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Gaussian Multiplicative Chaos

Log-correlated Processes

Formally, a a log-correlated Gaussian process is a centered Gaussian random field
whose correlation kernel is of the form

E [H(u)H(V)] = G(u, v) = log ——— + g(u, v).

u— ]



Gaussian Multiplicative Chaos

Motivation: Quantum Gravity and the Gaussian Free Field

Give a rigorous meaning to Liouville Quantum Gravity (Polyakov '81).
3] e’)/H(Z)”dg(Z)

where v > 0, H is a Gaussian Free Field (GFF) on the Riemann sphere C equipped

with the metric dg(z) = (1+| 7 dA(z)

The GFF is a Gaussian process whose covariance kernel is given by the Green
function G of the Laplacian on C. Namely define Vf = éVf and for all z € C,

_$2G(z,) = 276, and / G(z, w)dg(w) = 0.

It turns out that the Green function of the Laplacian on C has an explicit form:

G(z,w) = log <\/1 FlzlPyi |W|2>

|z — w]

So, the GFF H is merely a random distribution on C so that
E[(H. ) (H,0)] = [[ o(2)e(w)G(z w)dg(z)dg(w)

for all p,9 € C5°(C — R).
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Gaussian Multiplicative Chaos

Let H be a Gaussian process on an interval | with covariance kernel

1

u—v|

E[H(u)H(v)] := G(u,v) = log + g(u, v).

Let ¢ € C5°(R) such that ¢ > 0 and /¢(x)dx =1. If v >0 and € > 0 is small,
define for all u € [0, 1],

He(u) := /H(u—l— ex)o(x)dx
d;f ‘= exp (\/ZHe(u) —~E [HG(U)Q} )

L : g
Remark. The normalization of the random measure . is such that E [djue } = 1.

Moreover, an elementary computation shows that

E [He(u)z] =log1/e+ O (1)
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Gaussian Multiplicative Chaos

Theorem [Robert-Vargas '10, Berestycki '15]

If v < /2, the measure p) converges in probability and in L' to a measure p7.
Moreover, the measure 117 does not depend on the mollifier ¢.

Multifractality. For any g < 1/, we have E [(n”[0, r])q} ~ Cor¢@ as r — 0.

+¢(@) = (1+7g ¢’
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L? - phase

When ~ < 1/2, for any Borel set A C [0,1], we have E [p”(A)?] < co and
YA — He (u) L2
ul(A)= [ e du — p'(A)  as € — 0,
A

where He(u) = v/2yH.(u) — vE [He(u)?].

Proof. It is possible to show that

R ()W) = g, (5

where |G¢(u, v)| < C and Uc(u,v) — 0 as € — 0 for almost all u, v € [0, 1].

)+ 8w,

B[l ()3 (A)) = [ | [exp (FL(u) + Fis(v)) | dud

_ //A e (27153 [H. (u)Hs (V)] ) dudy.

In particular, this implies that IimOIE [uZ(A)z} = // lu — v[*dudv < cc.
€E—r A2
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Thick points

To prove convergence in L?, it is enough to prove that

liminf E [ (A)i) (A)] 2/ lu — v|* dudv.
€,0—0 A2

Indeed, this implies that
E |12 (A) = i (A)P] = B |12 (A | +E |13 (A)] - 2B [uZ (A)3 (A)]

converges to 0 as €,0 — 0. By Fatou's lemma, this reduces the problem to show that
for almost all u,v € [0, 1],

1
. S |
IL%]l[\OfE[HE(u)Hg(v)] > log u— ]

We say that a point u € [0,1] is a a-thick point if
He(u)

= .

lim inf -
e—0 loge~

Proposition

The set 7, of a-thick points has Hausdorff dimension (1 — 042/2)Jr and the random
measure p” lives on the set T /- .
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Dyson's Circular Unitary Ensemble '62

Let U € Uy be distributed according to the Haar measure Eyy,,. We are interested in
the empirical spectral measure:

N
j=1
2mwi61

where {21 —e e, 21 = e27”9"’} are the eigenvalues of the random matrix U.

0.5 B 0.5 -

Figure: Circular Unitary Ensemble (60 points) Figure: Independent points (60 points)
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Joint distribution of the eigenvalues

By Weyl's integration formula, for any class function g : Uy — R

Euy |g(U)] = Z/Ql/[ . g(e®™, . .,ezWie"’)‘A(ezmlel, e ezﬁ"e"’)lsze
0,1
where A(z1,...2z,) = H (z; — z«) = det[z '] is the Vandermonde determinant.
nXxn
1<k<j<n

In particular if g(U) = exp(Tr f(U)) where f is an integrable function on {|z| = 1},
we obtain:

N—1
Tr f(U) 27i6; 2 : 2mwin(60,—0;) N

1 . . .
= Z Nl det [/ ef(ezme)e%'(k_f)edﬁl . (2)
0

NxN
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Determinantal structure

Formula (1) shows that the eigenvalues of the matrix U form a determinantal process
with correlation kernel:

N—1
Kuy(z,w) = Z z"w"
n=0
on {|z| = 1}2. This means that the correlation function of the process are given by,
forany n=1,..., N,
p”(217 .o 72”) — SSE [KUN(Z/(’ ZJ)] .

For instance, this implies that

1
E[ENf} :/ f(e27T19)KUN(e27rI9,eQWI@)dQ — N]%,
0

so that the mean empirical measure N~ 1=y converges to the uniform probability
measure on T = {|z| = 1}.

As another application, we have

Var [Enf] = ZN/\k [
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Toeplitz determinant

The second formula shows that

Ky eTrf(U) — det é\fk_' = Dy ef.
N N x N J

Strong Szegd Theorem [Szegé '52, Kac '54, Ibragimov '68, Johansson '88, Deift '99]

Suppose that f € L*(T) and that X2(f) = 3.°°. n|f,|? < co. Then

log Dnle’] = Nfo + > n|fa]* + o(1).

n=1 N— oo

In particular, since Tr f(U) = =nf, this implies that the centered linear statistics
=nf — E [=nf]

converges in distribution to a Gaussian random variable with variance ¥*(f).

The inner-product (f,g)a := >,z n|>*f,&, defines a Hilbert space (modulo
constant) which is usually denoted by H?.
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What happens to the linear statistic Zpf when the test function
f ¢ HY/27

For instance, this is the case if £,(e*™'?) = 1g/<, so that =nf, = #{j : |0;] < u}.
We have

~ sin(2mku)

fu. =
8 wk
and for any u > 0,

Var [Zxf)] % <§N: sinz(iwku) s sinQ(If;Tku)>

k=1 k>N

log N
- 27'('2 +N9>oo(1)

Theorem [Costin-Lebowitz '95, Wieand '00, Soshnikov '00]

EN fu — 2UN
Viog N/~v/27

= N(0,1)
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The characteristic polynomial

Let Z(z) = det (I — Uz) on T. Formally,

log Z(z) ~ —Z ru z"

n
n=1
Theorem [Diaconis-Shahshahani '94]
Trum |

V2

} converges in distribution to {£,} -,
n=1
I.i.d. standard complex Gaussian random variables.

The collection of random variables {

v

Then

as N — oo.

log Z(z) ~ H(z) —Z \/%

The Gaussian process H is understood as a random distribution:

Z@

for any real-valued function f € H® for any € > 0.
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Rigorous result about convergence

Theorem [Hughes-Keating-O'Connell '01]

The random process log Z(z) converges weakly in the Sobolev space H™ ¢ to H(z).

Let us sketch the argument for Xy(z) := RlogZ(z) = Trlog |l — Uz|. First, observe
that from the definition of the random distribution H,

<§FEH(e27ri9), %H(e27riz9)> _ Z COS (2772((9 - 29))

k=1

— log |2 — ezmﬁ|—1/2.

It is enough to know the precise asymptotics of the Laplace transform of the random
variable
041X/\/(21) + -+ aqXN(zq) = =nf

for almost every z € T9. Here e (w) = i1 11 — wz|* (Fisher-Hartwig symbol) and
by Heine's formula:

EL{N [eoélxN(Zl)"‘"""O‘qXN(Zq)} — D/\/(ef).
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Fisher-Hartwig asymptotics

Theorem [Fisher-Hartwig '68, Widom '73, Deift-lts-Krasovsky '11]

If a1,...,09g > —1 and zi, ..., z; are distinct points on the unit circle, then
L Llog N
logD(e") = Y jaj—— — 3 Z akajlog |z — z| + Z T(oy) + o(1).
j=1 k<_] N— oo

e _ G +a/2)°

h
where e C+a)

98N L 7(0)+ o(1)  and

This implies that  Ey,, [Xn(2)°] = >
N— oo

EL{N [eCXlXN(Zl)‘i‘"""O‘qXN(Zq)}

1 ¢ _
~exp | 5 Z oy, [XN(ZJ-)2] - Z akajlog |z — zj| 7Y% + Z T(aj) + o(1)

j=1 k<] N— oo

n

where T(a) = T(a) — TH(O) o’ ~ 3 ke ]
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Non-Gaussian Multiplicative Chaos

Let
dvy,

N (@), e o]

Theorem [Webb '15]

For any 0 < v < 1/2, the random measure v, converges in probability and in L? to
the GMC measure u”.

Proof. Use the uniform Fisher-Hartwig asymptotics obtained by [Claeys-Krasovsky
'15] when q = 1, 2, the Diaconis-Shahshahani theorem, and the [? computation. [

Figure: Sample of the density of I/XI with parameters N = 100 and v = 1/2.
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Numerical simulation
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Figure: Sample of the density of VX, with parameters N = 1000 and v = 1.
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Numerical simulation
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Figure: Sample of the density of I/X, with parameters N = 1000 and v = 1.
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Numerical simulation

Figure: Sample of the density of VX, with parameters N = 1000 and v = 1.
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The sine process

Recall that the CUE is a determinantal process on {|z| = 1}* with correlation kernel:

N—1
Kuy(z, w) = Z z'w".
n=0

An equivalent correlation kernel for the CUE eigenvalue process is

Z(N—l)/2 %(ZN/2WN/2)

/2 KL{N (Zj W) — %(21/2W1/2)

K&N(Z’ W) = W

so that
sin (7TN((91 — (92))

sin (7‘(‘(91 — (92)) .

K&N (e27ri01 ’ e27ri92) _

In particular, for any sequence Ly — o0, we obtain

e27ri(90+}//l—N)) — sin (VN(X _Y)) + O (1/LN)

/ 2mi(6g+x/Ly)
KUN (e X " o 7T(X — y) N— o0

Y

where vy = 7N /Ly.
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CLT for the sine process

Theorem [Soshnikov '00]

Let {)\j}jez be a point configuration of the sine process with density vy. For any

function f € L'(R) such that / k!f(k)‘Qdk < 00, we have
0

Zf()\j)—uN/f()\)dA :>N(o,/ooo k\ﬁ(k)fdk) .

JEZL

Let ¢ > 0 such that /gb(x)dx = 1, and consider the linear statistics:

Xnu = Z fue(Aj)  where  fic =T 144 * @

JEZ

Some computations show that

(X, X ) = 2/ k A vn Fre(k)fe(k)dk
0

2i7_‘_2 : (e27ri(1+u)k o e—27riuk) (e—27ri(1—|—v)k o e—27rivk) }%(kE)‘z% .

Y
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Asymptotics

Thus
1 1

<XN,u,XN,v> ~ — Iog |

as |[u—v|—0.
u—v|Ve

Let v > 0 and define
)/Z/\/,u = 2Wﬁ(XN,U — K [X/\/,u] ) — 27‘(‘2’}/E [X/%/’u}

Assume that 1/vy < ¢(N) < 1. For any g € N, we have

log E [exp ()?N,ul +--- 4 )?N,uq)} = fyz Qn(ui, uj) + On(u)
i#]

where
1

Qn(u, v) = log Ve T Gn(u, v)

where there exists a function G : [0,1]* — R so that Gy (u, v) = G(u, v) as N — co.
Moreover, the error term satisfies:

sup |Un(u)] < C  and  Un(u) -0 forallue (0,1)7.

ue(o,1]9
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Results

Define the random measure

For any 0 < v < 1/2, the random measure p,, converges in probability and in L? to
the GMC measure u”.

For any g € N such that uqg < 1 and for any 0 < r < 1,

5 [Gaalo. )] = [ Tl —wl 2 T+ o ua

1<J 1<J

In particular, if {(q) = (1 + fy)q — ~vg?, we see that

B [(ul0.7)7) =@ [ Tl — gl TTI+ (i — ) P
[0 l]q i<j i<j
1
~ (@) qﬂ M(1+ kv)2M(1 + (k + 1))

asr — 0.
o TR+ (g+k—=1)7)I(1+7)
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Thank youl



