Eigenvalues of Random Matrices and Multiplicative Chaos

Gaultier Lambert (joint work with Dmitry Ostrovsky and Nick Simm)

UZH University of Zürich

- Gaussian Multiplicative Chaos
- Random Matrix Theory

Log-correlated Processes

Formally, a a log-correlated Gaussian process is a centered Gaussian random field whose correlation kernel is of the form

$$\mathbb{E}\left[H(u)H(v)\right] := G(u,v) = \log\frac{1}{|u-v|} + g(u,v).$$

Motivation: Quantum Gravity and the Gaussian Free Field

Give a rigorous meaning to Liouville Quantum Gravity (Polyakov '81).

"
$$e^{\gamma H(z)}$$
" $dg(z)$

where $\gamma > 0$, H is a Gaussian Free Field (GFF) on the Riemann sphere $\hat{\mathbb{C}}$ equipped with the metric $dg(z) = \frac{4}{(1+|z|^2)} dA(z)$.

The GFF is a Gaussian process whose covariance kernel is given by the Green function G of the Laplacian on $\hat{\mathbb{C}}$. Namely define $\hat{\nabla} f = \frac{1}{g} \nabla f$ and for all $z \in \mathbb{C}$,

$$-\hat{
abla}^2\mathrm{G}(z,\cdot)=2\pi\delta_z$$
 and $\int\mathrm{G}(z,w)dg(w)=0.$

It turns out that the Green function of the Laplacian on $\hat{\mathbb{C}}$ has an explicit form:

$$G(z,w) = \log\left(\frac{\sqrt{1+|z|^2}\sqrt{1+|w|^2}}{|z-w|}\right).$$

So, the GFF H is merely a random distribution on $\hat{\mathbb{C}}$ so that

$$\mathbb{E}\left[\langle H,\varphi\rangle\langle H,\psi\rangle\right] = \iint \varphi(z)\varphi(w)G(z,w)dg(z)dg(w)$$

for all $\varphi, \psi \in C_0^{\infty}(\hat{\mathbb{C}} \to \mathbb{R})$.

Gaussian Multiplicative Chaos

Let H be a Gaussian process on an interval I with covariance kernel

$$\mathbb{E}\left[H(u)H(v)\right] := G(u,v) = \log\frac{1}{|u-v|} + g(u,v).$$

Let $\phi \in C_0^\infty(\mathbb{R})$ such that $\phi \geq 0$ and $\int \phi(x) dx = 1$. If $\gamma > 0$ and $\epsilon > 0$ is small, define for all $u \in [0,1]$,

$$H_{\epsilon}(u) := \int H(u + \epsilon x) \phi(x) dx$$

$$\frac{d\mu_{\epsilon}^{\gamma}}{du} := \exp\left(\sqrt{2\gamma} H_{\epsilon}(u) - \gamma \mathbb{E}\left[H_{\epsilon}(u)^{2}\right]\right).$$

Remark. The normalization of the random measure μ_{ϵ}^{γ} is such that $\mathbb{E}\left[\frac{d\mu_{\epsilon}^{\gamma}}{du}\right]=1$. Moreover, an elementary computation shows that

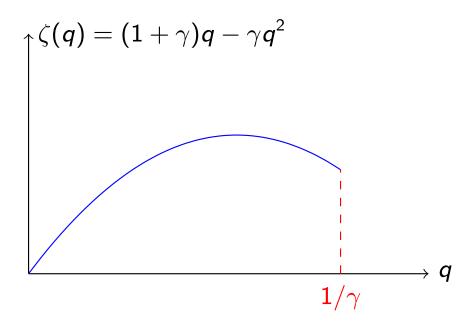
$$\mathbb{E}\left[H_{\epsilon}(u)^2
ight] = \log 1/\epsilon + \mathop{O}_{\epsilon o 0}(1).$$

Gaussian Multiplicative Chaos

Theorem [Robert-Vargas '10, Berestycki '15]

If $\gamma < \sqrt{2}$, the measure μ_{ϵ}^{γ} converges in probability and in L^1 to a measure μ^{γ} . Moreover, the measure μ^{γ} does not depend on the mollifier ϕ .

Multifractality. For any $q < 1/\gamma$, we have $\mathbb{E}\left[\left(\mu^{\gamma}[0,r]\right)^{q}\right] \sim C_{q}r^{\zeta(q)}$ as $r \to 0$.



L^2 - phase

When $\gamma < 1/2$, for any Borel set $A \subseteq [0,1]$, we have $\mathbb{E}\left[\mu^{\gamma}(A)^2\right] < \infty$ and

$$\mu_{\epsilon}^{\gamma}(A) = \int_{A} e^{\widetilde{H}_{\epsilon}(u)} du \stackrel{L^{2}}{\longrightarrow} \mu^{\gamma}(A) \quad \text{as } \epsilon \to 0,$$

where $\widetilde{H}_{\epsilon}(u) = \sqrt{2\gamma}H_{\epsilon}(u) - \gamma \mathbb{E}\left[H_{\epsilon}(u)^2\right]$.

Proof. It is possible to show that

$$\mathbb{E}\left[H_{\epsilon}(u)H_{\epsilon}(v)\right] = \log_{+}\left(\frac{\epsilon}{|u-v|}\right) + \mho_{\epsilon}(u,v).$$

where $|\mho_{\epsilon}(u,v)| \leq C$ and $\mho_{\epsilon}(u,v) \to 0$ as $\epsilon \to 0$ for almost all $u,v \in [0,1]$.

$$\mathbb{E}\left[\mu_{\epsilon}^{\gamma}(A)\mu_{\delta}^{\gamma}(A)\right] = \iint_{A^{2}} \mathbb{E}\left[\exp\left(\widetilde{H}_{\epsilon}(u) + \widetilde{H}_{\delta}(v)\right)\right] du dv$$
$$= \iint_{A^{2}} \exp\left(2\gamma \mathbb{E}\left[H_{\epsilon}(u)H_{\delta}(v)\right]\right) du dv.$$

In particular, this implies that $\lim_{\epsilon \to 0} \mathbb{E}\left[\mu_{\epsilon}^{\gamma}(A)^{2}\right] = \iint_{A^{2}} |u-v|^{2\gamma} du dv < \infty.$

Thick points

To prove convergence in L^2 , it is enough to prove that

$$\liminf_{\epsilon,\delta\to 0}\mathbb{E}\left[\mu_{\epsilon}^{\gamma}(A)\mu_{\delta}^{\gamma}(A)\right]\geq \iint_{A^{2}}\left|u-v\right|^{2\gamma}dudv.$$

Indeed, this implies that

$$\mathbb{E}\left[\left|\mu_{\epsilon}^{\gamma}(A)-\mu_{\delta}^{\gamma}(A)\right|^{2}\right]=\mathbb{E}\left[\mu_{\epsilon}^{\gamma}(A)^{2}\right]+\mathbb{E}\left[\mu_{\delta}^{\gamma}(A)^{2}\right]-2\mathbb{E}\left[\mu_{\epsilon}^{\gamma}(A)\mu_{\delta}^{\gamma}(A)\right]$$

converges to 0 as $\epsilon, \delta \to 0$. By Fatou's lemma, this reduces the problem to show that for almost all $u, v \in [0, 1]$,

$$\liminf_{\epsilon,\delta\to 0} \mathbb{E}\left[H_{\epsilon}(u)H_{\delta}(v)\right] \geq \log \frac{1}{|u-v|}.$$

We say that a point $u \in [0,1]$ is a α -thick point if

$$\liminf_{\epsilon \to 0} \frac{H_{\epsilon}(u)}{\log \epsilon^{-1}} = \alpha.$$

Proposition

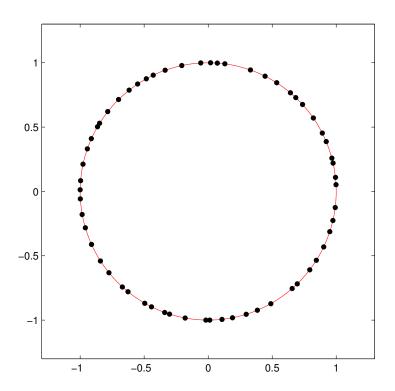
The set \mathcal{T}_{α} of α -thick points has Hausdorff dimension $\left(1-\alpha^2/2\right)^+$ and the random measure μ^{γ} lives on the set $\mathcal{T}_{\sqrt{2\gamma}}$.

Dyson's Circular Unitary Ensemble '62

Let $U \in \mathcal{U}_N$ be distributed according to the Haar measure $\mathbb{E}_{\mathcal{U}_N}$. We are interested in the empirical spectral measure:

$$\Xi_N = \sum_{j=1}^N \delta_{z_j}$$

where $\{z_1=e^{2\pi i\theta_1},\ldots,z_1=e^{2\pi i\theta_N}\}$ are the eigenvalues of the random matrix U.



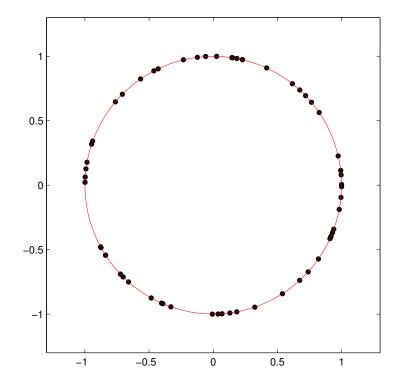


Figure: Circular Unitary Ensemble (60 points)

Figure: Independent points (60 points)

Joint distribution of the eigenvalues

By Weyl's integration formula, for any class function $g:\mathcal{U}_N o \mathbb{R}_+$

$$\mathbb{E}_{\mathcal{U}_N}\big[g(U)\big] = Z_N^{-1} \int_{[0,1]^N} g(e^{2\pi i\theta_1}, \dots, e^{2\pi i\theta_N}) \big| \triangle(e^{2\pi i\theta_1}, \dots, e^{2\pi i\theta_N}) \big|^2 d^N \theta$$

where
$$\triangle(z_1, \ldots z_n) = \prod_{1 \leq k < j \leq n} (z_j - z_k) = \det_{n \times n} [z_k^{j-1}]$$
 is the Vandermonde determinant.

In particular if $g(U) = \exp(\operatorname{Tr} f(U))$ where f is an integrable function on $\{|z| = 1\}$, we obtain:

$$\mathbb{E}_{\mathcal{U}_N}\left[e^{\operatorname{Tr} f(\mathcal{U})}\right] = Z_N^{-1} \int_{[0,1]^N} \prod_{j=1}^N e^f(e^{2\pi i\theta_j}) \det_{N \times N} \left[\sum_{n=0}^{N-1} e^{2\pi i n(\theta_k - \theta_j)}\right] d^N \theta \tag{1}$$

$$= Z_N^{-1} N! \det_{N \times N} \left[\int_0^1 e^f(e^{2\pi i\theta}) e^{2\pi i(k-j)\theta} d\theta \right]. \tag{2}$$

Determinantal structure

Formula (1) shows that the eigenvalues of the matrix U form a determinantal process with correlation kernel:

$$K_{\mathcal{U}_N}(z, w) = \sum_{n=0}^{N-1} z^n \overline{w}^n$$

on $\{|z|=1\}^2$. This means that the correlation function of the process are given by, for any $n=1,\ldots,N$,

$$\rho_n(z_1,\ldots,z_n)=\det_{n\times n}\left[K_{\mathcal{U}_N}(z_k,z_j)\right].$$

For instance, this implies that

$$\mathbb{E}\big[\Xi_N f\big] = \int_0^1 f(e^{2\pi i\theta}) K_{\mathcal{U}_N}(e^{2\pi i\theta}, e^{2\pi i\theta}) d\theta = N \hat{f}_0,$$

so that the mean empirical measure $N^{-1}\Xi_N$ converges to the uniform probability measure on $\mathbb{T}=\{|z|=1\}$.

As another application, we have

$$\operatorname{Var}\left[\Xi_{N}f\right]=\sum_{k=1}^{\infty}N\wedge k\left|\hat{f}_{k}\right|^{2}.$$

Toeplitz determinant

The second formula shows that

$$\mathbb{E}_{\mathcal{U}_N}\left[e^{\operatorname{Tr} f(U)}\right] = \det_{N \times N}\left[\widehat{e^f}_{k-j}\right] := \operatorname{D}_N[e^f].$$

Strong Szegő Theorem [Szegő '52, Kac '54, Ibragimov '68, Johansson '88, Deift '99]

Suppose that $f \in L^1(\mathbb{T})$ and that $\Sigma^2(f) = \sum_{n=1}^{\infty} n |\hat{f}_n|^2 < \infty$. Then

$$\log \mathrm{D}_N[e^f] = N\hat{f_0} + \sum_{n=1}^{\infty} n|\hat{f_n}|^2 + o(1)_{N \to \infty}.$$

In particular, since $\operatorname{Tr} f(U) = \Xi_N f$, this implies that the centered linear statistics

$$\Xi_N f - \mathbb{E}\left[\Xi_N f\right]$$

converges in distribution to a Gaussian random variable with variance $\Sigma^2(f)$.

The inner-product $\langle f,g\rangle_{\alpha}:=\sum_{n\in\mathbb{Z}}|n|^{2\alpha}\hat{f}_n\overline{\hat{g}_n}$ defines a Hilbert space (modulo constant) which is usually denoted by H^{α} .

What happens to the linear statistic $\Xi_N f$ when the test function $f \notin \mathrm{H}^{1/2}$?

For instance, this is the case if $f_u(e^{2\pi i\theta}) = \mathbb{1}_{|\theta| \le u}$ so that $\Xi_N f_u = \#\{j : |\theta_j| \le u\}$. We have

$$\widehat{f}_{uk} = \frac{\sin(2\pi ku)}{\pi k},$$

and for any u > 0,

$$\operatorname{Var}\left[\Xi_{N}f_{u}\right] = \frac{1}{\pi^{2}} \left(\sum_{k=1}^{N} \frac{\sin^{2}(2\pi k u)}{k} + N \sum_{k>N} \frac{\sin^{2}(2\pi k u)}{k^{2}} \right)$$
$$= \frac{\log N}{2\pi^{2}} + \underset{N\to\infty}{O}(1).$$

Theorem [Costin-Lebowitz '95, Wieand '00, Soshnikov '00]

$$rac{\Xi_N f_u - 2uN}{\sqrt{\log N}/\sqrt{2}\pi} \Rightarrow \mathcal{N}(0,1)$$

The characteristic polynomial

Let $Z(z) = \det (I - Uz)$ on \mathbb{T} . Formally,

$$\log Z(z) \sim -\sum_{n=1}^{\infty} \frac{\operatorname{Tr} U^n}{n} z^n$$

Theorem [Diaconis-Shahshahani '94]

The collection of random variables $\left\{\frac{\operatorname{Tr} U^n}{\sqrt{n/2}}\right\}_{n=1}^{\infty}$ converges in distribution to $\left\{\xi_n\right\}_{n=1}^{\infty}$ i.i.d. standard complex Gaussian random variables.

Then

$$\log \mathrm{Z}(z) \sim H(z) := \sum_{n=1}^{\infty} \frac{\xi_n}{\sqrt{2n}} z^n$$
 as $N \to \infty$.

The Gaussian process H is understood as a random distribution:

$$\langle H, f \rangle := \sum_{n=1}^{\infty} \frac{\xi_n}{\sqrt{2n}} \overline{\hat{f}}_n$$

for any real-valued function $f \in H^{\epsilon}$ for any $\epsilon > 0$.

Rigorous result about convergence

Theorem [Hughes-Keating-O'Connell '01]

The random process $\log Z(z)$ converges weakly in the Sobolev space $H^{-\epsilon}$ to H(z).

Let us sketch the argument for $X_N(z) := \Re \log Z(z) = \operatorname{Tr} \log |I - Uz|$. First, observe that from the definition of the random distribution H,

$$\left\langle \Re H(e^{2\pi i\theta}), \Re H(e^{2\pi i\theta}) \right\rangle = \sum_{k=1}^{\infty} \frac{\cos\left(2\pi k(\theta - \theta)\right)}{2k}$$

$$= \log|e^{2\pi i\theta} - e^{2\pi i\theta}|^{-1/2}.$$

It is enough to know the precise asymptotics of the Laplace transform of the random variable

$$\alpha_1 X_N(z_1) + \cdots + \alpha_q X_N(z_q) = \Xi_N f$$

for almost every $\mathbf{z} \in \mathbb{T}^q$. Here $e^f(w) = \prod_{j=1}^q |1 - wz_j|^{\alpha_j}$ (Fisher-Hartwig symbol) and by Heine's formula:

$$\mathbb{E}_{\mathcal{U}_{N}}\left[e^{\alpha_{1}X_{N}(z_{1})+\cdots+\alpha_{q}X_{N}(z_{q})}\right]=\mathrm{D}_{N}(e^{f}).$$

Fisher-Hartwig asymptotics

Theorem [Fisher-Hartwig '68, Widom '73, Deift-Its-Krasovsky '11]

If $\alpha_1, \ldots, \alpha_q > -1$ and z_1, \ldots, z_q are distinct points on the unit circle, then

$$\log D_N(e^f) = \sum_{j=1}^q \alpha_j^2 \frac{\log N}{4} - \frac{1}{2} \sum_{k < j} \alpha_k \alpha_j \log |z_k - z_j| + \sum_{j=1}^q \Upsilon(\alpha_j) + o(1) \sum_{N \to \infty} c(1) \sum_{k < j} \alpha_k \alpha_j \log |z_k - z_j| + \sum_{j=1}^q \gamma(\alpha_j) + o(1) \sum_{N \to \infty} c(1) \sum_{k < j} \alpha_k \alpha_j \log |z_k - z_j| + \sum_{j=1}^q \gamma(\alpha_j) + o(1) \sum_{N \to \infty} c(1) \sum_{k < j} \alpha_k \alpha_j \log |z_k - z_j| + \sum_{j=1}^q \gamma(\alpha_j) + o(1) \sum_{N \to \infty} c(1) \sum_{N \to \infty} c(1) \sum_{k < j} \alpha_k \alpha_j \log |z_k - z_j| + \sum_{j=1}^q \gamma(\alpha_j) + o(1) \sum_{N \to \infty} c(1) \sum_{N \to \infty}$$

where
$$e^{\Upsilon(lpha)}=rac{G(1+lpha/2)^2}{G(1+lpha)}$$
.

This implies that
$$\mathbb{E}_{\mathcal{U}_N}\big[X_N(z)^2\big] = \frac{\log N}{2} + \Upsilon''(0) + o(1) \quad \text{and} \quad \mathbb{E}_{\mathcal{U}_N}\big[e^{\alpha_1 X_N(z_1) + \dots + \alpha_q X_N(z_q)}\big]$$

$$\sim \exp\left(rac{1}{2}\sum_{j=1}^q lpha_j^2 \mathbb{E}_{\mathcal{U}_N}ig[X_N(z_j)^2ig] + \sum_{k < j} lpha_k lpha_j \log|z_k - z_j|^{-1/2} + \sum_{j=1}^q \widetilde{\Upsilon}(lpha_j) + o(1) \atop N o \infty
ight)$$

where
$$\widetilde{\Upsilon}(\alpha) = \Upsilon(\alpha) - \frac{\Upsilon''(0)}{2}\alpha^2 \sim \sum_{n=3}^{\infty} \kappa_n \frac{\alpha^n}{n!}$$
.

Non-Gaussian Multiplicative Chaos

Let

$$rac{d
u_N^{\gamma}}{d heta} = |\mathrm{Z}(e^{2\pi i heta})|^{2\gamma}, \qquad heta \in [0,1].$$

Theorem [Webb '15]

For any $0<\gamma<1/2$, the random measure ν_N^γ converges in probability and in L^2 to the GMC measure μ^γ .

Proof. Use the **uniform** Fisher-Hartwig asymptotics obtained by [Claeys-Krasovsky '15] when $\mathbf{q} = \mathbf{1}, \mathbf{2}$, the Diaconis-Shahshahani theorem, and the L^2 computation.

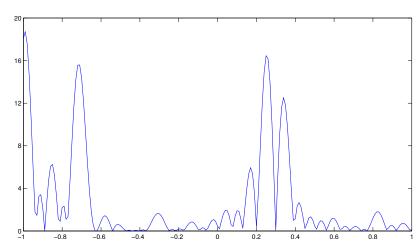


Figure: Sample of the density of ν_N^{γ} with parameters N=100 and $\gamma=1/2$.

Numerical simulation

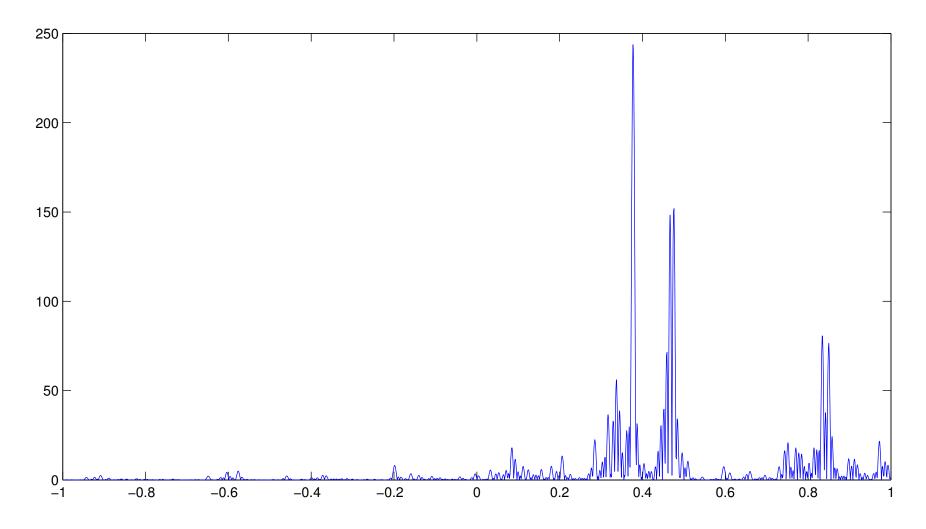


Figure: Sample of the density of ν_N^{γ} with parameters N=1000 and $\gamma=1$.

Numerical simulation

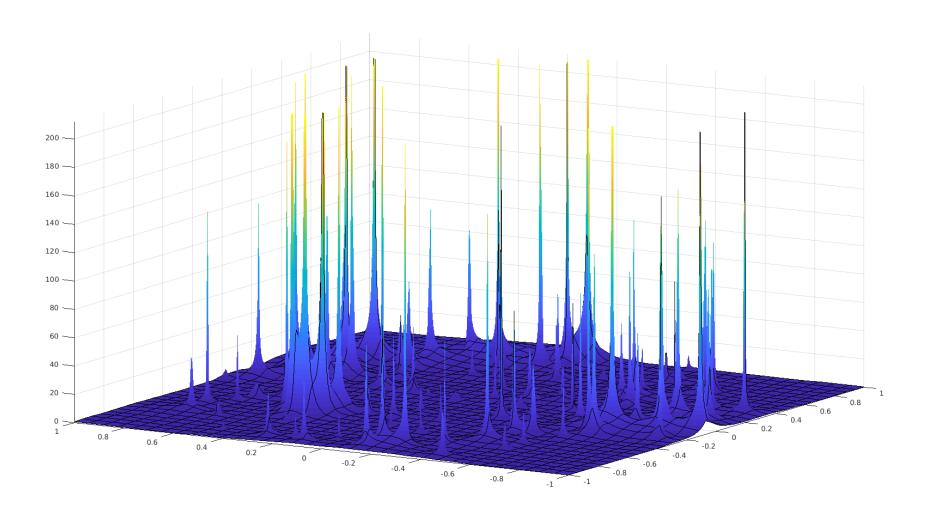


Figure: Sample of the density of ν_N^{γ} with parameters N=1000 and $\gamma=1$.

Numerical simulation

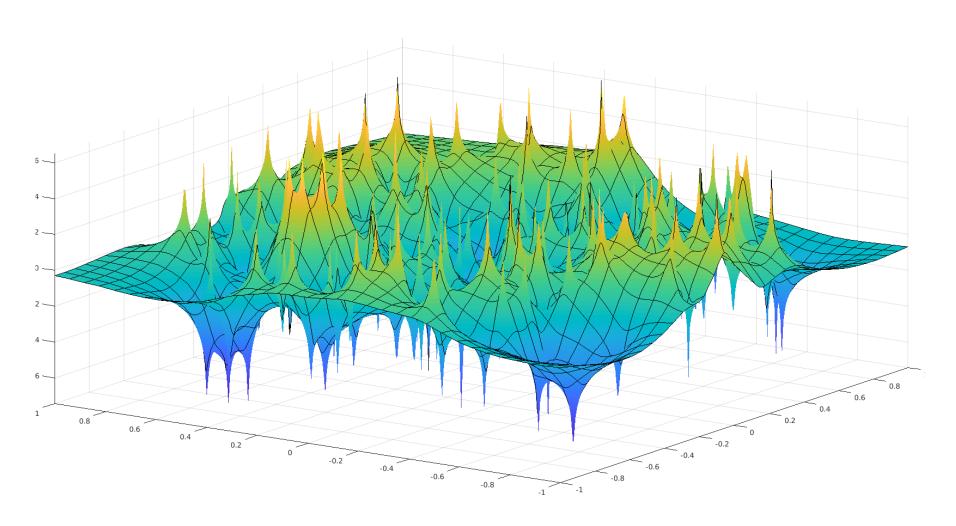


Figure: Sample of the density of ν_N^{γ} with parameters N=1000 and $\gamma=1$.

The sine process

Recall that the CUE is a determinantal process on $\{|z|=1\}^2$ with correlation kernel:

$$K_{\mathcal{U}_N}(z,w) = \sum_{n=0}^{N-1} z^n \overline{w}^n.$$

An equivalent correlation kernel for the CUE eigenvalue process is

$$K'_{\mathcal{U}_N}(z,w) := \frac{z^{(N-1)/2}}{w^{(N-1)/2}} K_{\mathcal{U}_N}(z,w) = \frac{\Im(z^{N/2} \overline{w}^{N/2})}{\Im(z^{1/2} \overline{w}^{1/2})}$$

so that

$$\mathcal{K}_{\mathcal{U}_{\mathcal{N}}}'(e^{2\pi i heta_1},e^{2\pi i heta_2}) = rac{\sin\left(\pi \mathcal{N}(heta_1- heta_2)
ight)}{\sin\left(\pi (heta_1- heta_2)
ight)}.$$

In particular, for any sequence $L_N \to \infty$, we obtain

$$\mathcal{K}'_{\mathcal{U}_N}\left(e^{2\pi i(\theta_0+x/L_N)},e^{2\pi i(\theta_0+y/L_N)}\right) = \frac{\sin\left(\nu_N(x-y)\right)}{\pi(x-y)} + \underset{N\to\infty}{O}(1/L_N)$$

where $\nu_N = \pi N/L_N$.

CLT for the sine process

Theorem [Soshnikov '00]

Let $\{\lambda_j\}_{j\in\mathbb{Z}}$ be a point configuration of the sine process with density ν_N . For any

function $f \in L^1(\mathbb{R})$ such that $\int_0^\infty k |\hat{f}(k)|^2 dk < \infty$, we have

$$\sum_{j\in\mathbb{Z}}f(\lambda_j)-\nu_N\int f(\lambda)d\lambda\ \Rightarrow \mathcal{N}\left(0,\int_0^\infty k\big|\hat{f}(k)\big|^2dk\right)\ .$$

Let $\phi \geq 0$ such that $\int \phi(x) dx = 1$, and consider the linear statistics:

$$X_{N,u}:=\sum_{j\in\mathbb{Z}}f_{u;\epsilon}(\lambda_j)$$
 where $f_{u;\epsilon}:=\mathbb{1}_{[u,1+u]}*\phi_\epsilon$

Some computations show that

$$\begin{split} \left\langle X_{N,u}, X_{N,v} \right\rangle &= 2 \int_0^\infty k \wedge \nu_N \ \widehat{f_{u;\epsilon}}(k) \overline{\widehat{f_{v;\epsilon}}(k)} dk \\ &\simeq \frac{1}{2\pi^2} \int_0^\infty \left(e^{2\pi i (1+u)k} - e^{-2\pi i u k} \right) \left(e^{-2\pi i (1+v)k} - e^{-2\pi i v k} \right) \left| \widehat{\phi}(k\epsilon) \right|^2 \frac{dk}{k} \ . \end{split}$$

Asymptotics

Thus

$$\left\langle X_{N,u},X_{N,v}
ight
angle \simeq rac{1}{2\pi^2}\lograc{1}{|u-v|ee\epsilon} \qquad ext{as } |u-v| o 0 \; .$$

Let $\gamma > 0$ and define

$$\widetilde{X}_{N,u} = 2\pi\sqrt{\gamma}\big(X_{N,u} - \mathbb{E}\left[X_{N,u}\right]\big) - 2\pi^2\gamma\mathbb{E}\big[X_{N,u}^2\big].$$

Theorem

Assume that $1/\nu_N \ll \epsilon(N) \ll 1$. For any $q \in \mathbb{N}$, we have

$$\log \mathbb{E}\left[\exp\left(\widetilde{X}_{N,u_1}+\cdots+\widetilde{X}_{N,u_q}\right)\right]=\gamma \sum_{i\neq j} Q_N(u_i,u_j)+\mho_N(\mathbf{u})$$

where

$$Q_N(u,v) = \log \frac{1}{|u-v| \vee \epsilon(N)} + G_N(u,v)$$

where there exists a function $G: [0,1]^2 \to \mathbb{R}$ so that $G_N(u,v) \to G(u,v)$ as $N \to \infty$. Moreover, the error term satisfies:

$$\sup_{\mathbf{u}\in[0,1]^q} \left|\mho_N(\mathbf{u})\right| \leq C \quad \text{ and } \quad \mho_N(\mathbf{u}) \to 0 \quad \text{ for all } \mathbf{u}\in(0,1)^q.$$

Results

Define the random measure

$$\frac{d\mu_N^{\gamma}}{du} = \exp\left(\widetilde{X}_{N,u}\right).$$

Theorem

For any $0<\gamma<1/2$, the random measure μ_N^γ converges in probability and in L^2 to the GMC measure μ^γ .

Theorem

For any $q \in \mathbb{N}$ such that $\mu q < 1$ and for any 0 < r < 1,

$$\mathbb{E}\left[\left(\mu_{N}^{\gamma}[0,r]\right)^{q}\right] = \int_{[0,r]^{q}} \prod_{i < j} |u_{i} - u_{j}|^{-2\gamma} \prod_{i < j} |1 + u_{i} - u_{j}|^{2\gamma} d^{q} \mathbf{u}$$

In particular, if $\zeta(q)=(1+\gamma)q-\gamma q^2$, we see that

$$\mathbb{E}\left[\left(\mu_{N}^{\gamma}[0,r]\right)^{q}\right] = r^{\zeta(q)} \int_{[0,1]^{q}} \prod_{i < j} |u_{i} - u_{j}|^{-2\gamma} \prod_{i < j} |1 + r(u_{i} - u_{j})|^{2\gamma} d^{q} \mathbf{u}$$

$$\simeq r^{\zeta(q)}\prod_{k=0}^{q-1}rac{\Gamma(1+k\gamma)^2\Gamma(1+(k+1)\gamma)}{\Gamma(2+(q+k-1)\gamma)\Gamma(1+\gamma)} \quad ext{ as } r o 0 \; .$$

Thank you!