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Clustering

Goal : cluster observations x1, . . . , xn with maximum similarity intra
classes and minimum similarity inter classes

x1 , . . . , xn =⇒ C1 = {x3, x18, . . .}, . . . , Ck = {x1, x20, . . .}
↓ ↓x1,1...
x1,p


xn,1...
xn,p

 } p coordinates for each observation : xi ∈ Rp

Examples : k-means, EM, hierarchical clustering
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Disadvantages :

I Not efficient in large dimension (when p� 1)

I Even in low dimension : means are not always relevant :
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Spectral clustering : example and principle (1)

First transform the observations :

Left : x1, . . . , xn =⇒ K :=
[
e−c‖xj−xi‖2

]n
i,j=1

with eigenvectors

~V1, ~V2, · · · =⇒ right : y1, . . . , yn defined by :

[
~V2 ~V1

]
=:

y1...
yn


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Spectral clustering : example and principle (1)

I x1, . . . , xn1
: small circle

I xn1+1, . . . , xn1+n2 : large circle

↪→ Matrix K :=
[
e−c‖xj−xi‖2

]n
i,j=1

: K =

[
X ε
ε Y

]
≈
[
X 0
0 Y

]
↪→ Maximal eigenvectors : ≈ either supported by ~e1, . . . , ~en1

or by
~en1+1, . . . , ~en1+n2
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Spectral clustering : principle (2)

f(‖xj − xi‖) ≥ 0 : similarity of xi and xj

(ex : f(‖xj − xi‖) = e−c‖xj−xi‖2)

L =
[
f(‖xj−xi‖)√

didj

]n
i,j=1

, di :=
∑
k f(‖xk − xi‖)

Spectral clustering of x1, . . . , xn in k classes (2) :
L : symmetric Laplacian matrix. Replace observations x1, . . . , xn by the
rows of the matrix of the largest eigenvectors of L and apply k-means on
these (new) observations.
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: Four leading eigenvectors of L for (partial) MNIST data (n = 192, p = 784,
k = 3)



Model and Assumptions

Gaussian mixture model :

I x1, . . . , xn ∈ Rp independent
I k classes C1, . . . , Ck
I Ca = {i | xi ∼ N (µa, Ca)}, ‖Ca‖ = O(1)

Convergence rate : We have n, p� 1 and :

1. Data scaling : c0 := p
n away from 0 and +∞

2. Class scaling : ca := #Ca
n away from 0 and 1

3. Mean and covariance scaling :
Cases where simple methods are efficient :

I p� 1 =⇒ xi − µa = O(
√
TrCa) = O(

√
p) so

‖µa − µb‖ �
√
p =⇒ k-means (possibly well projected) is efficient

I ‖µa‖ �
√
p et |TrCa − TrCb| �

√
p =⇒ k-means on ‖xi‖ is

efficient
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Matrix of interest

We study the normalized Laplacian matrix :

L = nD−
1
2KD−

1
2

with

K =

[
f

(
1

p
‖xj − xi‖2

)]n
i,j=1

,

D = diag(di, 1 ≤ i ≤ n), di =
∑
j

Kij



Objectives

We want to derive, for each leading eigenvector ~V and each class Ca
(a = 1, . . . , k) :

I Class-wise eigenvector means :

αa(~V ) :=
1

#Ca

〈
~V , 1Ca

〉

I Class-wise eigenvector fluctuations :∥∥∥diag(1Ca)
(
~V − αa(~V )1Ca

)∥∥∥
I Class-wise cross correlations :〈(

~V − αa(~V )1Ca

)
,diag(1Ca)

(
~W − αa( ~W )1Ca

)〉
for ~W another leading eigenvector
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Class-wise eigenvector means and fluctuations

: MNIST data : four leading eigenvectors of L (red) and theoretical findings
(blue).
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Class-wise means, fluctuations and cross correlations
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Eigenvectors

Dominant Eigenvector : (
√
d1, . . . ,

√
dn)T

Proposition (Eigenvector D
1
21n)

We have

D
1
2 1n√

1TnD1n
=

1n√
n
+

1

n
√
c0

f ′(τ)

2f(τ)

[
{ta1Ca}

k
a=1+ diag

{√
2

p
Tr(C2

a)1Ca

}k

a=1

ϕ

]
+ o(n−1)

with ta := 1√
p TrC◦a (a = 1, . . . , k) and ϕ ∼ N (0, In).

To sum up :
I structure of D

1
2 1n : block-wise constant + noise

I information about the classes depending on the numbers
TrC◦a = TrCa − TrC◦

I next (and main) step : study the projected normalized Laplacian :

L′ = nD−
1
2KD−

1
2 − nD

1
2 1n1TnD

1
2

1TnD1n
.
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Random Matrix Equivalent for L′

Theorem (Random Matrix Equivalent)
As n, p→∞, in operator norm,

∥∥∥L′ − L̂′∥∥∥ a.s.−→ 0, where

L̂′ = PWTWP + χ,

with P orthogonal projection onto {x1 + · · ·+ xn = 0},
W = [w1, . . . , wn] ∈ Rp×n Gaussian (xi = µa + p1/2wi) and

χ is matrix with rank ≤ 2k + 4

(spiked model) depending on :

I the class structure
I the function f through the numbers f(τ), f ′(τ), f ′′(τ), τ = 2

p TrC◦

I the means µa (a = 1, . . . , k)
I the traces ta = 1√

p TrC◦a (a = 1, . . . , k)

I the cross-traces Ta,b := 1
p TrC◦aC

◦
b (a, b = 1, . . . , k)
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Equivalence between L and L̂ : eigenvectors

: MNIST data : four leading eigenvectors of L (red), versus L̂ (black)
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Towards the eigenvectors of L̂′ = PWTWP + χ

1. Study eigenvalue distribution (and its support S) of PWTWP

2. Isolated eigenvalues of L̂′ : solve, for z 6∈ S,

det
(
PWTWP + χ− z

)
= 0

turning this n× n determinant to a smaller one :

det
(
PWTWP + χ− zIn

)
= det

(
PWTWP − z

)
det
(

1 +
(
PWTWP − z

)−1
χ
)

︸ ︷︷ ︸
matrix with small co-rank

3. Study the eigenvectors thanks to the Cauchy Formula :

Spectral Projection of L̂′ on I =
1

2iπ

∮
γI

(z − L̂)−1dz
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)
= det

(
PWTWP − z

)
det
(

1 +
(
PWTWP − z

)−1
χ
)

︸ ︷︷ ︸
matrix with small co-rank

3. Study the eigenvectors thanks to the Cauchy Formula :

Spectral Projection of L̂′ on I =
1

2iπ

∮
γI

(z − L̂)−1dz
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Step 1 : eigenvalue distribution of PWTWP

• Random measure µn = n−1
∑n
i=1 δλi(PWTWP ) studied through its

Stieltjes transform

Sµn
(z) =

∫
λ∈R

µn(dλ)

λ− z
=

1

n
Tr(Qz) for Qz = (PWTWP − z)−1

• Qz = z−1PWTWPQz − z−1In + Stein Formula for Gaussian
variables E[Xf(X)] = σ2E[f ′(X)]=⇒ Loop equations for Qz =⇒ fixed
point characterization of a deterministic equivalent :

Qz =
p

n
diag {ga(z)1na}

k
a=1 + o(1)

for (ga(z))a=1,...,k ∈ Ck solution of

ga(z) =
1

1
n trCa

(
Ip +

∑k
b=1

nb

n gb(z)Cb

)−1
− pz/n

(a = 1, . . . , k)

=⇒ deterministic equivalent of µn
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Eigenvalue distribution of PWTWP
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0

0.1
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0.3 Eigenvalues of PWTWP

Deterministic equivalent density

: Eigenvalues of PWTWP (across 1 000 realizations) versus deterministic
equivalent density, n = 32, p = 256, k = 3.

Deterministic equivalent computed throught its Stieltjes transform :

S(z) =
p

n

k∑
a=1

na
n
ga(z)

and the formula

density(x) = lim
η↓0

1

π
=(S(x+ iη))



Step 2 : isolated eigenvalues of L̂′

L̂′ = PWTWP + χ = PWTWP + UBUT, B : r × r

det(In +XY ) = det(Ir + Y X), (true even for rectangular matrices
X,Y !)

det(z − L̂′) = det(In − (z − PWTWP )−1χ) det(z − PWTWP )

= det(Ir − UT(z − PWTWP )−1BU) det(z − PWTWP )

↪→ key-tool : the r × r matrix UT(z − PWTWP )−1BU
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Step 2 : isolated eigenvalues of L̂′

As
(z − PWTWP )−1 = − p

n
diag {ga(z)1na

}ka=1 + o(1)

for (ga(z))a=1,...,k ∈ Ck solution of fixed point equation

ga(z) =
1

1
n trCa

(
Ip +

∑k
b=1

nb

n gb(z)Cb

)−1
− pz/n

(a = 1, . . . , k),

we get :

Theorem
There is a (complicated but human) function F (z) such that (up to some
technical hypotheses) the isolated eigenvalues of L̂′ are the roots of

F (z) = 0.
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Step 3 : isolated eigenvectors of L̂′

We want to derive, for each such eigenvector ~V and each a = 1, . . . , k :

I Class-wise eigenvector means :

αa(~V ) :=
1

#Ca

〈
~V , 1Ca

〉
I Class-wise eigenvector fluctuations :∥∥∥diag(1Ca)

(
~V − αa(~V )1Ca

)∥∥∥
I Class-wise cross correlations :〈(

~V − αa(~V )1Ca

)
,diag(1Ca)

(
~W − αa( ~W )1Ca

)〉
for ~W another leading eigenvector

↪→ one needs, for Π = ~V ~V T and Π′ = ~W ~WT, the numbers

p−1JTΠJ ; p−1JTΠ diag(1Ca)Π′J (1 ≤ a ≤ k)

for J = [1C1 · · · 1Ck ] ∈ Rn×k.
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Step 3 : isolated eigenvectors of L̂′

I Cauchy Formula :

Spectral Projection of L̂′ on I = − 1

2iπ

∮
γI

(L̂′ − z)−1dz

I Woodbury matrix identity : for Qz = (PWTWP − z)−1,

(L̂′ − z)−1 = Qz −QzU(B−1 + UTQzU)−1UTQz

Theorem
The deterministic equivalents of the k × k matrices

p−1JTΠJ ; p−1JTΠ diag(1Ca)Π′J (1 ≤ a ≤ k)

can be computed thanks to the parameters and the solutions of the fixed
point equations ga(z), a = 1, . . . , k.
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Class-wise eigenvector means and fluctuations

: MNIST data : four leading eigenvectors of L (red) and theoretical findings
(blue).
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Class-wise means, fluctuations and cross correlations
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: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical
means and 1- and 2-standard deviations in blue. Class 1 in red, Class 2 in
black, Class 3 in green.
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Concluding Remarks

Summing up :

I Although Gaussian-based, adequately mimics real world examples
I Noticeable Results :

I importance of derivatives of f at τ
I choice of f(τ), f ′(τ), f ′′(τ) determines importance of means,

covariances
I eigenvector may or may not contain information (upon separability

condition !)
I number of isolated eigenvalues not obvious

Perspectives :

I (joint) class-wise eigenvector fluctuations
I implications to spectral clustering performance
I algorithm comparison
I ideally, (data-driven) algorithm improvement.
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