(1/N2).

Check that e 1
2 ∆∞

(
tr(P)− (e 1

2 ∆∞ tr(P))(0)
)2

is 0.
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Brownian motions on Lie group

A Brownian motion (gt)t≥0 on a matrix Lie group G is a Markov
process starting at 1g whose generator is the Laplacian 1

2∆G for
a certain metric.

In particular, the expectation can be computed by the action of the
semigroup of generator ∆G :

E
[ 1

N Tr(P(gt))
]

=
(

e
t
2 ∆G (tr(P))

)
(1g ).

We will use exactly the same proof.



Introduction Limit of transition operators Processes on Lie groups Segal-Bargmann coherent state transform

Theorem (Biane, Rains, Xu 1997)
Convergence of the Brownian motion (UN(t))t≥0 on the unitary
group UN (unitary matrices of size N × N): for all t ≥ 0, and
polynomial P,

1
N Tr(P(UN(t))) converges almost surely as N →∞.

Figure: The limiting distribution of the eigenangles of UN(t)
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Demonstration

The action of ∆UN on C{X} decomposes as ∆UN = ∆U + 1
N2 DU,

from which we can deduce that

E
[ 1

N Tr(P(XN))
]

= e
1
2 ∆UN (tr(P))(1) −→

N→∞
e

1
2 ∆U(tr(P))(1)+O(1/N2)

and
Var

[ 1
N Tr(P(XN))

]
−→

N→∞
O(1/N2).
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The same proof gives similar results for Brownian motions on
others Lie groups.

Lévy (2011): for the orthogonal group ON (and for the
symplectic group Sp(N))

∆ON = ∆O + 1
N CO + 1

N2 DO.

C. (2013): for the general linear group GLN

Kemp (2015): for a two-parameter family of Brownian
motions on GLN which interpolates between UN and GLN

∆GLN = ∆GL + 1
N2 DGL.
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It is also possible to consider more general situations.
Ulrich (2015): for the M2 blocks of size N × N of a
Brownian motion on UNM (when N →∞)

∆UNM = ∆U,M + 1
N2 LU,M .

C{X} must be replaced by the space C{Xij : 1 ≤ i , j ≤ M} of
trace polynomials in the M2 blocks.

Gabriel (2015): for a random walk (SN(t))t≥0 on SN with
generator

LSN = L+ O(1/N)

C{X} must be replaced by a particular space of functions given by
traffic operations (in the sense of Male), and we have

Var
[ 1

N Tr(P(SN(t)))
]
−→

N→∞

[
eL
(
tr(P)− (eL tr(P))(0)

)2
]

(1) 6= 0
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Central limit theorems

The Taylor expansion in 1
N2 can be used to prove central limit

theorems:

e
t
2 ∆UN = e

t
2 (∆U+ 1

N2 DU) = e
t
2 ∆U + 1

2N2

∫ t

0
e

s
2 ∆UDUe

t−s
2 ∆U +o(1/N2)

Lévy-Maïda (2010) : CLT for the Brownian motion on UN

N
[
1
N Tr(P(UN(t)))− E

1
N Tr(P(UN(t)))

]
is asymptotically Gaussian

Dahlqvist (2014) : CLT for the Brownian motion on ON and
SpN + estimates of the Laplace transform
C.-Kemp (2014) : CLT for the Brownian motion on GLN
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Back to N = 1

X : real Gaussian variable with law γ(dx) = e− x2
2 dx√

2π .

Heat kernel operator
For f ∈ L2(R) and z ∈ R, we have

e 1
2 ∆f (z) = E[f (X + z)] = 〈f |ψz〉L2(R,γ)

∫
R f (x)e−

(x−z)2
2 dx√

2π =
∫
R f (x + z)e− x2

2 dx√
2π =

∫
R f (x)ψz(x)e− x2

2 dx√
2π

where ψz(x) = e− z2
2 +zx .
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〈f |ψz〉L2(R,γ) is the Segal-Bargmann transform

Set ψz(x) = e− z̄2
2 +z̄x and γC(dz) the complex Gaussian variable of

complex variance 1.

Theorem (Bargmann, Segal - 1958)
We have the resolution of the identity

IdL2(R,γ) =
∫
C
|ψz〉〈ψz | dγC(z).

In the sense that

〈f |f 〉L2(R,γ) =
∫
C
〈f |ψz〉L2(R,γ)〈ψz |f 〉L2(R,γ) dγC(z).

Equivalently, the functional which maps f to z 7→ 〈f |ψz〉L2(R,γ) is
an isometry of Hilbert space.
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q-Gaussian variables (Bozejko and Speicher, 1991)

Interpolation between the Gaussian and the semicircular law
q = 1: Gaussian distribution dγ1

0 < q < 1:

dγq(x) = 1|x |≤2/
√

1−q
1
π

√
1− q sin θ

∞∏
n=1

(1−qn)|1−qne2iθ|2dx

where θ ∈ [0, π] is such that x = 2 cos(θ)/
√
1− q

q = 0: semicircular distribution dγ0
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q-deformation of the Segal-Bargmann transform

For 0 ≤ q < 1, and |z | < 1/
√
1− q, set

ψq
z (x) =

∞∏
k=0

1
1− (1− q)qk z̄x + (1− q)q2k z̄2 ,

and γCq a particular measure on C concentrated on a family of
concentric circles.

Theorem (van Leeuwen and Maassen, 1995)
We have the resolution of the identity

IdL2(R,γq) =
∫
C
|ψq

z 〉〈ψq
z | dγCq (z).



Introduction Limit of transition operators Processes on Lie groups Segal-Bargmann coherent state transform

q-deformation of the Segal-Bargmann transform

Between the Gaussian (q = 1) and the semicircular (q = 0):

Theorem (C.-Ho, 2017)
For any polynomial P, we have

q = 1: e 1
2 ∆f (z) = E[f (X + z)|z ] = 〈f |ψz〉L2(dγ)

0 < q < 1: ??? = τ [P(x + z)|z ] = 〈P|ψq
z 〉L2(dγq)

for x ∼ dγq and z ∼ dγCq which are "q-independent"

q = 0: e 1
2 ∆∞P(z) = τ [P(x + z)|z ] = 〈P|ψ0

z 〉L2(dγ0)
for x ∼ dγ0 and z ∼ dγC0 which are freely independent
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Random matrices and q-deformation

In 2001, Śniady defines a random matrix model for the measure
dγq:

γN is a measure on HN such that, if XN ∼ γN , then XN
converges in noncommutative distribution to γq.
γCN is a measure on MN such that, if ZN ∼ γN , then ZN
converges in noncommutative distribution to γCq .
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Because τ [P(x + z)|z ] = 〈P|ψq
z 〉L2(dγq) for x ∼ dγq and z ∼ dγCq

which are "q-independent", we have the following result.

Theorem (q=0 by Biane in 1997, 0<q<1 by C.-Ho in 2017)
The following classical Segal-Bargmann transform of a
polynomial P

M 7→ 〈P|ψM〉L2(HN ,γN )

converges to the q-deformed Segal-Bargmann transform of the
same polynomial

z 7→ 〈P|ψz〉L2(R,γq)

in the following sense: if ZN is a random matrix of law γCN ,

E
[∥∥∥〈P|ψZN 〉L2(HN ,γN ) − 〈P|ψZN 〉L2(R,γq)

∥∥∥2
]
−→

N→∞
0.
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Sketch of proof: If XN is a random matrix with law XN , we have
〈P|ψZN 〉L2(HN ,γN ) = E[P(XN + ZN)|ZN ], and we can prove that

E
[∥∥∥E[P(XN + ZN)|ZN ]− 〈P|ψZN 〉L2(R,γq)

∥∥∥2
]

converges to ∥∥∥τ [P(x + z)|z ]− 〈P|ψz〉L2(R,γq)

∥∥∥2
= 0

where x ∼ dγq and z ∼ dγCq are "q-independent".
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Thank you!
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