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Goal : cluster observations x1, ..., 2, with maximum similarity intra
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Examples : k-means, EM, hierarchical clustering
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Spectral clustering : principle (2)

f(|lx; — xi]|) > 0 : similarity of z; and z;
(ex: f(llay — ;) = emellesm=el)
fllzi—z D™
L=V 4= T f e )
Spectral clustering of z1,...,x, in k classes (2) :

L : symmetric Laplacian matrix. Replace observations x1,...,x, by the
rows of the matrix of the largest eigenvectors of L and apply k-means on
these (new) observations.



: Four leading eigenvectors of L for (partial) MNIST data (n = 192, p = 784,
k=3)
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Gaussian mixture model :

> z1,...,%, € RP independent
» k classes Cq,...,Ck
> Co={z |2 ~N(ta,Ca)}, [|Call = O(1)

Convergence rate : We have n,p > 1 and :

1. Data scaling : co := Z away from 0 and +o0

_ #Ca

2. Class scaling : ¢, := 7= away from 0 and 1
3. Mean scaling : with Z(lj:l Calta = 0, tall = O(1)
4. Covariance scaling : with C° := 22:1 ¢eCq and CF

we have
[Call =0O(1), TrC;=0(yp)

Then %ij —nlP T = ]%TrCo

=Cy —C°,
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Objectives

We want to derive, for each leading eigenvector V' and each class C,
(a=1,...,k):

» (Class-wise eigenvector means :

aa(V) = #1C'a <\7 1C(,,>

» Class-wise eigenvector fluctuations :

diag(1c,) <‘7 - a’”'(v)lc") H

» Class-wise cross correlations :
<(x7 - a,,,(V)1CG> ,diag(1c,) (W - aa,(vf/)1ca)>

for W another leading eigenvector
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Eigenvectors

Dominant Eigenvector : (\/d,...,\/d,)"

Proposition (Eigenvector Déln)

We have
. k
D31, 1n 1 fl(n) Y { 2 -1
i _2n oy tale, }o_it diag ¢ /= Tr(C3)le, +on
D~ v e 2f(r) | Ueleddasi p e g et

with t, := %Tng (a=1,...,k)and ¢ ~ N(0,1,).

To sum up :

» structure of Déln : block-wise constant + noise
» information about the classes depending on the numbers
TrCy =TrC, —Tr C°

» next (and main) step : study the projected normalized Laplacian :

Dz1,1T Dz

L'=nD"*KD"% -
n n IIDI,L
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Random Matrix Equivalent for L/

Theorem (Random Matrix Equivalent)

As n,p — 00, in operator norm, ||L' — L'|| =% 0, where

L'=PWTWP +y,

with P orthogonal projection onto {x1 + - - - + z,, = 0},
W = [wy,...,w,] € RPX"™ Gaussian (x; = pq + p*/?w;) and

X is matrix with rank < 2k + 4

(spiked model) depending on :
> the class structure
> the function f through the numbers f(r), f'(1), f"(r), 7 = 2 Tr C°
> the means pi, (a=1,...,k)
> the traces t, = %TrC; (a=1,....k)

> the cross-traces T, 1= 1% TrCCY (a,b=1,...,k)
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Towards the eigenvectors of L' = PWTWP + y

1. Study eigenvalue distribution (and its support S) of PWTW P
2. lsolated eigenvalues of L' : solve, for z ¢ S,
det (PWTWP +x—2) =0
turning this n X n determinant to a smaller one :
det (PWTWP + x — 2I,,)

= det (PWTWP - z) det (1+ (PWTWP - 2) " x)

matrix with small co-rank

3. Study the eigenvectors thanks to the Cauchy Formula :

N 1 ~
Spectral Projection of L' on I = — ¢ (z— L) 'dz
1 v
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Step 1 : eigenvalue distribution of PWTW P

e Random measure /i, = n~ ' Y " 65, (pywrw p) studied through its
Stieltjes transform

o (dA 1 _
Spa(2) = /AGR MA (_ Z) = —Tr(Q:)  for Q.= (PWTWP —2)~?

e Q. =2z'PWTWPQ, — 2z~ 'I, + Stein Formula for Gaussian
variables E[X f(X)] = o?E[f/(X)]= Loop equations for ), = fixed
point characterization of a deterministic equivalent :

Q-

- diag {ga(2)1Lu, Yi—y +0(1)

for (ga(2))a=1,..k € CF solution of

ga(2) = 1 (a=1,...,k)

1 ko n !
Lac, (Ip + >y ﬁgb(Z)Cb> —pz/n

— deterministic equivalent of y,



Eigenvalue distribution of PWTW P

0.3 [__1Eigenvalues of PWTW P L
Deterministic equivalent density
0.2 |
0.1
0 T
0 10 20 30

. Eigenvalues of PWTTW P (across 1000 realizations) versus deterministic
equivalent density, n = 32, p = 256, k = 3.

Deterministic equivalent computed throught its Stieltjes transform :

and the formula
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Step 2 : isolated eigenvalues of L/

L' = PWTWP+x = PWTWP+UBUT, B:rxr

det(I, + XY) = det(I, + YX), (true even for rectangular matrices
X, v

det(z — L) = det(l, — (z = PWTWP) ') det(z — PWTWP)
= det(I, —U" (2 — PWTWP) 'BU)det(z — PWTWP)

< key-tool : the r x r matrix U' (z — PWTWP)~'BU
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Step 2 : isolated eigenvalues of iif

As
(z = PWTWP)™ = P ding {gu(2)L, )iy +o0(1)

for (ga(2))a=1,... 1 € CF solution of fixed point equation

1
ga(2) = - — (a=1,...,k),
Larc, (I,, + >y %gb(z)Cb) —pz/n
we get :
Theorem

There is a (complicated but human) function F'(z) such that (up to some
technical hypotheses) the isolated eigenvalues of L' are the roots of

F(z)=0.
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Step 3 : isolated eigenvectors of L'

We want to derive, for each such eigenvector V and each a =1,...,k :
» (Class-wise eigenvector means :
1 -

(y(l,(V) = Zic. <V> 1ca>

» Class-wise eigenvector fluctuations :

‘ diag(1c,) <‘7 - O‘“'(V)lc”> H

» Class-wise cross correlations :

<(‘7 — cy(L(V)lca> ,diag(1e,) (W — o (W), >>

for I another leading eigenvector
< one needs, for IT = VVT and II' = WWT, the numbers

p YT p LI diag(le )T (1 <a<k)
for J = [1@1 s 1ck] € R™*k,
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Step 3 : isolated eigenvectors of if

» Cauchy Formula :

A 1 o
Spectral Projection of L' on I = ——]{ (L' —2)"dz
¥

» Woodbury matrix identity : for Q, = (PWTWP — 2)~1,

(L'—2)" = Q.—Q.UB ' +UTQ.U)'UTQ.

Theorem

The deterministic equivalents of the k x k matrices
p YT p LT T diag(le )T (1 <a<k)

can be computed thanks to the parameters and the solutions of the fixed
point equations g,(z), a =1,...,k.
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: MNIST data : four leading eigenvectors of L (red) and theoretical findings
(blue).



Class-wise means, fluctuations and cross correlations
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: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical
means and 1- and 2-standard deviations in blue. Class 1 in red, Class 2 in
black, Class 3 in green.
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: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical
means and 1- and 2-standard deviations in blue. Class 1 in red, Class 2 in
black, Class 3 in green.
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Concluding Remarks

Summing up :
» Although Gaussian-based, adequately mimics real world examples

» Noticeable Results :

> importance of derivatives of f at 7
» choice of f(7), f(7), f”'(r) determines importance of means,

covariances
> eigenvector may or may not contain information (upon separability

condition )
» number of isolated eigenvalues not obvious

Perspectives :
> (joint) class-wise eigenvector fluctuations
» implications to spectral clustering performance
» algorithm comparison

» ideally, (data-driven) algorithm improvement.



