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Ginibre ensembles

I Let G be an N × N real matrix whose entries are i.i.d.
standard normal random variables.

I As a probability density on matrix space:

P(G ) =
1

(2π)N2/2
exp(−1

2
Tr(GGT))

I Clearly invariant under orthogonal transformations
G → O1GO2 where O1,O2 ∈ O(N).

I Known as the Ginibre orthogonal ensemble (GinOE).

I The Ginibre unitary ensemble (GinUE) instead consists of
complex variables whose real and imaginary parts are
N (0, 1/2).
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Eigenvalues of G/
√
N where G ∼ GinUE
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Early discoveries for the Ginibre ensemble

I Jean Ginibre’s 1965 paper introduced a total of three
ensembles: GinUE, GinSE and GinOE, in increasing order of
difficulty.

I Eigenvalue distribution: Ginibre completely solved the GinUE,
partially solved GinSE and left GinOE unsolved.

I Lehmann and Sommers 1991. Joint PDF of GinOE complex
eigenvalues xj + iyj and NR real eigenvalues λj :

1

cN
|∆| exp

N−NR∑
j=1

(
y2
j − x2

j

)
−

NR∑
j=1

λ2
j /2

 N−NR∏
j=1

erf(yj
√

2)

where ∆ is the product of differences over all eigenvalues.
The factor ∆ correlates all real and complex eigenvalues in a
non-trivial way.
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Real eigenvalues and interacting particle systems

I The correlation functions of real eigenvalues converge to those
of annihilating Brownian motions (Tribe, Zaboronski ’11, T,Z
and Siu Kwan Yip ’12).

I Recently developed for edge statistics by Poplavskyi, Tribe,
Zaboronski (2016).

I Forrester (2013) used this idea to compute the nearest
neighbour spacing distribution:

pGinOE(s) ≈ se−c1s , c1 =
1√
2π
ζ(3/2)

which appears in intermediate spectral statistics (‘mermaid
statistics’ - Beenakker et al. 2013). (pGOE(s) ≈ se−c2s2

).



Real eigenvalues and interacting particle systems

I The correlation functions of real eigenvalues converge to those
of annihilating Brownian motions (Tribe, Zaboronski ’11, T,Z
and Siu Kwan Yip ’12).

I Recently developed for edge statistics by Poplavskyi, Tribe,
Zaboronski (2016).

I Forrester (2013) used this idea to compute the nearest
neighbour spacing distribution:

pGinOE(s) ≈ se−c1s , c1 =
1√
2π
ζ(3/2)

which appears in intermediate spectral statistics (‘mermaid
statistics’ - Beenakker et al. 2013). (pGOE(s) ≈ se−c2s2

).



Real eigenvalues and interacting particle systems

I The correlation functions of real eigenvalues converge to those
of annihilating Brownian motions (Tribe, Zaboronski ’11, T,Z
and Siu Kwan Yip ’12).

I Recently developed for edge statistics by Poplavskyi, Tribe,
Zaboronski (2016).

I Forrester (2013) used this idea to compute the nearest
neighbour spacing distribution:

pGinOE(s) ≈ se−c1s , c1 =
1√
2π
ζ(3/2)

which appears in intermediate spectral statistics (‘mermaid
statistics’ - Beenakker et al. 2013). (pGOE(s) ≈ se−c2s2

).



Real eigenvalues and interacting particle systems

I The correlation functions of real eigenvalues converge to those
of annihilating Brownian motions (Tribe, Zaboronski ’11, T,Z
and Siu Kwan Yip ’12).

I Recently developed for edge statistics by Poplavskyi, Tribe,
Zaboronski (2016).

I Forrester (2013) used this idea to compute the nearest
neighbour spacing distribution:

pGinOE(s) ≈ se−c1s , c1 =
1√
2π
ζ(3/2)

which appears in intermediate spectral statistics (‘mermaid
statistics’ - Beenakker et al. 2013). (pGOE(s) ≈ se−c2s2

).



How many eigenvalues of a random real matrix are real?

Theorem (Edelman, Kostlan and Shub ’94)

For an N × N real Ginibre matrix G , one has

E(NR) =
√

2N/π + O(1) N →∞

and the convergence to the uniform law

1

E(NR)
E

 N∑
j=1

δ(λj − x)

→ {
1
2 |x | < 1

0 |x | > 1

Products: What is the analogue of this result for products of
independent Ginibre random matrices?

Fluctuations: Is there a central limit theorem for NR − E(NR)?
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Products

Let G1, . . . ,Gm be m independent real Ginibre matrices of size
N × N and set Xm = N−m/2G1G2 . . .Gm.

Theorem (S. pre-print: arXiv:1701.09176)

For every fixed m ∈ N we have

E(N
(m)
R ) =

√
2Nm

π
+ O(log(N))

and the weak convergence

1

E(N
(m)
R )

E

 N∑
j=1

δ(λj − λ)

→ {
1

2m |λ|
1
m
−1 |λ| < 1

0 |λ| > 1

as N →∞.

Compare to known density for the complex eigenvalues (Burda et al., Götze

and Tikhomirov, O’Rourke and Soshnikov 2010): p(z) = 1
mπ
|z |2/m−21|z|<1.
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Remarks

I This theorem (but without the leading constant
√
m) was

conjectured by Forrester and Ipsen (2016).

I Philosophy: G1 . . .Gm ∼ Gm up to symmetry? (Burda et al.
2010)

I Proof still works for m = Nδ for some small δ > 0. What if
m = cN for some large constant c > 0?

Idea of the proof is to compute moments and show that

lim
N→∞

1

E(N
(m)
R )

E

N
(m)
R∑

j=1

λkj

 =

{
1

1+mk , k even

0, k odd
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Scalar case and Meijer G-functions

Let Y1, . . . ,Ym be independent standard Gaussians. What is the

density of the product X
(N=1)
m = Y1Y2 . . .Ym?

wm(x) :=

∫
Rm

m∏
j=1

dxj e
−x2

j /2δ(x−x1x2 . . . xm) = G m,0
0,m

(
0,...,0

∣∣∣∣ x2

2m

)
.

where the Meijer G-function is

G m,n
p,q

(
a1,...,ap
b1,...,bq

∣∣∣ z) =
1

2πi

∫
γ

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
z s ds

The contour γ connects −i∞ to +i∞ such that all poles of
Γ(bj − s) on right and Γ(1− ak + s) on left.

What about the real eigenvalues of Xm N > 1?
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Products form a Pfaffian point process

Theorem (Forrester and Ipsen 2016)

The real eigenvalues of the matrix product G1 . . .Gm form a
Pfaffian point process with correlation kernel given by

K(x , y) =

(
D(x , y) S(x , y)
−S(y , x) I (x , y)

)
where

S(x , y) =
N−2∑
j=0

wm(x)x j

(2
√

2πj!)m
(xAj(y)− Aj+1(y))

and
Aj(y) =

∫
R
wm(v)sgn(y − v)v j dv ,

In particular, the desired moments are just

Mk,N := E

N
(m)
R∑

j=1

λkj

 =

∫
R
xkS(x , x) dx
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Moment formula

The last integral splits in two pieces

M2k,N(m) = M
(1)
2k,N(m)−M

(2)
2k,N(m) where

M
(1)
2k,N(m) = N−mk

(N−2)/2∑
j=0

2(2j+k)m

(
√
π(2j)!)m

(aj+1,j+k+1 + aj+k+1,j+1)

M
(2)
2k,N(m) = N−mk

N/2−2∑
j=0

2(2j+1+k)m

(
√
π(2j + 1)!)m

(aj+k+2,j+1 + aj+2,j+k+1)

Here aj ,k is a particular case of the Meijer-G function

aj ,k = G m+1,m
m+1,m+1

(
3/2−j ,...,3/2−j ,1

0,k,...,k

∣∣∣ 1
)

=
1

2πi

∫
γ

(Γ(k − s)Γ(−1/2 + j + s))m

−s
ds
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Saddle point analysis

The formula(
Γ(k − s)Γ(−1/2 + j + s)

Γ(j + k − 1/2)

)
=

∫ ∞
0

tk−s−1

(1 + t)k+j+1/2
dt

implies that aj+1,j+k+1 can be written

Γ(2j + k + 3/2)m
∫ ∞

1

dxm
xm

m−1∏
l=1

[∫ ∞
0

dxl
xl

(xl/xl+1)j+1/2

(1 + xl/xl+1)2j+k+3/2

]
x j+k+1

1

(1 + x1)2j+k+3/2

= Γ(2j + k + 3/2)m
∫ ∞

1

∫
[0,∞)m−1

e jΦ(x)F (x) dx1 . . . dxm

Asymptotics as j →∞ with fixed k ,m: Use the classical
(multi-dimensional) saddle point method.

Because of cancellations (coming from sgn(x − y)) one has to go
to sub-leading order.
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Linear statistics

Given a random matrix X , eigenvalues z1, . . . , zN , define the linear
statistic

SN(f ) =
N∑
j=1

f (zj)

I Hermitian ensembles (Johansson ’98): for smooth f

SN(f )− E(SN(f ))
d→ N

(
0,
∞∑
k=1

k |ck(f )|2
)
, N →∞

I non-Hermitian ensembles (Rider and Virag, Rider and
Silverstein ’07): GFF type limit.

SN(f )−E(SN(f ))
d→ N

(
0,

1

π

∫
U
|∇f (z)|2 d2z

)
, N →∞

Highly universal bounded variance central limit theorems.
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Variance

Theorem (Rand. Mat. Theor. Appl. 2017)
The variance of the total number of real eigenvalues of a real
(2n× 2n) Gaussian random matrix is given by the following explicit
formula

Var(NR) =
2
√

2√
π

n∑
k=1

Γ(2k − 3/2)

Γ(2k − 1)
− 2

π

∑
k1,k2

Γ(k1 + k2 − 3/2)2

Γ(2k1 − 1)Γ(2k2 − 1)

where Γ(x) is the Gamma function. The asymptotics are

Var(NR) =
2−
√

2√
π

2
√
n + O(1) (3.1)

I Formula (3.1) also appears in Forrester and Nagao ’07 and
Tao and Vu ’12.

I One can derive similar exact formulae for any monomial
eigenvalue statistics: Cov(XN(λp),XN(λq))

.
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Central limit theorem

Theorem (Rand. Mat. Theor. Appl. 2017)

Let G be a 2n × 2n matrix of standard i.i.d. Gaussians. Let
λ1, . . . , λNR be the real eigenvalues and let P(λ) be an even
polynomial. Then

n−1/4

 NR∑
j=1

P(λj/
√

2n)− E

 NR∑
j=1

P(λj/
√

2n)


−→ N (0, σ2(P))

as n→∞, where

σ2(P) =
2−
√

2√
π

∫ 1

−1
P(x)2 dx

See also pre-print by Phil Kopel (2015) - same CLT provided
supp(f ) ⊂ (−1 + ε, 1− ε) (so not for NR).



Central limit theorem

Theorem (Rand. Mat. Theor. Appl. 2017)

Let G be a 2n × 2n matrix of standard i.i.d. Gaussians. Let
λ1, . . . , λNR be the real eigenvalues and let P(λ) be an even
polynomial. Then

n−1/4

 NR∑
j=1

P(λj/
√

2n)− E

 NR∑
j=1

P(λj/
√

2n)


−→ N (0, σ2(P))

as n→∞, where

σ2(P) =
2−
√

2√
π

∫ 1

−1
P(x)2 dx

See also pre-print by Phil Kopel (2015) - same CLT provided
supp(f ) ⊂ (−1 + ε, 1− ε) (so not for NR).



Proof starting point

Lemma
The moment generating function of any even linear statistic is a
determinant:

Ees
∑NR

j=1 f (λj ) = det

(
δjk +

A[es(f (x)+f (y)) − 1]2j ,2k−1√
2πΓ(2j − 1)Γ(2k − 1)

)n

j ,k=1

Can be extracted from a result of Sinclair (2007), combined with
evenness of f . Scalar product:

A[ψ]jk =
1

2

∫
R
dx

∫
R
dy ψ(x)ψ(y)e−x2/2−y2/2Pj−1(x)Pk−1(y)sign(y − x)
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Compute cumulants

Key idea: Use log det = Tr log !

Find that

Lemma
The pth cumulant of the linear statistic

∑NR
j=1 f (λj) is

κp = p!

p∑
m=1

(−1)q+1

q

∑
ν1+...+νq=p

Tr(M
(ν1)
n [f ] . . .M

(νq)
n [f ])

ν1! . . . νq!

where M
(ν)
n [f ]j ,k = A[(f (x) + f (y))ν ]2j ,2k−1, j , k = 1, . . . , n.

Proof proceeds by expanding the above trace. Estimates in the
limit n→∞ obtained using complex analysis.

Ultimately obtain κp = O(
√
n) as n→∞.
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Analogy with random polynomials

Consider the Weyl polynomials:

P(z) =
N∑
j=1

ajz
j

where aj are i.i.d. Gaussian with mean zero and variance
(N
j

)
.

Theorem (Bleher and Di 1997)

Let NR(P) denote the number of real roots of the polynomial
P(z). Then

E(NR(P)) =
√
N

and
Var(NR(P)) = c

√
N + o(

√
N)

where c = 0.57173....

Note that for real Ginibre

c = lim
N→∞

Var(NR)

E(NR)
∼ 2−

√
2 = 0.5857...
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N→∞

Var(NR)

E(NR)
∼ 2−

√
2 = 0.5857...
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Summary and open problems

I gave results extending Edelman et al’s law to products and a CLT.

I What if the matrix entries do not match moments with the
Gaussian, say to order 4?

I Can free probability say something about real eigenvalue
statistics?

I How many real eigenvalues do we have for the product when
m� N?

Thank you.
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